首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
OBJECTIVE: To characterize an outbreak of West Nile virus (WNV) infection in horses in North Dakota in 2002, evaluate vaccine effectiveness, and determine horse characteristics and clinical signs associated with infection. DESIGN: Retrospective study. ANIMALS: 569 horses. PROCEDURE: Data were obtained from veterinary laboratory records, and a questionnaire was mailed to veterinarians of affected horses. RESULTS: Affected horses were defined as horses with typical clinical signs and seroconversion or positive results of virus isolation; affected horses were detected in 52 of the 53 counties and concentrated in the eastern and northeastern regions of the state. Among affected horses, 27% (n = 152) were vaccinated against WNV, 54% (309) were not, and 19% (108) had unknown vaccination status; 61 % (345) recovered, 22% (126) died, and 17% (98) had unknown outcome. The odds of death among nonvaccinated horses were 3 and 16 times the odds among horses that received only 1 or 2 doses of vaccine and horses that were vaccinated according to manufacturer's recommendations, respectively. Horses with recumbency, caudal paresis, and age > 5 years had higher odds of death, whereas horses with incoordination had lower odds of death, compared with affected horses without these characteristics. CONCLUSIONS AND CLINICAL RELEVANCE: Vaccination appears to have beneficial effects regarding infection and death caused by WNV.  相似文献   

2.
Successful vaccination against West Nile virus (WNV) requires induction of both neutralizing antibodies and cell-mediated immune responses. In this study, we have assessed the ability of a recombinant ALVAC-WNV vaccine (RECOMBITEK WNV) to elicit neutralizing antibodies and virus-specific cell-mediated immune responses in horses. In addition, we examined whether prior exposure to ALVAC-WNV vaccine would inhibit B and cell-mediated immune responses against the transgene product upon subsequent booster immunizations with the same vaccine. The results demonstrated that the recombinant ALVAC-WNV vaccine induced neutralizing antibodies and prM/E insert-specific IFN-gamma(+) producing cells against WNV in vaccinated horses. Prior exposure to ALVAC-WNV vaccine did not impair the ability of horses to respond to two subsequent booster injections with the same vaccine, although anti-vector-specific antibody and cell-mediated immune responses were induced in vaccinated horses. This report describes, for the first time, the induction of antigen-specific cell-mediated responses following vaccination with an ALVAC virus recombinant vaccine encoding WNV antigens. Moreover, we showed that both WNV-specific IFN-gamma producing cells and anti-WNV neutralizing antibody responses, are not inhibited by subsequent vaccinations with the same vector vaccine.  相似文献   

3.
The circulation of West Nile virus in Portugal was assessed by serological surveys conducted during 2004-2010 in horses and birds. The detection of WNV antibodies in both species in all the years covered by the study as well as the presence of anti-WNV IgM in symptomatic horses that had not traveled outside the country, support the notion that WNV circulates in Portugal.  相似文献   

4.
Efficacy of the Recombitek Equine West Nile Virus (WNV) vaccine was evaluated against a WNV intrathecal challenge model that results in WNV-induced clinical disease. Ten vaccinated (twice at days 0 and 35) and 10 control horses were challenged 2 weeks after administration of the second vaccine with a virulent WNV by intrathecal administration. After the challenge, eight of 10 controls developed clinical signs of encephalomyelitis whereas one vaccinate exhibited muscle fasciculation only once. Nine controls and one vaccinate developed a fever. Histopathology revealed mild to moderate nonsuppurative encephalitis in eight controls and one vaccinate. None of the vaccinates and all of the controls developed WNV viremia after challenge. All vaccinated horses developed antibodies to WNV after vaccination. These and results of previous studies demonstrate efficacy of the Recombitek WNV vaccine against WNV-induced clinical disease and natural challenge with WNV-infected mosquitoes.  相似文献   

