首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impacts of thinning, fertilization and crown position on seasonal growth of current-year shoots and foliage were studied in a 13-year-old loblolly pine (Pinus taeda L.) plantation in the sixth post-treatment year (1994). Length of new flushes, and their needle length, leaf area, and oven-dry weight were measured in the upper and lower crown from March through November. Total shoot length was the cumulative length of all flushes on a given shoot and total leaf area per shoot was the sum of leaf areas of the flushes.

By the end of June, first-flush foliage reached 70% of the November needle length (14.3 cm) and 65% of the final leaf area (15.0 cm2). Cumulative shoot length of first- and second-flush shoots achieved 95% of the annual length (30.3 cm), whereas total leaf area per shoot was 55% of the final value (75.3 dm2). Fertilization consistently stimulated fascicle needle length, dry weight, and leaf area in the upper crown. Mean leaf area of upper-crown shoots was increased by 64% six years after fertilization. A significant thinning effect was found to decrease mean leaf area per shoot in the crown. For most of the growing season, the thinned-fertilized trees produced substantially more leaf area per shoot throughout the crown than the thinned-nonfertilized trees. These thinned-fertilized trees also had greater needle length and dry weight, longer first flush shoots, and more leaf area per flush than trees in the thinned-nonfertilized plots. Needle length and leaf area of first flush shoots between April and July were linearly related to previous-month canopy air temperature (Ta). Total shoot length strongly depended on vertical light gradient (PPFD) within the canopy, whereas shoot leaf area was a function of both PPFD and Ta. Thus, trees produced larger and heavier fascicles, more and longer flush shoots, and more leaf area per shoot in the upper crown than the lower crown. We conclude that thinning, fertilization, and crown position regulate annual leaf area production of current-year shoots largely by affecting the expansion of first flush shoots and their foliage during the first half of the growing season.  相似文献   


2.
An understanding of spatial variations in gas exchange parameters in relation to the light environment is crucial for modeling canopy photosynthesis. We measured vertical, horizontal and azimuthal (north and south) variations in photosynthetic capacity (i.e., the maximum rate of carboxylation: Vcmax), nitrogen content (N), leaf mass per area (LMA) and chlorophyll content (Chl) in relation to relative photosynthetic photon flux (rPPF) within a Fagus crenata Blume crown. The horizontal gradient of rPPF was similar in magnitude to the vertical gradient of rPPF from the upper to the lower crown. The rPPF in the north quadrant of the crown was slightly lower than in the south quadrant. Nitrogen content per area (Narea), LMA and Vcmax were strictly proportional to rPPF, irrespective of the vertical direction, horizontal direction and crown azimuth, whereas nitrogen content per dry mass, Chl per area and photosynthetic capacity per dry mass (Vm) were fairly constant. Statistical analyses separating vertical trends from horizontal and azimuthal trends indicated that, although horizontal and vertical light acclimation of leaf properties were similar, there were two significant azimuthal variations: (1) Vcmax was lower in north-facing leaves than in south-facing leaves for a given Narea, indicating low photosynthetic nitrogen-use efficiency (PNUE) of north-facing leaves; and (2) Vcmax was lower in north-facing leaves than in south-facing leaves for a given LMA, indicating low Vm of the north-facing leaves. With respect to the low PNUE of the north-facing leaves, there were no significant azimuthal variations in leaf CO2 conductance from the stomata to the carboxylation site. Biochemical analysis indicated that azimuthal variations in nitrogen allocation to ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and in nitrogen allocation between carboxylation (Rubisco and other Calvin cycle enzymes) and light harvesting machinery (Chl pigment-protein complexes) were not the main contributor to the difference in PNUE between north- and south-facing leaves. Lower specific activity of Rubisco may be responsible for the low PNUE of the north-facing leaves. Anatomical analysis indicated that not only high leaf density, which is compatible with a greater fraction of non-photosynthetic tissue, but also thick photosynthetic tissue contributed to the low Vm in the north-facing leaves. These azimuthal variations may need to be considered when modeling canopy photosynthesis based on the Narea-Vcmax or LMA-Vcmax relationship.  相似文献   

