首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2010年9月19~21日,对江苏南京紫霞湖(水深8.5m)浮游甲壳动物昼夜垂直迁移行为进行了调查,分析了影响昼夜垂直迁移的因素。结果表明,奥氏秀体溞(Diaphanosoma orghidani)、象鼻溞(Bosmina sp.)、颈沟基合溞(Bosminopsis deitersi)、台湾温剑水蚤(Thermocyclops taihokuensis)和中华原镖水蚤(Eodiapotomus sinensis)成体均表现出昼夜迁移现象,中华原镖水蚤幼体和无节幼体无明显昼夜迁移。紫霞湖的温度、溶解氧和叶绿素a浓度的垂直变化不是导致浮游甲壳动物昼夜垂直迁移的主导因子,光照强度和鱼类捕食可能是影响浮游甲壳动物昼夜垂直迁移的主要因素。  相似文献   

2.
Fisheries bycatch impacts marine species globally and understanding the underlying ecological and behavioural mechanisms could improve bycatch mitigation and forecasts in novel conditions. Oceans are rapidly warming causing shifts in marine species distributions with unknown, but likely, bycatch consequences. We examined whether thermal and diel depth-use behaviours influenced bycatch of a keystone species (Chinook salmon; Oncorhynchus tshawytscha, Salmonidae) in the largest fishery on the US West Coast (Pacific hake; Merluccius productus, Merlucciidae) with annual consequences in a warming ocean. We used Generalized Additive Models with 20 years of data including 54,509 hauls from the at-sea hake fishery spanning Oregon and Washington coasts including genetic information for five salmon populations. Our results demonstrate that Chinook salmon bycatch rates increased in warm ocean years explained by salmon depth-use behaviours. Chinook salmon typically occupy shallower water column depths compared to hake. However, salmon moved deeper when sea surface temperatures (SSTs) were warm and at night, which increased overlap with hake and exacerbated bycatch rates. We show that night fishing reductions (a voluntary bycatch mitigation strategy) are effective in reducing salmon bycatch in cool SSTs by limiting fishing effort when diel vertical movements bring salmon deeper but becomes less effective in warm SSTs as salmon seek deeper thermal refugia during the day. Thermal and diel behaviours were more pronounced in southern compared with northern salmon populations. We provide mechanistic support that climate change may intensify Chinook salmon bycatch in the hake fishery and demonstrate how an inferential approach can inform bycatch management in a changing world.  相似文献   

3.
Many species living in deeper lentic ecosystems exhibit daily movements that cycle through the water column, generally referred to as diel vertical migration (DVM). In this study, we applied bioenergetics modelling to evaluate growth as a hypothesis to explain DVM by bull trout (Salvelinus confluentus) in a thermally stratified reservoir (Ross Lake, WA, USA) during the peak of thermal stratification in July and August. Bioenergetics model parameters were derived from observed vertical distributions of temperature, prey and bull trout. Field sampling confirmed that bull trout prey almost exclusively on recently introduced redside shiner (Richardsonius balteatus). Model predictions revealed that deeper (>25 m) DVMs commonly exhibited by bull trout during peak thermal stratification cannot be explained by maximising growth. Survival, another common explanation for DVM, may have influenced bull trout depth use, but observations suggest there may be additional drivers of DVM. We propose these deeper summertime excursions may be partly explained by an alternative hypothesis: the importance of colder water for gametogenesis. In Ross Lake, reliance of bull trout on warm water prey (redside shiner) for consumption and growth poses a potential trade‐off with the need for colder water for gametogenesis.  相似文献   