5.
Background: The spread of lineage 2 West Nile virus (WNV) from sub‐Saharan regions to Europe and the unpredictable change in pathogenicity indicate a potential public and veterinary health threat and requires scientific awareness. Objectives: To describe the results of clinical and virological investigations of the 1st outbreak of a genetic lineage 2 WNV encephalomyelitis in horses. Animals: Seventeen horses with neurologic signs. Methods: Information regarding signalment, clinical signs, and outcome was obtained for each animal. Serology was performed in 15 cases, clinicopathological examination in 7 cases, and cerebrospinal fluid was collected from 2 horses. Histopathology was carried out in 4 horses, 2 of which were assessed for the presence of WNV in their nervous system. Results: WNV neutralizing antibody titers were between 10 and 270 (median, 90) and the results of other serological assays were in agreement with those of the plaque reduction neutralization test. Common signs included ataxia, weakness, asymmetric gait, muscle tremors, hypersensitivity, cranial nerve deficits, and recumbency. Twelve animals survived. Amplicons derived from the infection‐positive specimens allowed molecular characterization of the viral strain. Conclusions and Clinical Importance: From our results, we conclude that this outbreak was caused by a lineage 2 WNV strain, even though such strains often are considered nonpathogenic. Neurological signs and survival rates were similar to those reported for lineage 1 virus infections. The disease occurrence was not geographically limited as had been the typical case during European outbreaks; this report describes a substantial northwestern spread of the pathogen.  相似文献   

6.
Equine West Nile virus (WNV) encephalomyelitis cases - based on clinical signs and ELISA serology test results - reported to Texas disease control authorities during 2002 were analyzed to provide insights into the epidemiology of the disease within a previously disease-free population. The epidemic occurred between June 27 and December 17 (peaking in early October) and 1,698 cases were reported. Three distinct epidemic phases were identified, occurring mostly in southeast, northwest and then central Texas. Significant (P<0.05) disease clusters were identified in northwest and northern Texas. Most (91.1%) cases had no recent travel history, and most (68.9%) cases had not been vaccinated within the previous 12 months. One-third of cases did not survive, 71.2% of which were euthanatized. The most commonly reported presenting signs included ataxia (69%), abnormal gait (52%), muscle fasciculations (49%), depression (32%) and recumbency (28%). Vaccination status, ataxia, falling down, recumbency and lip droop best explained the risk of not surviving WNV disease. Results suggest that the peak risk period for encephalomyelitis caused by WNV may vary substantially among regions within Texas. Recumbent horses have a poor prognosis for survival. Vaccines, even if not administered sufficiently in advance of WNV infection within a district, may reduce the risk of death by at least 44%.  相似文献   

7.
OBJECTIVE: To determine signalment, clinical findings, results of diagnostic testing, outcome, and postmortem findings in horses with West Nile virus (WNV) encephalomyelitis. DESIGN: Retrospective study. ANIMALS: 46 horses with WNV encephalomyelitis. PROCEDURE: Clinical data were extracted from medical records of affected horses. RESULTS: On the basis of clinical signs and results of serologic testing, WNV encephalomyelitis was diagnosed in 46 of 56 horses with CNS signs. Significantly more males than females were affected. Increased rectal temperature, weakness or ataxia, and muscle fasciculations were the most common clinical signs. Paresis was more common than ataxia, although both could be asymmetrical and multifocal. Supportive treatment included anti-inflammatory medications, fluids, antimicrobials, and slinging of recumbent horses. Results of the IgM capture ELISA and the plaque reduction neutralization test provided a diagnosis in 43 horses, and only results of the plaque reduction neutralization test were positive in 3 horses. Mortality rate was 30%, and 71% of recumbent horses were euthanatized. One horse that had received 2 vaccinations for WNV developed the disease and was euthanatized. Follow-up communications with 19 owners revealed that most horses had residual deficits at 1 month after release from the hospital; abnormalities were resolved in all but 2 horses by 12 months after release. CONCLUSIONS AND CLINICAL RELEVANCE: Our findings were similar to those of previous WNV outbreaks in horses but provided additional clinical details from monitored hospitalized horses. Diagnostic testing is essential to diagnosis, treatment is supportive, and recovery rate of discharged ambulatory horses is < 100%.  相似文献   