3.
Takenaka A 《Tree physiology》2000,20(14):987-991
To examine the mechanisms underlying crown development, I investigated the dependence of shoot behavior on light microenvironment in saplings of the evergreen broad-leaved tree species, Litsea acuminata (Bl.) Kurata, growing on a forest floor. The local light environment of individual shoots (shoot irradiance) and plants (plant irradiance, defined as the shoot irradiance of the most sunlit shoot of a plant) were analyzed as factors affecting shoot behavior. Daughter shoots that developed under partially sunlit conditions were longer and less leafy than daughter shoots developed under shaded conditions. Shoot production increased with increasing shoot irradiance. Terminal shoots receiving 5% or less of full sunlight produced 0.67 daughter shoots on average, whereas shoots receiving 10% or more of full sunlight produced 1.72 daughter shoots. In terminal shoots receiving 5% or less of full sunlight, the probability of producing no daughter shoots was about 63% when other shoots on the plant received 10% or more of full sunlight, but was < 35% where the rest of the plant was also shaded. Shoot death was observed only in shoots receiving 5% or less of full sunlight. The mortality of shaded shoots was higher in plants growing in high irradiance than in plants growing in low irradiance. The ecological significance of correlative inhibition (the enhanced mortality and reduced production of new shaded shoots in the presence of partially-sunlit shoots) is discussed.  相似文献   

4.
We investigated how shoot gross morphology and leaf properties are determined in Fagus japonica Maxim., a deciduous species with flush-type shoot phenology, in which all leaves are produced in a single flush at the start of each season. We examined relationships between current-year shoot properties and local light environment in a 14-m tall beech tree growing in a deciduous forest. Leaf number (LN), total leaf area (TLA), and total leaf length (SL) of the current-year shoot increased with increasing photosynthetic photon flux density (PPFD). Leaf thickness, dry mass per leaf area and nitrogen content on a leaf area basis increased, whereas the chlorophyll/N ratio decreased with increasing PPFD. To separate the effects of current-year PPFD from those of previous year(s), we artificially shaded a part of the uppermost leaf tier. Reciprocal transfers of beech seedlings between controlled PPFD regimes were also made. Characteristics of shoot gross morphology such as LN, TLA and SL were largely determined by the PPFD of the previous year. The exception was the length of the longest "long shoots" with many leaves, in which elongation appeared to be influenced by both previous-year and current-year PPFD. In contrast, leaf properties were determined by current-year PPFD. The ecological implications of our findings are discussed.  相似文献   

5.
Hydraulic and light environments have variation within the crown in well-grown trees. Shoot morphology and shoot hydraulics were compared between the upper and lower crown or among branching patterns in well-grown Quercus crispula Blume. Shoots in the upper crown had longer and thicker axes and lower water potential than did shoots in the lower crown. Hydraulic conductance from the soil to the shoot did not differ between the upper crown and the lower crown. Shoots in the upper crown are exposed to hydraulic stress, and shoots in the lower crown are under shade stress. Shoot morphology and shoot hydraulic traits (i.e., higher Huber value and higher hydraulic conductivity) in the upper crown affected the hydraulic conductance of shoots. Shoots in the lower crown showed larger light-receiving leaf area per leaf biomass investment, which is an adaptive morphology under shaded environments. Shoot morphology and shoot hydraulics were not correlated to branching pattern significantly, but shoots with higher branching intensity in the upper crown represented trends for higher hydraulic conductivity. These results reveal that shoot morphological and physiological characteristics in the upper crown reduce hydraulic stress, and those in the lower crown reduce shade stress. I conclude that vertical position within a crown affects both morphological and physiological acclimation for light acquisition and hydraulic conductance, and that hydraulic architecture is associated with crown architecture.  相似文献   

