首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(pp. 41–46)

Silicon availability in 36 commercial nursery bed soils was evaluated by four methods the phosphate buffer (pH 6.2, 40 mmol L?1), incubation, supernatant and acetate buffer (pH 4.0, 1 mol L?1) Methods. The influence of silicon availability in the nursery bed soils on the silicon uptake of rice Oryza sativa L. cv. Hitomebore seedlings and the effect of silicon fertilizer application were examined in a glass house in 2002.

The results revealed that the best correlation between silicon content in rice seedlings and available silicon in soils was obtained with the phosphate buffer-solution method (r = 0.86). More precise evaluation of available silicon was achieved by grouping soils based on these phosphate absorption coefficients (PAC). The correlation coefficients between silicon content in rice seedlings and available silicon in soils were 0.92 and 0.72 for volcanic soils (PAC > 1500) and non volcanic soils (PAC < 1500), respectively.

We concluded that the phosphate buffer method is the most easily adjusted method for estimation of silicon availability in nursery bed soils, and silicon fertilizers should be applied when silicon availability in non-volcanic nursery bed soils goes below 200 mg kg?1, whereas the level is less than 350 mg kg?1 in volcanic soils.  相似文献   

2.
Phosphate sorption was measured by the method of Barrow (1980) using a laboratory incubation procedure for up to 60 d on four soils which had different mineralogies but medium to high phosphate retention. All the soils had slow reactions where phosphate sorption continued, but at a decreasing rate, with time. The rate of decrease in the slow reactions was similar on all the soils. Phosphate became less available to plants during the slow reactions, and results of a pot trial with white clover showed that, on all the soils, phosphate incubated with the soils for 218 d was about 65% as effective as phosphate incubated for 10d.
When 700 mg P kg−1 was added to allophanic soils (Andisols), about 100 mg kg−1 was strongly adsorbed, about 200 mg kg−1 became unavailable in about 200 days and the remainder was weakly adsorbed. A similar result was obtained on Waiarikiki soil (Inceptisol), which contained ferrihydrite and Al-humus as the predominant reactive species. On the Kerikeri soil (Oxisol) about 150 mg P kg−1 became unavailable with time as a result of reactions with geothite, hematite and Al-humus.
The phosphate uptake by the microbial biomass was similar to the uptake by the clover, and immobilization of phosphate in the biomass can contribute to the loss of availability of phosphate in soils.  相似文献   

3.
To evaluate the selenium (Se) level in agricultural soils in Japan and to investigate its determining factors, 180 soil samples were collected from the surface layer of paddy or upland fields in Japan and their total Se contents were determined. Finely ground soil (50 mg) was wet-digested with HNO3 and HClO4 solution and the released Se was reduced to Se(IV). The concentration of Se(IV) was then determined by high-performance liquid chromatography with a fluorescence detector after treatment with 2,3-diaminonaphthalene and extraction with cyclohexane. The total Se content ranged from 0.05 to 2.80 mg kg−1 with geometric and arithmetic means of 0.43 and 0.51 mg kg−1, respectively. The overall data showed a log-normal distribution. In terms of soil type, volcanic soils and peat soils had relatively high Se content and regosols and gray lowland soils had relatively low Se content. In terms of land use, upland soils had significantly higher Se content than paddy soils. Among regions, soils in the Kanto, Tohoku, Hokkaido and Kyushu regions had relatively high content. The total Se content had a significant positive correlation with the organic carbon content ( P  < 0.01) and the equation for the estimation of total Se content with organic carbon suggested that on average approximately 48% (0.24 mg kg−1) of the total Se was in inorganic forms and approximately 52% (0.25 mg kg−1) was in organic forms. Soil pH, on the contrary, did not show a significant relationship with the total Se content. In conclusion, the organic matter content, in combination with volcanic materials, was the main determining factor of the total Se content of agricultural soils in Japan.  相似文献   