8.
A prospective cohort study was used to estimate the incidence of West Nile virus (WNV) infection in a group of unvaccinated horses (n = 37) in California and compare the effects of natural WNV infection in these unvaccinated horses to a group of co-mingled vaccinated horses (n = 155). Horses initially were vaccinated with either inactivated whole virus (n = 87) or canarypox recombinant (n = 68) WNV vaccines during 2003 or 2004, prior to emergence of WNV in the region. Unvaccinated horses were serologically tested for antibodies to WNV by microsphere immunoassay incorporating recombinant WNV E protein (rE MIA) in December 2003, December 2004, and every two months thereafter until November 2005. Clinical neurologic disease attributable to WNV infection (West Nile disease (WND)) developed in 2 (5.4%) of 37 unvaccinated horses and in 0 of 155 vaccinated horses. One affected horse died. Twenty one (67.7%) of 31 unvaccinated horses that were seronegative to WNV in December, 2004 seroconverted to WNV before the end of the study in November, 2005. Findings from the study indicate that currently-available commercial vaccines are effective in preventing WND and their use is financially justified because clinical disease only occurred in unvaccinated horses and the mean cost of each clinical case of WND was approximately 45 times the cost of a 2-dose WNV vaccination program.  相似文献   

9.
OBJECTIVE: To compare neutralizing antibody response between horses vaccinated against West Nile virus (WNV) and horses that survived naturally occurring infection. DESIGN: Cross-sectional observational study. ANIMALS: 187 horses vaccinated with a killed WNV vaccine and 37 horses with confirmed clinical WNV infection. PROCEDURE: Serum was collected from vaccinated horses prior to and 4 to 6 weeks after completion of an initial vaccination series (2 doses) and 5 to 7 months later. Serum was collected from affected horses 4 to 6 weeks after laboratory diagnosis of infection and 5 to 7 months after the first sample was obtained. The IgM capture ELISA, plaque reduction neutralization test (PRNT), and microtiter virus neutralization test were used. RESULTS: All affected horses had PRNT titers > or = 1:100 at 4 to 6 weeks after onset of disease, and 90% (18/20) maintained this titer for 5 to 7 months. After the second vaccination, 67% of vaccinated horses had PRNT titers > or = 1:100 and 14% had titers < 1:10. Five to 7 months later, 33% (28/84) of vaccinated horses had PRNT titers > or = 1:100, whereas 29% (24/84) had titers < 1:10. Vaccinated and clinically affected horses' end point titers had decreased by 5 to 7 months after vaccination. CONCLUSIONS AND CLINICAL RELEVANCE: A portion of horses vaccinated against WNV may respond poorly. Vaccination every 6 months may be indicated in certain horses and in areas of high vector activity. Other preventative methods such as mosquito control are warranted to prevent WNV infection in horses.  相似文献   

10.
Introduction: West Nile virus (WNV) first appeared in the United States in 1999, causing illness and death in birds, horses, and humans. While the initial outbreak of this sometimes deadly viral disease was limited to the northeastern United States, the virus had an inexorable migration across the continental United States over the next 3 years, causing huge losses among the affected species. The purpose of this review is to present currently available information regarding the epi‐demiology, diagnosis, treatment, and prevention of WNV infection. Veterinarians, particularly those in an emergency practice, serve as an important source of reliable information regarding this disease for animal owners and the public in general. Data sources: Data sources used for the preparation of this review include computer‐based searches of PubMed and Commonwealth Agricultural Bureaux (CAB) abstracts. A search in PubMed using ‘West Nile’ retrieved 1468 ‘hits’ or references, while a similar search in CAB abstracts produced 815 references. Additional information was obtained from various meeting proceedings, particularly data presented in abstract form, and from the Centers for Disease Control (CDC) website dedicated to WNV. Human data synthesis: Prior to the mid‐1990s, reported large‐scale epidemics of WNV infection in humans predominantly presented as acute, mild, febrile disease, sometimes associated with lymphadenopathy and skin rash. The recent large epidemic in the United States, in contrast, has prominently featured encephalitis, particularly among the elderly. Additionally, polio‐encephalomyelitis‐like complications resulting in long‐term neurologic sequelae have been reported. There are many WNV‐permissive native avian and mosquito hosts in the Unites States and there appear to be few limitations to the spread of the disease in the United States. It is expected that the virus will be identified in all 48 continental states, Mexico, and Canada by the end of 2003. Veterinary data synthesis: The horse is the animal species most affected by the recent WNV epidemic in the United States, and losses to the equine industry have been large and unprecedented. A United States Department of Agriculture (USDA)‐approved vaccine against WNV has been in use in horses since 2001 and appears to be effective in limiting the incidence of disease in well‐vaccinated populations. WNV infection has been documented in other species of mammals, including camelids (alpaca/llamas) and dogs, and veterinarians should include WNV as a differential diagnosis for animals presenting with clinical signs consistent with central nervous system infection. A large concern exists for endangered bird populations, particularly birds of prey, whether in zoos or in the wild.  相似文献   