6.
We estimated the amount of nitrogen (N) remobilized from 1-year-old leaves at various positions in the crowns of mature Quercus glauca Thunb. ex Murray trees and related this to the production of new shoots. Leaf N concentration on an area basis (Na) and total N (Nt= Na x lamina area of all leaves on a shoot) were related to photosynthetic photon flux (PPF) on the leaves of current-year and 1-year-old shoots. When new shoots (S02 shoots; flushed in 2002) flushed, only a portion of the leaves on the previous year's shoots (S01 shoots; flushed in 2001) were shed. After the S02 shoots flushed, S01 shoots were defined as 1-year-old shoots (S01* shoots). Both Na and Nt were positively correlated with PPF for S01 shoots, but not for S01* shoots. The fraction of remobilized N (% of the maximum Na in S01 leaves) from remaining leaves was 5-35%, with the fraction size being positively correlated with the number of S02 shoots on an S01* shoot (new shoot number). However, the mean fraction of remobilized N from fallen leaves was 45% and was unrelated to new shoot number. The total amount of N remobilized from both fallen and remaining leaves was 1-20 mg per S01* shoot. Total remobilized N was positively correlated with new shoot number. There was a statistically significant positive relationship between the light-saturated net photosynthetic rate on a leaf area basis (Amax) and Na for both S01* and S02 leaves. However, when we compared leaves with similar Na, Amax of S01* leaves was only half that of S02 leaves, indicating that 1-year-old leaves had lower instantaneous N-use efficiency (Amax per unit Na) than current-year leaves. Ratios of chlorophyll a:b and Rubisco:chlorophyll were lower in S01* leaves than in S02 leaves, indicating that 1-year-old leaves were acclimatized to lower light environments. Thus, in Q. glauca, the N allocation theory (i.e., that N is distributed according to local PPF) applied only to the current-year shoots. Although the amount of foliar N in 1-year-old shoots was not strongly affected by the PPF on 1-year-old leaves, it was affected by interactions with current-year shoots.  相似文献   

7.
Shoot architecture may significantly alter mean quantum flux on foliage and thus, photosynthetic productivity. There is currently only limited information about plastic alterations in shoot structure caused by within-canopy variation in mean integrated irradiance (Q(int)) in broad-leaved trees. We studied leaf and shoot structure, and nitrogen and carbon content in late-successional, widely distributed, temperate, broad-leaved Nothofagus taxa to determine the architectural controls on light harvesting and photosynthetic performance. Nothofagus fusca (Hook. f.) Oersted has larger leaves and less densely leaved shoots than the N. solandri varieties. Nothofagus solandri var. solandri (Hook. f.) Oersted is characterized by rounder leaves that potentially have a larger overlap than the ovate-triangular leaves of N. solandri var. cliffortioides (Hook. f.) Poole. Leaf dry mass (M(A)) and nitrogen content (N(A)) per unit area increased with increasing Q(int) in all species, demonstrating enhanced investment of photosynthetic biomass in high light. Although M(A) differed between species at a common irradiance, there was a uniform relationship between N(A) and Q(int) across species. Leaf carbon content per dry mass and leaf dry mass to fresh mass ratio also scaled positively with irradiance, suggesting greater structural investments in high light. In all species, shoots became more horizontal and flatter at lower Q(int), implying an enhanced use efficiency of direct irradiance in natural leaf positions. In contrast, irradiance effects on leaf aggregation varied among species. Across the data, leaf overlap or leaf area density was often greater at lower irradiances, possibly as a result of limited carbon availability for shoot axis extension growth. In N. fusca, leaves of which were more aggregated in high light, the shoot silhouette to total leaf area ratio (S(S)) declined strongly with increasing irradiance, demonstrating a lower light harvesting efficiency at high Q(int). This effect was only moderate in N. solandri var. cliffortioides and S(S) was independent of Q(int) in N. solandri var. solandri. Although the efficiency of light interception at high irradiances was lowest in N. fusca, this species had the greatest nitrogen content per unit shoot silhouette area (2N(A)/S(S)), indicating superior shoot-level photosynthetic potential. These data collectively demonstrate that shoot architecture significantly affects light interception and photosynthesis in broad-leaved trees, and that structural carbon limitations may constrain leaf light harvesting efficiency at low irradiance.  相似文献   