4.
In the Norwegian fjord Masfjorden, different developmental stages of the mesopelagic planktivore Maurolicus muelleri form vertically separate sound scattering layers (SSLs) and in late autumn display different diel vertical migration (DVM) behaviour. Post‐larvae and juvenile fish perform normal crepuscular DVM, whereas the large majority of adults remain at depth throughout the diel period. In this study we examined the stomach contents of juvenile and adult fish caught at different times and depths during a 24‐h period in autumn. The different DVM behaviour of these two SSLs in addition to a shallow layer believed to be composed of post‐larvae is explained with a model for visual foraging in aquatic environments that uses gradients in vertical light intensity and copepod density and size as input variables. Field data revealed that vertically migrating juveniles distributed at a higher ambient light intensity and on average consumed 25 times more copepods than non‐migrating adult fish. The model showed that juveniles experienced a 15 times higher prey encounter rate and a higher level of predation risk than non‐migrating adults, and that the energetic benefits for post larvae and juveniles from prolonged feeding in a nearly constant and brighter environment outweigh the associated predation risk. The model also suggests that the visual detection range of piscivore predators is relatively more limited by the turbid surface water than that of their prey, which provide the post‐larva and juvenile life‐stages of M. muelleri a window of reduced visual predation near the surface.  相似文献   

5.
Mehner T, Busch S, Helland IP, Emmrich M, Freyhof J. Temperature‐related nocturnal vertical segregation of coexisting coregonids.
Ecology of Freshwater Fish 2010: 19: 408–419. © 2010 John Wiley & Sons A/S Abstract – Habitat choice of fish may be influenced by many different ecological factors, e.g., predation risk, feeding opportunity, or temperature and oxygen availability. However, because most of the fish prey and their predators rely on vision for feeding, the predator avoidance and feeding opportunity hypotheses may fail to predict distribution of fish at complete darkness. Here, we accumulated patterns of nocturnal vertical distribution of two coexisting coregonid populations in Lake Stechlin from 13 samplings over 4 years, conducted by hydroacoustics and simultaneous midwater trawling. We calculated population depths, dispersion, illumination strengths and vertical temperature gradients for all sampling dates. Illumination strengths at fish population depths were far below the critical levels for feeding by vision, suggesting that predator avoidance or feeding opportunity did not trigger the depth distribution at night. In contrast, nocturnal population depths and dispersion of vendace Coregonus albula were significantly associated with the seasonally changing vertical temperature gradient in Lake Stechlin, whereas night‐time distribution of the coexisting Fontane cisco Coregonus fontanae was almost unaffected by temperature. Vendace occurred just below the thermocline in isothermal water layers of about 6.5–9 °C during stratification of Lake Stechlin, whereas Fontane cisco preferred 4–6 °C cold layers. These experienced temperatures roughly correspond to species‐specific optimum metabolic temperatures determined in earlier experiments. We assume, therefore, that the temperature‐related vertical segregation during non‐feeding hours at darkness is linked with metabolic benefits, thus suggesting that bioenergetics efficiency contributes to ultimate causes of diel vertical migrations at least in vendace.  相似文献   

6.
7.
To understand the interplay between habitat use and contemporary anadromous Pacific salmon, Oncorhynchus spp., distributions we explored the habitat associations of three species, pink (O. gorbuscha), chum (O. keta) and Chinook salmon (O. tshawytscha) in streams of the Wood River system of Bristol Bay, Alaska, where sockeye salmon (O. nerka) are numerically dominant. We developed models to investigate the occurrence of nondominant salmon in relation to habitat characteristics and sockeye salmon density, using four decades of salmon presence and abundance data. The frequency of occurrence and abundance of nondominant species increased with watershed drainage area and stream depth and decreased with sockeye salmon density. The range of occurrence varied from nonexistent to perennial for the other species in sockeye‐dominated streams. Increasing watershed area resulted in larger stream habitat area and deeper habitats, allowing for the sympatric occurrence and persistence of all salmon species. The relationships between habitat and the presence of these Pacific salmon help define their requirements but also remind us that the patterns of presence and absence, within the overall ranges of salmon species, have yet to be fully understood.  相似文献   