11.
REASON FOR PERFORMING STUDY: West Nile virus (WNV) infection is endemic and able to cause disease in naive hosts. It is necessary therefore to evaluate the safety of new vaccines. OBJECTIVES: To establish: 1) the safety of a modified live Flavivirus/West Nile virus (WN-FV) chimera by administration of an overdose and testing for shed of vaccine virus and spread to uninoculated sentinel horses; 2) that this vaccine did not become pathogenic once passaged in horses; and 3) vaccine safety under field conditions. METHODS: There were 3 protocols: 1) In the overdose/shed and spread study, horses were vaccinated with a 100x immunogenicity overdose of WN-FV chimera vaccine and housed with sentinel horses. 2) A reversion to virulence study, where horses were vaccinated with a 20x immunogenicity overdose of WN-FV chimera vaccine. Horses in both studies were evaluated for abnormal health conditions and samples obtained to detect virus, seroconversion and dissemination into tissues. 3) In a field safety test 919 healthy horses of various ages, breeds and sex were used. RESULTS: Vaccination did not result in site or systemic reactions in either experimental or field-injected horses. There was no shed of vaccine virus, no detection of vaccine virus into tissue and no reversion to virulence with passage. CONCLUSIONS: WN-FV chimera vaccine is safe to use in horses with no evidence of ill effects from very high doses of vaccine. There was no evidence of reversion to virulence. In addition, administration of this vaccine to several hundred horses that may have been previously exposed to WNV or WNV vaccine resulted in no untoward reactions. POTENTIAL RELEVANCE: These studies establish that this live attenuated Flavivirus chimera is safe to use for immunoprophylaxis against WNV disease in horses.  相似文献   

12.
Between August and October 2000, 76 horses were reported by veterinary practitioners as having signs of a neurological disorder, varying from an involvement of the spinal cord alone to the entire central nervous system; 15 of the horses died or were euthanased as a result of their grave prognosis or secondary complications. At the same time, an outbreak of West Nile virus infection affected people and birds, principally domestic geese. West Nile virus was isolated from four of the horses with encephalomyelitis and five other horses seroconverted, indicating that the virus was the probable cause of the outbreak in horses. Three of the cases from which the virus was isolated are described briefly and one case is described in detail. This horse behaved abnormally and had general proprioceptive deficits in all four limbs. Its neurological condition deteriorated after two days and severe inspiratory dyspnoea due to a failure to abduct the arytenoids necessitated a tracheostomy. It died on the fourth day and histological lesions were observed in the brain stem and grey matter of the spinal cord.  相似文献   

