首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
G protein-coupled receptor kinase 2 (GRK2) plays a key role in the desensitization of G protein-coupled receptor signaling by phosphorylating activated heptahelical receptors and by sequestering heterotrimeric G proteins. We report the atomic structure of GRK2 in complex with Galphaq and Gbetagamma, in which the activated Galpha subunit of Gq is fully dissociated from Gbetagamma and dramatically reoriented from its position in the inactive Galphabetagamma heterotrimer. Galphaq forms an effector-like interaction with the GRK2 regulator of G protein signaling (RGS) homology domain that is distinct from and does not overlap with that used to bind RGS proteins such as RGS4.  相似文献   

2.
The phosphorylation of heptahelical receptors by heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor kinases (GRKs) is a universal regulatory mechanism that leads to desensitization of G protein signaling and to the activation of alternative signaling pathways. We determined the crystallographic structure of bovine GRK2 in complex with G protein beta1gamma2 subunits. Our results show how the three domains of GRK2-the RGS (regulator of G protein signaling) homology, protein kinase, and pleckstrin homology domains-integrate their respective activities and recruit the enzyme to the cell membrane in an orientation that not only facilitates receptor phosphorylation, but also allows for the simultaneous inhibition of signaling by Galpha and Gbetagamma subunits.  相似文献   

3.
4.
Terrestrial plants lose water primarily through stomata, pores on the leaves. The hormone abscisic acid (ABA) decreases water loss by regulating opening and closing of stomata. Here, we show that phospholipase Dalpha1 (PLDalpha1) mediates the ABA effects on stomata through interaction with a protein phosphatase 2C (PP2C) and a heterotrimeric GTP-binding protein (G protein) in Arabidopsis. PLDalpha1-produced phosphatidic acid (PA) binds to the ABI1 PP2C to signal ABA-promoted stomatal closure, whereas PLDalpha1 and PA interact with the Galpha subunit of heterotrimeric G protein to mediate ABA inhibition of stomatal opening. The results reveal a bifurcating signaling pathway that regulates plant water loss.  相似文献   

5.
异三聚体G蛋白在UV-B诱导拟南芥气孔关闭中的作用   总被引:3,自引:2,他引:1  
【目的】了解异三聚体G蛋白在紫外线B(UV-B)辐射诱导气孔关闭中的作用,为进一步阐明植物细胞转导UV-B辐射信号的机制提供依据。【方法】以拟南芥(Arabidopsis thaliana)野生型、G蛋白α亚基基因缺失突变体及其超表达株系和组成活化型株系为材料,并结合药理学试验,通过气孔开度分析确定G蛋白在0.5 W•m-2 UV-B辐射诱导拟南芥叶片气孔关闭中的作用。【结果】细菌毒素试验表明,G蛋白抑制剂百日咳毒素(PTX)能显著抑制UV-B诱导的气孔关闭,而其活化剂霍乱毒素(CTX)能模拟UV-B的作用诱导可见光下叶片气孔关闭。遗传学试验显示,UV-B不能诱导异三聚体G蛋白α亚基GPA1功能缺失突变体gpa1-1和gpa1-2的气孔关闭,却能诱导其超表达株系wGα和组成活化型株系cGα的气孔关闭,且cGα在可见光下气孔开度明显小于野生型,在UV-B辐射初期其气孔关闭速度明显快于野生型。【结论】异三聚体G蛋白α亚基参与了UV-B辐射诱导拟南芥叶片气孔关闭的信号转导过程。  相似文献   

6.
The alpha subunit (Gsalpha) of the stimulatory heterotrimeric guanosine triphosphate binding protein (G protein) Gs activates all isoforms of mammalian adenylyl cyclase. Adenylyl cyclase (Type V) and its subdomains, which interact with Gsalpha, promoted inactivation of the G protein by increasing its guanosine triphosphatase (GTPase) activity. Adenylyl cyclase and its subdomains also augmented the receptor-mediated activation of heterotrimeric Gs and thereby facilitated the rapid onset of signaling. These findings demonstrate that adenylyl cyclase functions as a GTPase activating protein (GAP) for the monomeric Gsalpha and enhances the GTP/GDP exchange factor (GEF) activity of receptors.  相似文献   

7.
Homologies between signal transducing G proteins and ras gene products   总被引:73,自引:0,他引:73  
The guanosine triphosphate-binding proteins (G proteins) found in a variety of tissues transduce signals generated by ligand binding to cell surface receptors into changes in intracellular metabolism. Amino acid sequences of peptides prepared by partial proteolysis of the alpha subunit of a bovine brain G protein and the alpha subunit of rod outer-segment transducin were determined. The two proteins show regions of sequence identity as well as regions of diversity. A portion of the amino-terminal peptide sequence of each protein is highly homologous with the corresponding region in the ras protein (a protooncogene product). These similarities suggest that G proteins and ras proteins may have analogous functions.  相似文献   