8.
In high‐latitude lakes, air temperature is an important driver of ice cover thickness and duration, which in turn influence water temperature and primary production supporting lake consumers and predators. In lieu of multidecadal observational records necessary to assess the response of lakes to long‐term warming, we used otolith‐based growth records from a long‐lived resident lake fish, lake trout (Salvelinus namaycush), as a proxy for production. Lake trout were collected from seven deep, oligotrophic lakes in Lake Clark National Park and Preserve on in southwest Alaska that varied in the presence of marine‐derived nutrients (MDN) from anadromous sockeye salmon (Oncorhynchus nerka). Linear mixed‐effects models were used to partition variation in lake trout growth by age and calendar‐year and model comparisons tested for a mean increase in lake trout growth with sockeye salmon presence. Year effects from the best mixed‐effects model were subsequently compared to indices of temperature, lake ice, and regional indices of sockeye salmon escapement. A strong positive correlation between annual lake trout growth and temperature suggested that warmer springs, earlier lake ice break‐up, and a longer ice‐free growing season increase lake trout growth via previously identified bottom‐up increases in production with warming. Accounting for differences in the presence or annual escapement of sockeye salmon with available data did not improve model fit. Collectively with other studies, the results suggest that productivity of subarctic lakes has benefitted from warming spring temperatures and that temperature can synchronise otolith growth across lakes with and without sockeye salmon MDN.  相似文献   

9.
The timing of smolt migration is a key phenological trait with profound implications for individual survival during both river descent and the subsequent sea sojourn of anadromous fish. We studied relationships between the time of smolt migration, water temperature and light intensity for Atlantic salmon (Salmo salar) and sea trout (Salmo trutta). During 2006–2012, migrating smolts descending the southern Norway River Storelva were caught in a rotary screw trap located at the river mouth. The date of 50% cumulative smolt descent correlated significantly with the date when the river temperature exceeded 8°C for both Atlantic salmon and sea trout smolts. In 2010, smolts of both species were passive integrated transponder (PIT)‐tagged, and the diel timing of their migration was precisely documented. The degree of night migration decreased in both species as the river temperature rose, and at temperatures above 12–13°C, more smolts migrated during day than during night. A multinomial model was fitted for estimating temperature and species effects on probabilities of migration during night, daytime, dusk and dawn. Atlantic salmon smolts preferred migrating under lower light intensities than sea trout smolts during early, but not late spring when both species migrated during bright daylight. In accordance with the early‐season tendency to migrate at night, Atlantic salmon smolts migrated more during darker hours of the day than sea trout. In both species, smaller smolts migrated under dark conditions than during light conditions. Most of the findings on thermal, light and temporal effects on the observed smolt migration pattern can be explained as adaptations to predation avoidance.  相似文献   

10.
The vertical distribution and vertical migrations of fish larvae and implications for their cross‐shelf distribution were investigated in the northern limit of the NE Atlantic upwelling region during the late winter mixing period of 2012. The average positive values of the upwelling index for February and March of this year were far from normal, although the average hydrographic conditions during the period of study were of downwelling and the water column was completely mixed. Fish larvae, most in the preflexion stage, were concentrated in the upper layers of the water column and their distribution was depth stratified, both day and night. However, the larval fish community was not structured in the vertical plane and fish larvae did not show significant diel vertical migration (DVM), although five species showed ontogenetic vertical migration. In regions of coastal upwelling and in the absence of DVM, the location of fish larvae in the water column is crucial for their cross‐shelf distribution. Thus, the cross‐shelf distribution of the six most abundant species collected in this study can be explained by the surface onshore flow associated with coastal downwelling, retaining larvae of the coastal spawning species with a relatively shallow distribution in the shelf region and transporting larvae of slope spawning species onto the shelf. The wide vertical distribution shown by larvae of the offshore spawning species could be an adaptation of these species to ensure that some larvae reach the inshore nursery areas.  相似文献   

11.
Freshwater growth of juvenile sockeye salmon (Oncorhynchus nerka) depends upon the quality and quantity of prey and interactions with potential competitors in the foraging environment. To a large extent, knowledge about the ecology of lake‐rearing juvenile sockeye salmon has emerged from studies of commercially important runs returning to deep nursery lakes, yet information from shallow nursery lakes (mean depth ≤ 10 m) is limited. We examined seasonal and ontogenetic variation in diets of juvenile sockeye salmon (N = 219, 30–85 mm) and an abundant potential competitor, threespine stickleback (Gasterosteus aculeatus; N = 198, 42–67 mm), to understand their foraging ecology and potential trophic interactions in a shallow Alaska lake. This study revealed that adult insects made up 74% of all sockeye salmon diets by weight and were present in 98% of all stomachs in Afognak Lake during the summer of 2013. Diets varied temporally for all fishes, but small sockeye salmon (<60 mm) showed a distinct shift in consumption from zooplankton in early summer to adult insects in late summer. We found significant differences in diet composition between sockeye salmon and threespine stickleback and the origin of their prey indicated that they also separated their use of habitat on a fine scale; however, the two species showed overlap in size selectivity of zooplankton prey. Considering that aquatic insects can be a primary resource for juvenile sockeye salmon in Afognak Lake, we encourage the development of nursery lake carrying capacity models that include aquatic insects as a prey source for sockeye salmon.  相似文献   