13.
Nineteen horses with no prior experience with equine arteritis virus (EAV) were inoculated IM with an avirulent live-virus vaccine against equine viral arteritis; the vaccinal virus had been passaged serially 131 times in primary cell cultures of equine kidney, 111 times in primary cell cultures of rabbit kidney, and 16 times in an equine dermis cell line (EAV HK-131/RK-111/ED-16). Three or 4 of the vaccinated horses each, along with appropriate nonvaccinated controls, were inoculated nasally with virulent EAV at each of months 3, 6, 9, 12, 18, and 24 after they were vaccinated. The following was concluded: Vaccination did not induce clinical signs of disease in any horse and, thus, seemed safe for use in the field. All vaccinated horses (n = 19) developed serum-neutralizing antibodies to EAV. Fourteen of the vaccinated horses were completely protected from clinical arteritis when exposed to large doses of virulent EAV. Four were partially protected, and one had little or no protection. Six of 13 nonvaccinated horses died of acute arteritis, and the remaining 7 horses experienced severe signs of disease, but survived the infection. All horses (n = 32), whether vaccinated or not, became infected when inoculated nasally with virulent EAV. Virus was recovered from 17 of the 19 vaccinated horses, and all 19 had a secondary humoral immune response. The duration and severity of thermal reaction and persistence of virus were more transitory in vaccinated horses than in the nonvaccinated controls. Protection afforded by this vaccine can persist for at least 24 months, the maximal time after horses were vaccinated that immunity was challenged in the present study.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
In the fall of 1999, West Nile virus (WNV) was isolated for the first time in the Western Hemisphere during an outbreak of neurologic disease in humans, horses, and wild and zoo birds in the northeastern United States. Chickens are a potential reservoir for WNV, and little is known about the pathogenicity of WNV in domestic chickens. Seven-week-old chickens derived from a specific-pathogen-free flock were inoculated subcutaneously with 1.8 x 10(3) 50% tissue culture infectious dose of a crow isolate of WNV in order to observe clinical signs and evaluate the viremic phase, gross and microscopic lesions, contact transmission, and immunologic response. There were no observable clinical signs in the WNV-inoculated chickens during the 21-day observation period. However, histopathologic examination of tissues revealed myocardial necrosis, nephritis, and pneumonitis at 5 and 10 days postinoculation (DPI); moderate to severe nonsuppurative encephalitis also was observed in brain tissue from one of four inoculated birds examined at 21 DPI. WNV was recovered from blood plasma for up to 8 DPI. Virus titers as high as 10(5)/ml in plasma were observed at 4 DPI. Fecal shedding of virus was detected in cloacal swabs on 4 and 5 DPI only. The WNV also was isolated from myocardium, spleen, kidney, lung, and intestine collected from chickens euthanatized at 3, 5, and 10 DPI. No virus was isolated from inoculated chickens after 10 DPI. Antibodies specific to WNV were detected in inoculated chickens as early as 5 DPI by the plaque reduction neutralization test and 7 DPI by the indirect fluorescent antibody test. Chickens placed in contact with inoculated chickens at 1 DPI lacked WNV-specific antibodies, and no WNV was isolated from their blood plasma or cloacal swabs throughout the 21 days of the experiment.  相似文献   

15.
One hundred and ninety-one sera from horses that recently were exposed to West Nile virus (WNV) by either vaccination or natural infection or that were not vaccinated and remained free of infection were used to evaluate fluorescent microsphere immunoassays (MIAs) incorporating recombinant WNV envelope protein (rE) and recombinant nonstructural proteins (rNS1, rNS3, and rNS5) for detection of equine antibodies to WNV. The rE MIA had a diagnostic sensitivity and specificity, respectively, of 99.3% and 97.4% for detection of WNV antibodies in the serum of horses that were recently vaccinated or naturally infected with WNV, as compared to the plaque reduction neutralization test (PRNT). The positive rE MIA results were assumed to be WNV-specific because of the close agreement between this assay and the PRNT and the fact that unvaccinated control horses included in this study were confirmed to be free of exposure to the related St Louis encephalitis virus. The NS protein-based MIA were all less sensitive than either the rE MIA or PRNT (sensitivity 0-48.0), although the rNSI MIA distinguished horses vaccinated with the recombinant WNV vaccine from those that were immunized with the inactivated WNV vaccine (P < 0.0001) or naturally infected with WNV (P < 0.0001). The rE MIA would appear to provide a rapid, convenient, inexpensive, and accurate test for the screening of equine sera for the presence of antibodies to WNV.  相似文献   