4.
The effect of the application of acidified porous hydrate calcium silicate (APS) in nursery bed soil and porous hydrate calcium silicate (PS) in paddy fields on the growth of rice plants ( Oryza sativa L. cv. Hitomebore) was examined in 2002 and 2003. The results revealed the following: 1) Shoot dry weight of rice seedlings increased by APS treatment in nursery bed soil. The tiller number of rice plants after transplanting in both years also increased by APS treatment in nursery bed soil, and in 2003, the tiller number in the treatment with a combination of APS in nursery bed soil and PS in paddy fields was significantly higher than that in the other treatments until the maximum tiller number stage. Furthermore, the root length of rice plants 14 d after transplanting increased by APS treatment in nursery bed soil. 2) Silicon concentration in the soil solution significantly increased by PS treatment in paddy fields, and the concentration of dissolved carbon oxide increased by APS treatment in nursery bed soil. 3) Only in the APS treatment the rice yield was 341 g m−2, while 400 and 450 g m−2 in the PS and both APS and PS treatments, respectively, in 2003. Percentages of ripened grains in the plots without PS treatment ranged from 57 to 63%, respectively, while, those in the PS treated plots were 82%. The numbers of panicles and ripened grains in both APS and PS treatments were the highest among the treatments. Based on the above results, we concluded that both APS in nursery bed soil and PS in paddy field treatments were effective in improving the silicon nutrition and growth of rice plants, and that this effect was enhanced by a combination of treatments with the two.  相似文献   

5.
Natural non-allophanic Andosols often show aluminum (Al) toxicity to Al-sensitive plant roots. The significance of Al–humus complexes to Al toxicity has been emphasized. Allophanic Andosols also possess Al–humus complexes, but they rarely show any toxicity. In the present study, using model substances, we tested the toxicity of Al–humus complexes and its amelioration with allophanic materials. We extracted humic substances from the A horizons of a non-allophanic Andosol and an allophanic Andosol using a NaOH solution, and reacted the humic substances and partially neutralized AlCl3 solution at pH 4. Allophanic material was purified from commercial Kanuma pumice. Plant growth tests were conducted using a medium containing the Al–humus complexes (50 g kg−1), the allophanic material (0, 90, 180 and 360 g kg−1) and perlite. The root growth of barley ( Hordeum vulgare L.) and burdock ( Arctium lappa ) was reduced in the media containing the Al–humus complexes derived from both the non-allophanic and allophanic Andosols when the allophanic material was not added. With the addition of the allophanic materials, particularly in the 360 g kg−1 treatment, the growth of the barley roots was improved markedly. Although the root growth of the burdock tended to improve with allophanic materials, the effect was weaker than that for barley. Monomeric Al in a solution of the medium was not detected (< 0.05 mg L−1) following the addition of 360 g kg−1 of allophanic materials, whereas 0.8–1.7 mg L−1 Al was recorded without the allophanic material.  相似文献   

6.
(pp. 825–831)
This study was carried out to clarify the effects of soil nitrate before cultivation and amounts of basal-dressed nitrogen on additional N application rate and yields of semi-forced tomato for three years from 1998 to 2000. The amounts and timing of additional N dressing were determined based on diagnosis of petiole sap nitrate. The top-dressing was carried out with a liquid fertilizer when the nitrate concentration of a leaflet's petiole sap of leaf beneath fruit which is 2–4 cm declined below 2000 mg L−1.
For standard yield by the method of fertilizer application based on this condition, no basal-dressed nitrogen was required when soil nitrate before cultivation was 150 mg kg−1 dry soil or higher in the 0–30 cm layer; 38 kg ha−1 of basal-dressed nitrogen, which corresponds to 25% of the standard rate of fertilizer application of Chiba Prefecture, was optimum when soil nitrate before cultivation was 100150 mg kg−1 dry soil; 75 kg ha−1 of basal-dressed nitrogen, which corresponds to 50% of the standard, was optimum when soil nitrate before cultivation was under 100 mg kg−1 dry soil. A standard yield was secured and the rate of nitrogen fertilizer application decreased by 49–76% of the standard by keeping the nitrate concentration of tomato petiole sap between 1000–2000 mg L−1 from early harvest time to topping time under these conditions.  相似文献   