8.
Patterns of shoot development and the production of different types of shoots were compared with scion leaf area index (LAI) to identify how eight clonal Actinidia rootstocks influence scion development. Rootstocks selected from seven Actinidia species (A. chrysantha Merri., A. deliciosa (A. Chev.) C. F. Liang et A.R. Ferguson, A. eriantha Benth., A. hemsleyana Dunn, A. kolomikta (Maxim. et Rupr.) Maxim., A. kolomikta C.F. Liang and A. polygama (Sieb. et Zucc.) Maxim.) were grafted with the scion Actinidia chinensis Planch. var. chinensis 'Hort16A' (yellow kiwifruit). Based on an earlier architectural analysis of A. chinensis, axillary shoot types produced by the scion were classified as short, medium or long. Short and medium shoots produced a restricted number of preformed leaves before the shoot apex ceased growth and aborted, resulting in a 'terminated' shoot. The apex of long shoots continued growth and produced more nodes throughout the growing seasons. Mid-season LAI of the scion was related to the proportion of shoots that ceased growth early in the season. Scions on low-vigor rootstocks had 50% or less leaf area than scions on the most vigorous rootstocks and had a higher proportion of short and medium shoots. On low-vigor rootstocks, a higher proportion of short shoots was retained during pruning to form the parent structure of the following year. Short parent shoots produced a higher proportion of short daughter shoots than long parent shoots, thus reinforcing the effect of the low-vigor rootstocks. However, overall effects of rootstock on shoot development were consistent regardless of parent shoot type and nodal position within the parent shoot. Slower-growing shoots were more likely to terminate and scions on low-vigor rootstocks produced a higher proportion of slow-growing shoots. Shoot termination also occurred earlier on low-vigor rootstocks. The slower growth of terminating shoots was detectable from about 20 days after bud burst. Removal of a proportion of shoots at the end of bud burst increased the growth rate and decreased the frequency of termination of the remaining shoots on all rootstocks, indicating that the fate of a shoot was linked to competitive interactions among shoots during initial growth immediately after bud burst. Rootstock influenced the process of shoot termination independently of its effect on final leaf size. Scions on low-vigor rootstocks had a higher proportion of short shoots and short shoots on all rootstocks had smaller final leaf sizes at equivalent nodes than medium or long shoots. Only later in the development of long shoots was final leaf size directly related to rootstock, with smaller leaves on low-vigor rootstocks. Thus, the most important effect of these Actinidia rootstocks on scion development occurred during the initial period of shoot growth immediately after bud burst.  相似文献   

9.
Grassi G  Minotta G 《Tree physiology》2000,20(10):645-652
Norway spruce seedlings (Picea abies Karst.) were grown in low light for one year, under conditions of adequate and limiting nutrition, then transferred to high light. Three months after transfer we measured photosynthesis, leaf nitrogen concentration, leaf chlorophyll concentration and leaf mass per area (LMA) of current-year and 1-year-old shoots; silhouette area ratio (SAR, the ratio of shoot silhouette area to projected needle area) was also measured in current-year shoots. At the foliage level, the effects of light and nutrient treatments differed markedly. Light availability during foliage expansion primarily affected LMA and SAR (morphological acclimation at the needle and shoot level, respectively). By contrast, nutrient supply in high light affected photosynthetic capacity per unit of leaf tissue (physiological acclimation at the cellular level) but did not affect LMA and SAR. The capacity for shade-sun acclimation in foliage formed before transfer to high light differed greatly from that of foliage formed following the transfer. The morphological inflexibility of mature needles (measured by LMA) limited their shade-sun acclimation potential. In contrast, at high nutrient supply, shoots that developed just after the change in photosynthetic photon flux density largely acclimated, both morphologically and physiologically, to the new light environment. The acclimation response of both current- and 1-year-old shoots was prevented by nutrient limitation. Analysis of growth at the whole-plant level largely confirmed the conclusions drawn at the shoot level. We conclude that nutrient shortage subsequent to the opening of a canopy gap may strongly limit the acclimation response of Norway spruce seedlings. Successful acclimation was largely related to the plant's ability to produce sun foliage and adjust whole-plant biomass allocation rapidly.  相似文献   

10.
Suzuki A 《Tree physiology》2002,22(12):885-890
The influence of shoot architectural position on shoot growth and branching patterns was examined in saplings of Cleyera japonica Thunb. (Theaceae), an understory, broad-leaf evergreen woody species. Shoot length varied with branching order and the vertical position of the branch in the crown. In the upper crown, shoot length decreased with increasing branching order, whereas in the lower crown, differences in shoot length among branching orders were not significant. These results demonstrate that it is important to consider not only individual shoots, but also the relationships between shoots in terms of their architectural positions when studying the development of crown architecture in trees. Shoot branching patterns also varied with branching order and the vertical position of the branch in the crown. In the upper crown, branching was mainly sylleptic. In the middle of the crown, mainly proleptic branches were produced. In the lower crown, there was little branching. The importance of these trends in shoot growth and shoot branching patterns in terms of carbon production efficiency is discussed.  相似文献   