12.
2013年8月1日19∶00至2日18∶00,通过间隔1 h的定量采样,研究南昌市典型城市湖泊月亮湖中浮游动物(轮虫、枝角类和桡足类)的昼夜垂直分布规律。结果表明,月亮湖共发现浮游动物20种,其中轮虫16种,枝角类1种,桡足类3种;剪形臂尾轮虫(Brachionus forficula)、桡足类无节幼体(Copepoda Nauplii)和迈氏三肢轮虫(Filinia maior)为优势物种,分别占总捕获数量的48.27%、15.75%和11.11%。浮游动物主要类群和优势物种的Morisita指数均大于1,说明月亮湖中的浮游动物群落呈聚集分布。密度垂直分布和平均滞留深度分析结果显示,浮游动物垂直分布昼夜差异明显,夜间(19∶00-05∶00),浮游动物先聚集于月亮湖中层,01∶00后逐渐迁移到表层;白天(06∶00-18∶00),浮游动物逐渐从表层向中层和底层迁移;主要类群中轮虫、枝角类和桡足类的迁移均表现为夜间上升、白天下降、傍晚再上升,轮虫和桡足类的迁移幅度小于枝角类。优势种剪形臂尾轮虫和无节幼体的昼夜垂直迁移表现为夜升昼降,至傍晚再上升;迈氏三肢轮虫昼夜垂直分布差异显著(P0.05),但昼夜垂直迁移活动不明显。相关分析表明,水温、p H值和溶解氧对月亮湖浮游动物的垂直分布和迁移活动有显著影响。  相似文献   

13.
Abstract – We studied diel microhabitat use at the focal point of age‐0 bull trout, Salvelinus confluentus, in Indian Creek, Washington during mid‐summer and fall of 1997. Microhabitat variables included water depth and velocity, distance from the stream bottom, habitat and refuge use, substrate type, and substrate embeddedness. Age‐0 fish were located over fines and gravel substrates in shallow, low‐velocity water near stream margins, but were located in shallower water at night. Bull trout were highly associated with loose substrate, and used the substrate interstices for refuge cover. Diurnal bull trout counts decreased and no age‐0 fish were observed after 15 September at water temperatures below 6.1 °C. Nocturnal counts remained relatively constant throughout the study. Our results suggest that age‐0 bull trout surveys be conducted at night when summer water temperatures begin to decline.  相似文献   

14.
Fine‐scale underwater telemetry affords an unprecedented opportunity to understand how aquatic animals respond to environmental changes. We investigated the movement patterns of an aquatic top predator, Eurasian perch (Perca fluviatilis), using a three‐dimensional acoustic telemetry system installed in Kleiner Döllnsee (25 ha), a small, shallow, mesotrophic natural lake. Adult piscivorous perch (= 16) were tagged and tracked in the whole lake at a minimum of 9‐s intervals over the course of one year. Perch increased swimming activity with higher water temperature and light intensity. Air pressure, wind speed and lunar phase also explained perch movements, but the effects were substantially smaller compared to temperature and light. Perch showed a strong diel pattern in activity, with farther swimming distances and larger activity spaces during the daytime, compared to the night‐time. To investigate the influence of prey distribution, we sampled the prey fish in both littoral and pelagic zones in both day and night monthly using gill nets. We found that the prey fish underwent diel horizontal migration, using the littoral zone during the day and the pelagic zone during the night. However, perch showed the opposite patterns, suggesting either that the prey fish avoided predation risk or that the horizontal diel migration of perch was driven by other mechanisms. Our results collectively suggest that the movement ecology of piscivorous perch is mainly governed by a foraging motivation as a function of abiotic variables, especially temperature and light.  相似文献   