7.
The effect of lime (CaCO3) and phosphate additions on surface charge characteristics and their effect on the leaching of sulphate were examined for two soils (Patua loam and Tokomaru silt loam) which differed in their adsorption capacities for sulphate.
Incubation of soils with either CaCO3 (0–600 mmol kg−1) or phosphate (0-208 mmol kg−1) resulted in a two- to five-fold increase in the net negative charge and a similar decrease in the adsorption of sulphate. The effect of either lime or phosphate addition on both the surface charge and sulphate adsorption was more pronounced for the allophanic Patua soil than for the Tokomaru soil containing mainly vermiculite.
In a column experiment, liming induced the leaching of sulphur either by the desorp-tion of adsorbed sulphate or by the mineralization of organic sulphur. During a miscible displacement study, addition of either CaCO3 or phosphate resulted in an early breakthrough of sulphate in the leachate. In a pulse experiment, in which soils were incubated with sulphate (3.12 mmol kg−1) for 1 week and subsequently leached with water, more added sulphate was lost in the leachate of the soils previously incubated with either CaCO3 or phosphate.  相似文献   

8.
We used a laboratory incubation approach to measure rates of net N mineralization and nitrification in forest soils from Fu-shan Experimental Forest WS1 in northern Taiwan. Net mineralization rates in the O horizon ranged from 4.0 to 13.8 mg N kg−1 day−1, and net nitrification rates ranged from 2.2 to 11.6 mg N kg−1 day−1. For mineral (10–20 cm depth) soil, net mineralization ranged from 0.06 to 2.8 mg N kg−1 day−1 and net nitrification rates ranged from 0.02 to 2.8 mg N kg−1 day−1. We did not find any consistent differences in N mineralization or nitrification rates in soils from the upper and lower part of the watershed. We compared the rates of these processes in three soil horizons (to a soil depth of 30 cm) on a single sampling date and found a large decrease in both net N mineralization and nitrification with depth. We estimated that the soil total N pool was 6,909 kg N ha−1. The present study demonstrates the importance of the stock of mineral soil N in WS1, mostly organic N, which can be transformed to inorganic N and potentially exported to surface and ground water from this watershed. Additional studies quantifying the rates of soil N cycling, particularly multi-site comparisons within Taiwan and the East Asia–Pacific region, will greatly improve our understanding of regional patterns in nitrogen cycling.  相似文献   

9.
The origin of highly acidic (pH<4.5) barren soils in the Klamath Mountains of northern California was examined. Soil parent material was mica schist that contained an average of 2,700 mg N kg−1, which corresponds to 7.1 Mg N ha−1 contained in a 10-cm thickness of bedrock. In situ soil solutions were dominated by H+, labile-monomeric Al3+ and NO3, indicating that the barren area soils were nitrogen saturated—more mineral nitrogen available than required by biota. Leaching of excess NO3 has resulted in removal of nutrient cations and soil acidification. Nitrogen release rates from organic matter free soil ranged from 0.0163 to 0.0321 mg N kg−1 d−1. Nitrogen release rate from fresh ground rock was 0.0465 mg N kg−1 d−1. This study demonstrates that geologic nitrogen may represent a large and reactive nitrogen pool that can contribute significantly to soil acidification.  相似文献   

10.
The status of cobalt (Co) in savanna soils of Nigeria is largely unknown, and a long-term experiment including inorganic fertilizer (NPK) and farmyard manure (FYM) and uncultivated land provided information on the way management affected the dynamics of Co in the soil. Total Co increased with increasing depth, whereas readily extractable Co decreased. The mean concentration of Co (5.6–7.9 mg kg−1) was close to the mean value of 8 mg kg−1 reported for soils worldwide, whereas the concentration of extractable Co was less than that reported in most soils. Regression analysis indicated that total Fe predicted up to 78% of the soil Co. The potentially available Co correlated strongly with pedogenic or reducible Mn oxides extracted with dithionite–citrate–bicarbonate. Mass balance calculations showed that fertilization with either NPK or FYM caused losses of between 0.8 and 1.1 g Co m−2 after 50 years of cultivation against the uncultivated site as a reference. However, Co increased by 1.8 g m−2 in the soil receiving FYM + NPK, suggesting that the Co of the soil was best maintained under this management probably because of incidental additions of Co in the manures. Furthermore, the positive Co balance in the FYM + NPK plot was partly enhanced by its larger contents of clay, Fe and pedogenic Mn oxides than in either the FYM or NPK plots. Clay, Fe and pedogenic oxides served as Co sinks in this particular savanna soil.  相似文献   