11.
Umeki K  Seino T  Lim EM  Honjo T 《Tree physiology》2006,26(5):623-632
To understand the development of crown structure in Betula platyphylla Sukatch., mortality patterns of long shoots were analyzed quantitatively. We selected 25 saplings growing under various light conditions and measured the relative photosynthetically active radiation (rPAR) at, and the three-dimensional position of, first-order branches. A long shoot was assigned "no buds" (NB) status if it lacked buds at the end of the growing season, including at the tips of short shoots. A long shoot was classified as dead if it was NB and all the offspring long shoots issuing from it were NB. The probability that a leafy long shoot (a current-year long shoot with leaves or an older long shoot with short shoots with leaves) would become NB by the end of the season was positively dependent on shoot age and branch age, and negatively dependent on shoot length, centripetal shoot order, branch height and rPAR at the branch. Randomization tests revealed that shoots became NB and dead in clusters of connected shoots. In particular, shoot clusters originating from 3-year-old shoots were more likely to die than expected if each shoot was assumed to become NB regardless of the connection. Stepwise logistic regression revealed that the maximum rPAR within the crown of an individual tree had a significant effect on the mortality rate of 3-year-old shoot clusters, together with the rPAR at the level of the branch and other structural entities. Correlative inhibition is an important mechanism for determining shoot mortality patterns.  相似文献   

12.
Allometry of shoot extension units (hereafter termed "current shoots") was analyzed in a Malaysian canopy species, Elateriospermum tapos Bl. (Euphorbiaceae). Changes in current shoot allometry with increasing tree height were related to growth and maintenance of tree crowns. Total biomass, biomass allocation ratio of non-photosynthetic to photosynthetic organs, and wood density of current shoots were unrelated to tree height. However, shoot structure changed with tree height. Compared with short trees, tall trees produced current shoots of the same mass but with thicker and shorter stems. Current shoots with thin and long stems enhanced height growth in short trees, whereas in tall trees, thick and short current shoots may reduce mechanical and hydraulic stresses. Furthermore, compared with short trees, tall trees produced current shoots with more leaves of lower dry mass, smaller area, and smaller specific leaf area (SLA). Short trees adapted to low light flux density by reducing mutual shading with large leaves having a large SLA. In contrast, tall trees reduced mutual shading within a shoot by producing more small leaves in distal than in proximal parts of the shoot stem. The production of a large number of small leaves promoted light penetration into the dense crowns of tall trees. All of these characteristics suggest that the change in current shoot structure with increasing tree height is adaptive in E. tapos, enabling short trees to maximize height growth and tall trees to maximize light capture.  相似文献   

13.
Shoot biomass production was estimated in two Estonian short rotation forest (SRF) plantations during the first rotation cycle (1994–1997). The plantations were established with six clones of Salix viminalis and one clone of Salix dasyclados in 1993. The plantation, located on well-composed organic soil, was characterised by higher productivity (6.2 t DM ha−1 per year) compared with the plantation on poor mineral soil (5.2 t DM ha−1 per year). Fertilisation of the latter plantation increased its productivity to 11.0 t DM ha−1 per year, which is the value close to a predicted maximum for Swedish climatic conditions. In fertilised plots, clone 81090 of S. dasyclados was characterised by the highest productivity among all clones, but also by high stool mortality. Clones 78021 and 78183 of S. viminalis had the most stable and relatively high productivity and can therefore be recommended as promising planting material for SRF in Estonia.

When estimating production, the use of proper allometric relations between shoot dry weight and diameter is of crucial importance. Additional measurements on 1-year-old shoots in 1998 showed that besides shoot age also clone and fertilisation are significant factors influencing allometric relations. The dry weight of fertilised shoots was about 10% lower than that of non-fertilised shoots of the same height and diameter. Older shoots were heavier than younger shoots with a similar diameter.  相似文献   


14.
Grant  Neil J.  Hammatt  Neil 《New Forests》2000,20(3):287-295
Experiments were carried out to improve shootformation from leaves of wild cherry (Prunusavium L). Emphasis was placed on maximising shootnumbers per leaf. Results with one genotype showedthat leaf size was critical in determining whethershoots formed, with leaves 3–5 mm in length formingmost shoots. Leaves larger than this failed to formcallus or shoots, while smaller leaves tended todevelop into fast-growing callus. There weresignificant differences among ten genotypes, selectedarbitrarily, in proportions of leaves thatregenerated, numbers of shoots formed and numbers ofpositions per leaf where shoots formed. Supplementingmedium with the surfactants Tween-20, and PluronicsF127 and F68 failed to increase the proportions ofleaves of the one genotype tested that producedshoots. However, Tween-20 increased numbers of shootsper leaf and the numbers of positions per leaf thatformed shoots. The main effects of Pluronics F68 andF127 with increasing concentration over the rangetested (10–1000 mgl–1) were significantdecreases in shoot numbers and numbers of positionsper leaf where shoots formed. Using the best genotype,accession 1905, leaves 3–5 mm in length, and Tween-20at 10 mgl–1, 84% (s.e. ± 2.3%) of leavesformed a mean (± s.e.) of 3.5 ± 0.3 shootsfrom 2.0 ± 0.2 locations per leaf.  相似文献   