15.
We studied salmon feeding selectivity and diel feeding chronology in the Columbia River plume. Juvenile chinook and coho salmon were caught by trawling at 2–3 h intervals throughout a diel period on three consecutive days (21–23 June 2000) at stations located 14.8 and 37 km offshore from the mouth of the Columbia River. A total of 170 chinook salmon were caught at the inshore and 79 chinook and 98 coho salmon were caught at the offshore station. After each trawl, potential prey were sampled at different depths with 2–3 different types of nets (1‐m diameter ring net, bongo net, neuston net). Despite the variability in zooplankton abundance, feeding selectivity was surprisingly constant. Both salmon species fed selectively on larger and pigmented prey such as hyperiid amphipods, larval and juvenile fish, various crab megalopae, and euphausiids. Hyperiid amphipods were abundant in the salmon diets and we hypothesize that aggregations of gelatinous zooplankton may facilitate the capture of commensal hyperiid amphipods. Small copepods and calyptopis and furcilia stages of euphausiids dominated the prey field by numbers, but were virtually absent from salmon diet. Juvenile chinook salmon, with increasing body size, consumed a larger proportion of fish. Stomach fullness peaked during morning hours and reached a minimum at night, suggesting a predominantly diurnal feeding pattern. In general, both chinook and coho salmon appear to be selective, diurnal predators, preying mostly on large and heavily pigmented prey items, in a manner consistent with visually oriented, size‐selective predation.  相似文献   

16.
朱国平  杨洋  王芮  童剑锋 《水产学报》2018,42(10):1541-1549
近年来,南极磷虾渔业过于集中于布兰斯菲尔德海峡,这也使得该海区磷虾资源状况及其生态学特征日益受到关注。南极磷虾群具有较为明显的昼夜垂直移动特征,开展此方面的研究可为探索其渔场形成机制提供基础数据,并为磷虾渔业反馈式管理提供参考。基于磷虾渔船上Simrad EK80记录的相关声学数据,使用Echoview软件判别声学数据中的磷虾群体,对2016年秋季布兰斯菲尔德海峡南极磷虾群昼夜垂直移动特征进行分析,并进一步分析影响磷虾群昼夜垂直移动的因素。结果显示,3月和4月磷虾群深度基本维持在250 m以浅,虾群最大深度出现在日升时分的频次最高(22.9%),而最浅深度出现在夜间时分的频次最高(36.0%),同时在日升时分,虾群厚度达到最大值;白天磷虾群多集中在较深水层,夜间会上浮到较浅水层。随着月份的推移,磷虾群平均深度总体呈现加深的趋势。光强和海底深度是影响磷虾群深度变化的2个主要因素。  相似文献   

17.
Abstract– In contrast to the well-known "lake-type" sockeye salmon, two additional anadromous life-history types have been recognized within the species: 'river-type' sockeye salmon whose juveniles spend 1 or 2 years in off-channel river habitats prior to migrating to sea, and "sea-type" sockeye salmon that initially rear in similar river habitats yet migrate to sea as underyearlings. Persistent populations of river-/sea-type sockeye salmon occur in small numbers throughout the species'range in North America but are usually associated with glacier-fed rivers. We found published and unpublished records showing that riverine-spawning sockeye salmon occur in 11 rivers in western Washington, USA, that don't have access to juvenile lake-rearing habitat. Evidence of persistent spawning was strongest for the Nooksack and Skagit rivers in northern Puget Sound. We analyzed allozyme frequency differentiation in 26 laketype and 12 river-/sea-type populations of sockeye salmon in North America, ranging from northern Puget Sound, Washington (including 3 in the Nooksack and Skagit rivers) to northern Southeast Alaska. Across this 2000 km range, river-/sea-type sockeye salmon showed very little genetic differentiation between populations, much less than that displayed by the highly divergent lake-type sockeye salmon. Genetic similarity among river-/sea-type sockeye salmon in this study is likely a result of common ancestry and a high level of historical gene flow among river-/sea-type sockeye salmon populations.  相似文献   