16.
Swayne DE  Beck JR  Zaki S 《Avian diseases》2000,44(4):932-937
In the fall of 1999, West Nile virus (WNV) was isolated during an outbreak of neurologic disease in humans, horses, and wild and zoological birds in New York, Connecticut, and New Jersey. Turkeys could potentially be a large reservoir for WNV because of the high-density turkey farming and the presence of large wild turkey populations in the eastern seaboard of the United States. Little is known about the pathogenicity of WNV in domestic or wild turkeys. Specific-pathogen-free 3-wk-old turkeys were inoculated subcutaneously with 10(3.3) mean tissue culture infective doses of a WNV strain isolated fromthe index case in a New York crow. No clinical signs were observed in the turkeys over the 21 days of the experiment. One turkey died abruptly at 8 days postinoculation (DPI). Many turkeys developed viremia between 2 and 10 DPI, but the average level of virus was very low, less than needed to efficiently infect mosquitos. Low levels of WNV were detected in feces on 4 and 7 DPI, but no virus was isolated from oropharyngeal swabs. WNV wasnot transmitted from WNV-inoculated to contact-exposed turkeys. All WNV-inoculated poults seroconverted on 7 DPI. In the turkey that died, WNV was not isolated from intestine, myocardium, brain, kidney, or cloacal and oropharyngeal swabs, but sparse viral antigen was demonstrated by immunohistochemistry in the heart and spleen. Turkeys in contact with WNV-inoculated turkeys and sham-inoculated controls lacked WNV specific antibodies,and WNV was not isolated from plasma and cloacal and oropharyngeal swabs. These data suggest that WNV lacks the potential to be a major new disease of turkeys and that turkeys will not be a significant amplifying host for infecting mosquitos.  相似文献   

17.
West Nile virus (WNV) is a zoonotic pathogen of global importance. In horses with neurological signs, detection of WNV-specific immunoglobulin M (IgM) in serum is widely used to identify clinical cases of WNV encephalitis. Here, we describe the development of two monoclonal antibodies (mAbs) to equine IgM which were used in a WNV IgM-specific enzyme-linked immunosorbent assay (ELISA). Their performance was compared to an established assay based on polyclonal anti-IgM. Check test serum samples from the National Veterinary Service Laboratory (NVSL) were used to evaluate the performance of the three anti-IgM antibodies. The anti-IgM 1-22 mAb correctly identified all NVSL samples. Both the polyclonal antibody and monoclonal anti-IgM 2B-63 identified eight out of ten samples correctly. The three assays were then compared using serum samples from clinically healthy animals (n=33) and horses with neurological signs (n=21). High Spearman rank correlations (0.76-0.86) were found among the ELISA results. Inter-test agreements (weighted kappa) for assay interpretation resulted in strong agreement (0.95) of the results obtained by the mAbs and moderate agreements when monoclonal and polyclonal anti-IgM-based assays were compared. To determine the analytical sensitivities of anti-WNV IgM detection, serial dilutions of WNV IgM-positive serum samples were analyzed. The highest sensitivity was obtained by using the anti-IgM 1-22 mAb to capture IgM from equine serum. In conclusion, the use of monoclonal anti-IgM antibodies can improve the sensitivity of IgM detection in the acute phase of WN disease.  相似文献   

18.
Since first being detected in New York in 1999, West Nile virus (WNV) has spread throughout the United States and more than 20,000 cases of equine WNV encephalomyelitis have been reported. A spatial model of disease occurrence was developed, using data from an outbreak of serologically confirmed disease in an unvaccinated population of horses at 108 locations in northern Indiana between 3 August and 17 October 2002. Daily maximum temperature data were recorded at meteorological stations surrounding the study area. The distribution of the total number of degree-days elapsing between July 4 and the date of diagnosis of each case was best described by a normal distribution (mean = 5243 °F, S.D. = 1047). The days on which the average risk was >25, >50 and >75% were predicted (versus observed) to occur on August 23 (August 9), August 31 (September 2) and September 9 (September 9). The epidemic was predicted to occur 3 days earlier, or 4 days later, than observed if temperatures in the study area were uniformly increased, or decreased, by 5 °F, respectively. Maps indicated that WNV encephalomyelitis risk always remained greater in the northwest quadrant of the study area. Since WNV might exist at a hypoendemic level of infection, and occasionally re-emerge as a cause of epidemics in equine populations, by identifying factors that contributed to this epidemic, the potential impact of future epidemics can be reduced. Such studies rely on a GIS framework, availability of meteorological and possibly remotely sensed data and information on host and landscape factors. An early-warning system for WNV transmission in equine populations could be developed.  相似文献   