15.
Early season leaf growth depends largely on nitrogen (N) provided by remobilization from storage, and many studies have tested the effect of N availability to roots on the amount of N provided for new leaf development by remobilization. Although it is well known that the light regime experienced by a leaf influences the amount of N per unit leaf area (LA), the effect of the local light regime on the amount of N derived either directly from root uptake or from remobilization for early season leaf growth has never been tested at an intra- canopy scale. The objective of this study was to quantify the relative importance of (1) N availability to roots, (2) local light regime experienced by the foliage (at the shoot scale) and (3) leaf rank along the shoot, on the total amount of N allocated to leaves and on the proportions of N provided by remobilization and root uptake. To quantify the importance of N uptake and remobilization as sources of leaf N, potted hybrid walnut trees (Juglans nigra L. x regia L.) were grown outdoors in sand and fed with a labeled ((15)N) nutrient solution. By removing the apical bud, the trees were manipulated to produce only two shoots. The experimental design had two factors: (1) high (HN; 8 mol N m(-3)) and low (LN; 2 mol N m(-3)) N availability; and (2) high (HL; 90% of incident photosynthetically active photon flux (PPF)) and low (LL; 10% of incident PPF) light. Total leaf N per tree was unaffected by either N availability or irradiance. The HN treatment increased the amount of leaf N derived from root uptake at the whole-tree scale (typically around 8 and 2% in the HN and LN treatments, respectively). Nitrogen allocation within foliage of individual trees was controlled by the local light regime, which strongly affected individual leaf characteristics as leaf mass per unit LA and area- based amount of leaf (N(a)). Decreasing the light availability to a branch decreased the amount of N allocated to it, benefiting the less shaded branches. In contrast, shading of the lower branch did not affect the fraction of total leaf N remobilized for either the lower, shaded branch or the upper, unshaded branch. The relevance of these findings for tree growth modeling is discussed.  相似文献   

16.
Takenaka A 《Tree physiology》1997,17(3):205-210
Stem length and leaf area of current-year shoots were measured in saplings of eight broad-leaved evergreen tree species growing under a forest canopy. Stem length varied over a range of one to two orders of magnitude within each species. In all species, both the number of leaves and the mean stem length between successive leaves were greater in longer shoots. Mean leaf size and stem length were not correlated in six of eight species, and only weakly positively correlated in the other two species. Thus, total leaf area per stem increased with stem length, but not in direct proportion: leaf area per stem length was smaller in shoots with long stems and larger in shoots with short stems. I conclude that the within-species variation in the leaf-stem balance of current-year shoots is related to variation in shoot functional roles, as has been observed for long and short shoots in many deciduous tree species: shoots with long stems are extension oriented and contribute to the framework of the crown, whereas shoots with short stems serve mainly for leaf display. Among species, large differences were found in the leaf area per stem length ratio. In the species with larger leaf area per stem length ratios, leaves had narrower blades or longer petioles, or both, resulting in a reduction of mutual shading among the leaves on the shoot.  相似文献   

17.
以火焰南天竹(Nandina domestica‘Fire power’)为材料,研究了6种培养基对火焰南天竹增殖和生长的影响。试验结果表明:6个培养基对火焰南天竹的增殖倍数、含水量、植株高度、叶片面积、叶绿素含量均有显著的影响,其中M6培养基处理的火焰南天竹增殖倍数最高,M5培养基处理的植株生长健壮,平均株高、叶绿素含量、含水量均显著高于其他处理组,但增殖倍数并非最高。综合分析表明:M6培养基较目前常用的单一培养基而言更适宜于火焰南天竹的增殖培养,M5培养基更适宜于火焰南天竹的壮苗培养。  相似文献   