11.
Phosphite (     ; Pi) uptake in cell suspension culture, information on how Phi affects the Pi uptake of intact plants remains to be determined. The present study was conducted to investigate the effect of Phi on Pi absorption of intact komatsuna plants ( Brassica rapa var. peruviridis cv. Ajisai) in hydroponic culture. Phosphite markedly decreased Pi absorption of the intact komatsuna plants under both low (0.05 mmol L−1 ) and high (0.5 mmol L−1) Pi supply, although the growth (both shoots and roots) and water uptake of the high Pi-supplied plants was not affected by Phi. The inhibiting effect of Phi was small at 0.2 mmol L−1, but became large at 2 mmol L−1. Using relatively large seedlings (28 days old) to better assess the influence of Phi on Pi absorption early in the treatment, the results indicated that there was an immediate decrease in Pi absorption within the first 2-day period of Phi treatment when the water absorption of the plants was not affected. Taken together, the results suggested that there was a strong inhibiting effect of Phi on Pi uptake of intact komatsuna plants and this effect is exerted most likely by competition between Phi and Pi at uptake level. We speculate that the application of Phi to plant roots in an environment that is unfavorable for Phi-to-Pi conversion (e.g. hydroponic culture) may need to increase the amount of required Pi fertilization of plants to compensate for the reduction in Pi uptake by Phi. Further research is needed to confirm our results.  相似文献   

12.
An indicator to evaluate the proportion of exogenous organic matter (EOM) remaining in soils over the long-term after application has been developed. A database was constructed with analytical data corresponding to 83 EOMs, including sludges, composts, animal wastes, mulches, plant materials and fertilizers. The data included results of proximal analysis (soluble, SOL, hemicellulose-, HEM, cellulose-, CEL, and lignin-like, LIC, fractions, in g kg−1 total organic matter) and of carbon (C) mineralization during long-term incubations under laboratory conditions (in g kg−1 exogenous organic C, EOC). The potential residual organic C after EOM application to soil was assessed from the extrapolation of the incubation results. Then, partial least square regression was used to relate EOM characteristics to the proportion of potentially residual organic C previously determined from the incubations. The biochemical fractions of EOM were not predictive enough to develop the indicator. The proportion of organic C mineralized during 3 days of incubation (C3d) was cumulated and appeared to be the most predictive variable of residual organic C. The proposed indicator of residual organic carbon in soils (expressed as g EOC kg−1) was IROC = 445 + 0.5 SOL – 0.2 CEL + 0.7 LIC – 2.3 C3d. The indicator was calculated for the main types of EOM applied to soils. When compared with the few field data of residual C measured in long-term field experiments, the values provided by the indicator seemed to be over-estimated (i.e. EOC degradation could be faster under field conditions than during laboratory incubations).  相似文献   

13.
Hydroponically grown barley plants ( Hordeum vulgare L. cv. Minorimugi) under iron-deficient (–Fe) and high phosphorus (P) conditions (500 µmol L−1) showed Fe chlorosis and lower growth compared with plants grown in –Fe and low P conditions (50, 5 and 0.5 µmol L−1). To understand the physiological role of P in regulating the growth of plants in –Fe medium, we carried out an Fe feeding experiment using four P levels (500, 50, 5 and 0.5 µmol L−1) and phytosiderophores (PS), mugineic acid. Our results suggest that plants grown in a high P medium had higher absorption activity of 59Fe compared with plants grown in low P media, irrespective of the presence or absence of added PS. Translocation of 59Fe from roots to shoots was not affected by the P level. The relative translocation rate of 59Fe increased with decreasing levels of P in the medium. In general, the addition of PS enhanced the absorption of 59Fe and its translocation. Taken together these results suggest that the lower relative translocation rate of Fe in high P plants may be induced by the physiological inactivation of Fe in the roots, and the higher absorption activity of Fe in high P conditions possibly results from the response of barley plants to Fe deficiency.  相似文献   