8.
How cyclooxygenase-2 (COX-2) and its proinflammatory metabolite prostaglandin E2 (PGE2) enhance colon cancer progression remains poorly understood. We show that PGE2 stimulates colon cancer cell growth through its heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptor, EP2, by a signaling route that involves the activation of phosphoinositide 3-kinase and the protein kinase Akt by free G protein betagamma subunits and the direct association of the G protein alphas subunit with the regulator of G protein signaling (RGS) domain of axin. This leads to the inactivation and release of glycogen synthase kinase 3beta from its complex with axin, thereby relieving the inhibitory phosphorylation of beta-catenin and activating its signaling pathway. These findings may provide a molecular framework for the future evaluation of chemopreventive strategies for colorectal cancer.  相似文献   

9.
10.
The mammalian heart rate is regulated by the vagus nerve, which acts via muscarinic acetylcholine receptors to cause hyperpolarization of atrial pacemaker cells. The hyperpolarization is produced by the opening of potassium channels and involves an intermediary guanosine triphosphate-binding regulatory (G) protein. Potassium channels in isolated, inside-out patches of membranes from atrial cells now are shown to be activated by a purified pertussis toxin-sensitive G protein of subunit composition alpha beta gamma, with an alpha subunit of 40,000 daltons. Thus, mammalian atrial muscarinic potassium channels are activated directly by a G protein, not indirectly through a cascade of intermediary events. The G protein regulating these channels is identified as a potent Gk; it is active at 0.2 to 1 pM. Thus, proteins other than enzymes can be under control of receptor coupling G proteins.  相似文献   

11.
12.
Calmodulin (CaM) is a major effector for the intracellular actions of Ca2+ in nearly all cell types. We identified a CaM-binding protein, designated regulator of calmodulin signaling (RCS). G protein-coupled receptor (GPCR)-dependent activation of protein kinase A (PKA) led to phosphorylation of RCS at Ser55 and increased its binding to CaM. Phospho-RCS acted as a competitive inhibitor of CaM-dependent enzymes, including protein phosphatase 2B (PP2B, also called calcineurin). Increasing RCS phosphorylation blocked GPCR- and PP2B-mediated suppression of L-type Ca2+ currents in striatal neurons. Conversely, genetic deletion of RCS significantly increased this modulation. Through a molecular mechanism that amplifies GPCR- and PKA-mediated signaling and attenuates GPCR- and PP2B-mediated signaling, RCS synergistically increases the phosphorylation of key proteins whose phosphorylation is regulated by PKA and PP2B.  相似文献   

13.
Asymmetric divisions are crucial for generating cell diversity; they rely on coupling between polarity cues and spindle positioning, but how this coupling is achieved is poorly understood. In one-cell stage Caenorhabditis elegans embryos, polarity cues set by the PAR proteins mediate asymmetric spindle positioning by governing an imbalance of net pulling forces acting on spindle poles. We found that the GoLoco-containing proteins GPR-1 and GPR-2, as well as the Galpha subunits GOA-1 and GPA-16, were essential for generation of proper pulling forces. GPR-1/2 interacted with guanosine diphosphate-bound GOA-1 and were enriched on the posterior cortex in a par-3- and par-2-dependent manner. Thus, the extent of net pulling forces may depend on cortical Galpha activity, which is regulated by anterior-posterior polarity cues through GPR-1/2.  相似文献   

14.
15.
The Vibrio cholerae bacterium causes devastating diarrhea when it infects the human intestine. The key event is adenosine diphosphate (ADP)-ribosylation of the human signaling protein GSalpha, catalyzed by the cholera toxin A1 subunit (CTA1). This reaction is allosterically activated by human ADP-ribosylation factors (ARFs), a family of essential and ubiquitous G proteins. Crystal structures of a CTA1:ARF6-GTP (guanosine triphosphate) complex reveal that binding of the human activator elicits dramatic changes in CTA1 loop regions that allow nicotinamide adenine dinucleotide (NAD+) to bind to the active site. The extensive toxin:ARF-GTP interface surface mimics ARF-GTP recognition of normal cellular protein partners, which suggests that the toxin has evolved to exploit promiscuous binding properties of ARFs.  相似文献   