18.
为了评价人工剪梢防治微红梢斑螟对松树生长的影响,分别在当年5月份和7月份对微红梢斑螟危害过的马尾松、湿地松幼林实施人工剪梢防治微红梢斑螟幼虫.结果表明:人工剪梢防治微红梢斑螟对松树生长的影响与剪梢时间和树种有关.人工剪梢防治对马尾松、湿地松地径生长均有一定的促进作用,其中5月份剪梢的马尾松地径增长最明显,达14.87%...  相似文献   

19.
To investigate morphological acclimation to differences in nutrient availability, we compared shoot and needle morphology of Picea glehnii (Friedr. Schmidt) M. T. Mast. and Picea jezoensis (Siebold & Zucc.) Carrière trees growing on nutrient-poor volcanic ash and nutrient-rich, brown forest soil. Trees of both species were shorter and had more open canopies when growing on volcanic ash than when growing on brown forest soil. Nutrient-poor conditions limited height growth less in P. glehnii than in P. jezoensis. In both species, trees growing on volcanic ash had shorter annual increments in the previous year and more needles per shoot length and, hence, a smaller shoot silhouette area (SSA) relative to needle dry mass (NDM) than trees growing on brown forest soil. Soil type had less effect on shoot projected needle area (PNA). Total needle area (TNA) of P. glehnii shoots was similar between soil types, whereas TNA of P. jezoensis was lower in trees growing on volcanic ash than in trees growing on brown forest soil. For both species, low SSA in response to nutrient-poor conditions resulted in low shoot SSA/PNA ratios, indicating high within-shoot self-shading. Shoot SSA/TNA of P. glehnii was lower in trees growing on volcanic ash than in trees growing on brown forest soil, indicating that needles were sun-acclimated. In contrast, shoot SSA/TNA of P. jezoensis was higher in trees growing on volcanic ash than in trees growing on brown forest soil. The contrasting response of TNA to low nutrient availability was associated with species-specific differences in needle morphology. Needles of P. glehnii growing on volcanic ash were slightly shorter, wider, thicker and heavier than those of trees growing on brown forest soil, indicating morphological acclimation to high irradiance. Needles of P. jezoensis growing on volcanic ash were shorter than those of trees growing on brown forest soil, but did not show morphological acclimation to high irradiance in width, thickness or mass. For both species, nutrient-poor conditions decreased maximum photosynthetic rate (Amax) per NDM. However, when expressed per PNA, the decrease in Amax was reduced, and when expressed per SSA, Amax was higher in trees growing on volcanic ash than in trees growing on brown forest soil. On volcanic ash, Amax per NDM was lower for P. glehnii than for P. jezoensis. However, morphological changes at the shoot and needle levels reversed this trend when Amax was expressed per SSA or per PNA. The species-specific differences in morphological response to differences in soil nutrient availability suggest that P. glehnii is more tolerant of nutrient-poor conditions, whereas P. jezoensis is better at exploiting nutrient-rich soils.  相似文献   

20.
The spherical mean of the shoot silhouette-to-total leaf area ratio (STAR) and the shoot transmission coefficient (c) are two key structural parameters in radiative transfer models for calculating canopy photosynthesis and leaf area index. The standard optical method for estimating these parameters might introduce errors in the estimates for species with flexible shoots and needles by changing shoot inclination relative to its inclination in situ. We devised and tested two methods to address this problem. First, we modified the standard optical method by designing an apparatus that allows shoots to be photographed in their original orientation. Second, we developed a faster, model-based approach to replace photography and tested the results against the established approach. We used shoots of three pine species, Pinus echinata Mill. (needle length ~50 mm), P. taeda L. (~150 mm) and P. palustris Mill. (~300 mm). Values of the parameters simulated by the model were similar to those measured from the photographs. In our data, STAR varied about twofold among the pine species and was ~40% higher in shade shoots than in sun shoots of P. taeda. The transmission coefficient for P. taeda shade shoots was also ~40% higher than that of sun shoots of all three species. We tested the versatility of the model by employing it on shoots of two other pine species (P. strobus L. and P. thumbergiana Parl.) as well as on shoots of Tsuga canadensis L. Carr. and Picea pungens Engelm. Regardless of shoot characteristics, the model generated values of shoot structural parameters similar to those estimated with the optical method. Although species-specific and vertical gradients in parameter values are best for modeling radiative transfer in conifer canopies, our results suggest that, in the absence of adequate data, STAR can be approximated as 0.16 for a wide range of shoot structures. For applications requiring angle-dependent parameterization, our new model facilitates rapid generation of these radiative transfer parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号