14.
Although iodine is harmful to plants, rice plants ( Oryza sativa L.) absorbed iodine more selectively than bromine. To explain this selective absorption, the authors proposed the following hypothesis based on the fact that the standard redox potential for (I2+ 2e = 2I) is lower than that for (Br2+ 2e = 2Br) and (Fe3++ e = Fe2+), and the roots of rice plants are able to oxidize ferrous ion (Fe2+) into ferric ion (Fe3+), namely rice plants oxidize iodide ion (I) to form molecular iodine (I2) via the oxidizing power of their roots, and absorb the molecular iodine formed more selectively than iodide ion. Bromine, by contrast, is absorbed by rice plants only in the form of ion (Br). According to this hypothesis, there should be a significant correlation between the oxidizing power of the rice roots and the amount of iodine absorbed. Therefore, the relationship between the oxidizing power of the roots and the concentration of iodine absorbed was studied in a water culture using 8 varieties of rice plants. Rice seedlings, 14 d after germination, were cultured in a solution containing 1 mg L−1 each of iodide and bromide ions for 3 d. The oxidizing power of the rice roots was evaluated based on the amount of 1-naphthylamine oxidized by the roots. A significant correlation (0.78, n = 16, 0.1% significant level) was found between the oxidizing power and the concentration of iodine absorbed by the roots. However, no relationship was found between the oxidizing power of the roots and the amount of bromine absorbed.  相似文献   

15.
A pot culture experiment was conducted to investigate the effects of amorphous iron-(hydr)oxide (Am-FeOH) amendments on arsenic (As) availability and its uptake by rice ( Oryza sativa L. cv. BR28) irrigated with As-contaminated water. A rhizobag system was established using 3.5 L plastic pots, each containing one central compartment for plant growth, a middle compartment and an outside compartment. Three levels of laboratory-synthesized Am-FeOH (0, 0.1 and 0.5% w/w) were used to amend samples of the As-free sandy loam paddy soil placed into each compartment of the rhizobag system. The soils were submerged with a solution containing 5 mg L−1 As(V). Two-week-old rice seedlings were planted in the central compartments and cultured for 9 weeks under greenhouse conditions. The addition of 0.1% Am-FeOH to the soil irrigated with As-contaminated water improved plant growth, reduced the As concentration in the plants and enhanced Fe-plaque formation on the root surfaces. Analysis of soil solution samples collected during the experiment revealed higher pH levels and lower redox potentials in the soils amended with Am-FeOH at the onset of soil submergence, but later the soil solution collected from the 0.1% Am-FeOH treatment was slightly acidic and more oxidized than the solution from the 0% treatment. This indicated active functioning of the roots in the soil treated with 0.1% Am-FeOH. The concentrations of As(III) in the soil solution collected from the central compartment were significantly reduced by the Am-FeOH amendments, whereas in the soil treated with 0% Fe, As(III) accumulated in the rhizosphere, particularly during the late-cultivation period. The improvement in plant growth and reduction in As uptake by plants growing in the Am-FeOH treated soil could be attributed to the reduction of available As in the soil solution, mainly as a result of the binding of As to the Fe-plaque on the root surfaces.  相似文献   

16.
Abstract. We studied the effects of red deer grazing and fence-line pacing on soil losses of contaminants (suspended sediment, Escherichia coli , phosphorus) and nitrogen species (ammonia, nitrate) via overland flow and soil physical properties (macroporosity, bulk density, saturated hydraulic conductivity, K sat) soon after (1 day) and 6 weeks after grazing on a Pallic pastoral soil in southern New Zealand. Fence-line pacing decreased the soil volume occupied by water, macroporosity and K sat, while increasing suspended sediment (to 0.226 g 100 mL−1), total P (to 2.0 mg L−1), mainly as particulate P (up to 90% of total P), and E. coli (to 3.52 log10 c.f.u. 100 mL−1) concentrations in overland flow at 1 day after grazing compared with soils from the rest of the paddock (0.148 g 100 mL−1, 0.86 mg L−1 and 2.86 log10 c.f.u. 100 mL−1, respectively). Although concentrations in overland flow were less at 6 weeks after grazing than at 1 day after grazing, losses of P, especially in fence-line soils, were still above recommended limits for surface water quality. Compared to P, losses of N species would be unlikely to have a significant impact on downstream water quality. Management strategies should be directed towards minimizing the occurrence of fence-line pacing to prevent contaminant loss and maintain water and soil quality.  相似文献   

17.
(pp. 17–24)
A trial calculation was performed of the environmental nitrogen-assimilation capacity and the amount of nitrogen input based on various statistical data, which were compiled from each city, town and village in Hokkaido prefecture. The relationship between the excess quantity of nitrogen, after nitrogen input, and the environmental nitrogen-assimilation capacity and the nitrate-nitrogen concentration of the groundwater was considered.
Environmental nitrogen-assimilation capacity = nitrogen output by the crops + acceptable level of residual nitrate in the soil profile.*
*It is calculated by the amount of nitrate precipitation evapotranspiration ×10 mg L−1.
  • 1) 

    The average value of the environmental nitrogen-assimilation capacity in Hokkaido Prefecture was observed to be 183 kg ha−1. The maximum and minimum values of the environmental nitrogen-assimilation capacity were 308 kg ha−1 and 94 kg ha−1, respectively. When the average value of the environmental nitrogen-assimilation capacity with respect to main agricultural land use was compared across municipalities, it was largely in the following order · grassland (218 kg ha−1), upland (169 kg ha−1), and paddy land (157 kg ha−1).