16.
Plexins are cell surface receptors for semaphorin molecules, and their interaction governs cell adhesion and migration in a variety of tissues. We report that the Semaphorin 4D (Sema4D) receptor Plexin-B1 directly stimulates the intrinsic guanosine triphosphatase (GTPase) activity of R-Ras, a member of the Ras superfamily of small GTP-binding proteins that has been implicated in promoting cell adhesion and neurite outgrowth. This activity required the interaction of Plexin-B1 with Rnd1, a small GTP-binding protein of the Rho family. Down-regulation of R-Ras activity by the Plexin-B1-Rnd1 complex was essential for the Sema4D-induced growth cone collapse in hippocampal neurons. Thus, Plexin-B1 mediates Sema4D-induced repulsive axon guidance signaling by acting as a GTPase activating protein for R-Ras.  相似文献   

17.
G蛋白信号调控因子(RGS)作为G蛋白信号途径中发挥重要的负调控作用的蛋白,其功能主要表现影响真菌菌丝生长、产孢等发育阶段,以及次生代谢产物、色素合成等致病性方面。近些年,随着学术界对于植物病原丝状真菌RGS蛋白研究的不断深入,产生了大量的学术报道,然而,尚缺乏对模式真菌与植物病原丝状真菌中RGS蛋白系统性对比分析的研究报道。该文对模式真菌与植物病原丝状真菌RGS蛋白的结构、分类进行综述,并通过SMART保守结构域、二级结构组成情况以及遗传关系分析,明确了植物病原丝状真菌与模式真菌中的RGS蛋白均具有保守的RGS结构域以及相似的二级结构组成情况,以及根据RGS蛋白的序列同源性,明确真菌中RGS蛋白可分为6大类,具有不同结构域的RGS蛋白分别聚类。同时,对不同真菌中RGS蛋白功能进行综述,明确植物病原丝状真菌中RGS的数量和类型均多于模式真菌,RGS蛋白功能具有保守性和独特性特征。为今后学术界进一步开展植物病原丝状真菌中RGS蛋白的作用机制解析,以及植物病原丝状真菌与其他模式真菌中RGS蛋白之间的关系解析提供理论基础。   相似文献   

18.
Type-specific regulation of adenylyl cyclase by G protein beta gamma subunits   总被引:42,自引:0,他引:42  
Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins) dissociate into guanosine triphosphate (GTP)-bound alpha subunits and a complex of beta and gamma subunits after interaction with receptors. The GTP-alpha subunit complex activates appropriate effectors, such as adenylyl cyclase, retinal phosphodiesterase, phospholipase C, and ion channels. G protein beta gamma subunits have been found to have regulatory effects on certain types of adenylyl cyclase. In the presence of Gs alpha, the alpha subunit of the G protein that activates adenylyl cyclase, one form of adenylyl cyclase was inhibited by beta gamma, some forms were activated by beta gamma, and some forms were not affected by beta gamma. These interactions suggest mechanisms for communication between distinct signal-transducing pathways.  相似文献   

19.
The guanosine triphosphate (GTP)-binding proteins include signal-transducing heterotrimeric G proteins (for example, Gs, Gi), smaller GTP-binding proteins that function in protein sorting, and the oncogenic protein p21ras. The T cell receptor complexes CD4-p56lck and CD8-p56lck were found to include a 32- to 33-kilodalton phosphoprotein (p32) that was recognized by an antiserum to a consensus GTP-binding region in G proteins. Immunoprecipitated CD4 and CD8 complexes bound GTP and hydrolyzed it to guanosine diphosphate (GDP). The p32 protein was covalently linked to [alpha-32P]GTP by ultraviolet photoaffinity labeling. These results demonstrate an interaction between T cell receptor complexes and an intracellular GTP-binding protein.  相似文献   

20.
Phosphoinositide 3-kinases (PI3Ks) regulate fundamental cellular responses such as proliferation, apoptosis, cell motility, and adhesion. Viable gene-targeted mice lacking the p110 catalytic subunit of PI3Kgamma were generated. We show that PI3Kgamma controls thymocyte survival and activation of mature T cells but has no role in the development or function of B cells. PI3Kgamma-deficient neutrophils exhibited severe defects in migration and respiratory burst in response to heterotrimeric GTP-binding protein (G protein)-coupled receptor (GPCR) agonists and chemotactic agents. PI3Kgamma links GPCR stimulation to the formation of phosphatidylinositol 3,4,5-triphosphate and the activation of protein kinase B, ribosomal protein S6 kinase, and extracellular signal-regulated kinases 1 and 2. Thus, PI3Kgamma regulates thymocyte development, T cell activation, neutrophil migration, and the oxidative burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号