19.
REASON FOR PERFORMING STUDY: West Nile virus (WNF) is a Flavivirus responsible for a life-threatening neurological disease in man and horses. Development of improved vaccines against Flavivirus infections is therefore important. OBJECTIVES: To establish that a single immunogenicity dose of live Flavivirus chimera (WN-FV) vaccine protects horses from the disease and it induces a protective immune response, and to determine the duration of the protective immunity. METHODS: Clinical signs were compared between vaccinated (VACC) and control (CTRL) horses after an intrathecal WNV challenge given at 10 or 28 days, or 12 months post vaccination. RESULTS: Challenge of horses in the immunogenicity study at Day 28 post vaccination resulted in severe clinical signs of WNV infection in 10/10 control (CTRL) compared to 1/20 vaccinated (VACC) horses (P<0.01). None of the VACC horses developed viraemia and minimal histopathology was noted. Duration of immunity (DPI) was established at 12 months post vaccination. Eight of 10 CTRL exhibited severe clinical signs of infection compared to 1 of 9 VACC horses (P<0.05). There was a significant reduction in the occurrence of viraemia and histopathology lesion in VACC horses relative to CTRL horses. Horses challenged at Day 10 post vaccination experienced moderate or severe clinical signs of WNV infection in 3/3 CTRL compared to 5/6 VACC horses (P<0.05). CONCLUSIONS: This novel WN-FV chimera vaccine generates a protective immune response to WNV infection in horses that is demonstrated 10 days after a single vaccination and lasts for up to one year. POTENTIAL RELEVANCE: This is the first USDA licensed equine WNV vaccine to utilise a severe challenge model that produces the same WNV disease observed under field conditions to obtain a label claim for prevention of viraemia and aid in the prevention of WNV disease and encephalitis with a duration of immunity of 12 months.  相似文献   

20.
OBJECTIVE: To assess ophthalmologic features and ocular lesions in red-tailed hawks and Cooper's hawks naturally infected with West Nile virus (WNV). DESIGN: Original study. ANIMALS: 13 hawks. PROCEDURES: All hawks underwent complete ophthalmic examinations including slit lamp biomicroscopy and binocular indirect ophthalmoscopy. Eleven hawks were euthanized because of a grave prognosis; complete necropsies were performed. Eyes, brain, heart, and kidneys were processed for histologic and immunohistochemical examinations. Pooled tissue homogenates and aqueous humor samples were assessed for WNV nucleic acid via PCR assay, and anti-WNV antibody titers in aqueous humor and plasma were determined. RESULTS: All birds had similar funduscopic abnormalities including exudative chorioretinal lesions and chorioretinal scarring in a geographic or linear pattern. Eleven birds were euthanized, and 2 birds were released. Plasma from both released hawks and plasma and aqueous humor of all euthanized hawks that were evaluated contained anti-WNV antibodies. Except for 1 hawk, all euthanized hawks had WNV-associated disease (determined via detection of WNV antigen or nucleic acid in at least 1 organ). Histopathologic ocular abnormalities, most commonly pectenitis, were detected in all euthanized birds; several birds had segmental choroiditis, often with corresponding segmental retinal atrophy. West Nile virus antigen was detected in the retinas of 9 of the euthanized birds. In 2 hawks, WNV antigen was detected in the retina only. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that funduscopically detectable chorioretinal lesions appear to be associated with WNV disease in hawks. Detection of ocular lesions may aid in antemortem or postmortem diagnosis of this condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号