      相似文献   

18.
Metal availability in soils is strongly related with sorption processes and the possible association of the metal ions with a particular particle-size fraction. Therefore, studies of metal retention by a soil will be aided if retention by different size fractions is also studied. Sorption of copper on a calcareous soil and its textural fractions was studied in batch assays. The soil was amended over 3 years with two agroindustrial residues, a composted olive mill sludge and vinasse. Sorption of Cu on the calcareous soil was very large (110 mmol kg−1) and was enhanced by both amendments. Metal retention by the clay fraction of the unamended soil was less than that of the whole soil, but increased dramatically after amendment with olive mill sludge. This was caused by the larger calcite content in this fraction as well as the increase in organic matter content. The amount of Cu sorbed was very large in the silt fraction, again because of the carbonate content of this fraction (300–460 g kg−1). Copper sorption decreased dramatically after removal of carbonate. Copper retention tended to be enhanced by organic amendments. This was particularly evident in the silt fraction, as a consequence of the organic matter accumulation in this fraction.
Copper sorption on the calcareous soil and its silt fractions (unamended and amended) was irreversible. By contrast, desorption was measurable from all the carbonate-free samples (both whole soil and textural fractions), although in all cases a large hysteresis was observed. We conclude that carbonate was the main component responsible for the lack of reversibility.  相似文献   

19.
Abstract. The behaviour of potassium (K) in a range of arable soils was examined by plotting the change in exchangeable K of the topsoil (Δ Kex) at the end of a 3–5 year period against the K balance over the same period (fertilizer K applied minus offtake in crops, estimated from farmers' records of yield and straw removal). Based on the assumption that values for offtake per tonne of crop yield used for UK arable crops MAFF 2000) are valid averages, 10–50% of Δ Kex was explained by the balance, relationships being stronger on shallow/stony soils. Excess fertilizer tended to increase Kex and reduced fertilization decreased it, requiring between 1.2 and 5.4 kg K ha−1 for each mg L−1Δ Kex. However, merely to prevent Kex falling required an extra 20 kg K ha−1 yr−1 fertilizer on Chalk soils and soils formed in the overlying Tertiary and Quaternary deposits, despite clay contents >18%. Whereas, on older geological materials, medium soils needed no extra K and clays gained 17 kg K ha−1 yr−1. It is unlikely that the apparent losses on some soil types are anomalies due to greater crop K contents. Theory and the literature suggest leaching from the topsoil as a major factor; accumulation in the subsoil was not measured. Recommendations for K fertilization of UK soils might be improved by including loss or gain corrections for certain soil types.  相似文献   

20.
Denitrification of paddy fields is a key process for improving water quality in fields where nitrate concentrations are high. The objective of the present study was to understand the effects of incorporating organic carbon (C) into soil on the denitrification rate of paddy fields in winter. On 11 December 2007, separate paddy field plots were prepared by incorporating 5 Mg ha−1 of rice straw (RS), 11 Mg ha−1 of rice straw compost (RSC) or a control. A field with a high concentration of nitrate in the water (averaging 18 mg N L−1) was irrigated until 29 March. During the experiment, the daily average soil temperature at a depth of 0.05 m ranged between 3 and 15°C. The nitrate concentration in the surface water in the RS plot, where the residence time was 2 days, decreased more than the concentration in the control or RSC plots. The total estimated nitrate removal from each plot in relation to the other plots was RS > RSC = control. Measurements of the soil from each plot on 29 February 2008 showed that incorporation of RS significantly increased the denitrification potential, even at low temperatures (5–10°C). Furthermore, the RS plot contained more dissolved organic C than the control or RSC plots. This result indicates that supplying RS effectively increases denitrification under low-temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号