18.
Vertical movement patterns of five chum salmon (Oncorhynchus keta) during homing migration were examined using archival tags. The standard deviation of the depth and ambient and body cavity temperatures during daytime were larger than those during night‐time. Vertical movements through the thermocline with a periodicity of less than 1 h were observed during daytime in addition to the diel vertical movement patterns in the open ocean. During these periods of frequent short‐term vertical movements, the difference between the body cavity temperature and ambient temperature was large while the variance of the body cavity temperature was less than that of the ambient temperature. From the results of a random simulation, the variation of the body cavity temperature was shown to decrease due to these periodic high frequency movements in comparison with random vertical movements. The whole‐body heat‐transfer coefficient k (s?1), which was estimated by a heat budget model, was 1.48 × 10?3. The k of chum salmon was larger than that of bigeye tuna (Thunnus obesus) by about one order of magnitude for the cooling of the body. The k of chum salmon did not change like tuna, which are physiologically adapted to conserve body cavity temperature. This indicates that the regulation of body cavity temperature by chum salmon is dependent on the vertical movements only. The maintenance of the body cavity temperature is concluded to be advantageous for their maturation and growth from the relationship between energy input and output during their homing migration.  相似文献   

19.
Pacific salmon and trout (Oncorhynchus spp., Salmonidae) of the Puget Sound region of Washington State, USA, have experienced recent and longer‐term (multidecadal) variability in abundance while supporting robust fisheries. As part of the post‐season salmon management process, population‐specific estimates of total adult abundance to Puget Sound (Strait of Juan de Fuca) for pink (O. gorbuscha), chum (O. keta), coho (O. kisutch), sockeye (O. nerka), and Chinook (O. tshawytscha) salmon and steelhead trout (O. mykiss) are calculated annually. We compiled annual estimates of body mass, abundance and survival of hatchery‐ and naturally produced salmon from 1970 to 2015 to compare spatial and temporal patterns across species. Average weights of adult salmon and steelhead returning to Puget Sound, with the exception of coho salmon, have decreased since the 1970s. Temporal trends in abundance, survival and productivity varied by species and origin (hatchery vs. naturally produced). Generally, abundance and survival rates of natural‐origin species decreased whereas those of hatchery‐produced species did not, which is in contrast with other studies' general conclusions of decreasing survival among Puget Sound salmonids. Species diversity has decreased in recent years, with salmonids that rely on a short freshwater rearing phase in the natural environment (hatchery‐produced fish and naturally produced pink and chum) representing >90% of total returns in most years. This new information reveals patterns of body size, abundance, survival and productivity across species, life history and rearing type over the past 45 years and, in doing so, demonstrates the strength in multidecadal, multifactor time series to critically evaluate salmonid species.  相似文献   

20.
Piscirickettsia salmonis, the aetiological agent of salmonid rickettsial septicaemia (SRS), is a global pathogen of wild and cultured marine salmonids. Here, we describe the development and application of a reproducible, standardized immersion challenge model to induce clinical SRS in juvenile pink (Oncorhynchus gorbuscha), Atlantic (Salmo salar) and sockeye salmon (O. nerka). Following a 1‐hr immersion in 105 colony‐forming units/ml, cumulative mortality in Atlantic salmon was 63.2% while mortality in sockeye salmon was 10%. Prevalence and levels of the bacterium in kidney prior to onset of mortality were lower in sockeye compared with Atlantic or pink salmon. The timing and magnitude of bacterial shedding were estimated from water samples collected during the exposure trials. Shedding was estimated to be 82‐fold higher in Atlantic salmon as compared to sockeye salmon and peaked in the Atlantic salmon trial at 36 d post‐immersion. These data suggest sockeye salmon are less susceptible to P. salmonis than Atlantic or pink salmon. Finally, skin lesions were observed on infected fish during all trials, often in the absence of detectable infection in kidney. As a result, we hypothesize that skin is the primary point of entry for P. salmonis during the immersion challenge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号