首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
The age of the universe based on abundances of isotopes is in the range 10 billion to 15 billion years. This is consistent with the age range 12 billion to 20 billion years calculated from the evolution of the oldest galactic stars. A third estimate of the age of the universe is based on the Hubble relation between the velocities of galaxies and their distances from us, where the inverse of the Hubble parameter H is a measure of the age of a uniformly expanding universe. Evidence that has been accumulating over the past few years indicates that the expansion of the universe may exhibit a rather large local perturbation due to the gravitational attraction of the Virgo supercluster. Different types of observations still produce conflicting evidence about the velocity with which the Local Group of galaxies (of which our Milky Way system is a member) is falling into the Virgo cluster. The results to date indicate that this velocity lies somewhere in the range 0 to 500 kilometers per second. The resulting ambiguity in the flow pattern for relatively nearby galaxies makes values of H derived from galaxies with radial velocities less than 2000 kilometers per second particularly uncertain, and this restricts determinations of H to distant galaxies, for which distances are particularly uncertain. The best that can be said at present is that H(-1) yields a maximum time scale in the range 10 billion to 20 billion years.  相似文献   

2.
Astrophysical jets are linear structures associated with stars and galaxies which span about seven orders of magnitude in size; the largest jets emanating from galaxies are about 100 times the size of our galaxy and are the largest single objects in the universe. Jets associated with stars are composed of ionized gas moving away from the star with velocities of a few hundred kilometers per second. Extragalactic jets are composed of relativistic particles, magnetic field, and probably additional amounts of cooler ionized plasma either originally ejected in the jet or entired by it out of the surrounding gaseous medium. The initial outflow velocity for extragalactic jets may be relativistic, and average outflow speeds of several thousand kilometers per second are likely. The energy flux carried by extragalactic jets may be in excess of 10(46) ergs per second, depending upon the nature of the jet. A definition of jet properties, deduced from their interaction with the ambient medium, can place essential constraints on models for the central power source in the parent galaxy or quasi-stellar object where they originate.  相似文献   

3.
Earlier observations of a seismic waveguide in the northwestern Pacific with a velocity of 8.3 kilometers per second to distances of approximately 30 degrees are complemented by suggestions of a possible waveguide with a velocity of 7.8 kilometers per second to distances well in excess of 30 degrees .  相似文献   

4.
The oldest and most metal-poor Milky Way stars form a kinematically hot halo, which motivates the two major formation scenarios for our galaxy: extended hierarchical accretion and rapid collapse. RR Lyrae stars are excellent tracers of old and metal-poor populations. We measured the kinematics of 43 RR Lyrae stars in the inner regions of the nearby Large Magellanic Cloud (LMC) galaxy. The velocity dispersion equals 53 +/- 10 kilometers per second, which indicates that a kinematically hot metal-poor old halo also exists in the LMC. This result suggests that our galaxy and smaller late-type galaxies such as the LMC have similar early formation histories.  相似文献   

5.
The presence of young massive stars orbiting on eccentric rings within a few tenths of a parsec of the supermassive black hole in the galactic center is challenging for theories of star formation. The high tidal shear from the black hole should tear apart the molecular clouds that form stars elsewhere in the Galaxy, and transport of stars to the galactic center also appears unlikely during their lifetimes. We conducted numerical simulations of the infall of a giant molecular cloud that interacts with the black hole. The transfer of energy during closest approach allows part of the cloud to become bound to the black hole, forming an eccentric disk that quickly fragments to form stars. Compressional heating due to the black hole raises the temperature of the gas up to several hundred to several thousand kelvin, ensuring that the fragmentation produces relatively high stellar masses. These stars retain the eccentricity of the disk and, for a sufficiently massive initial cloud, produce an extremely top-heavy distribution of stellar masses. This potentially repetitive process may explain the presence of multiple eccentric rings of young stars in the presence of a supermassive black hole.  相似文献   

6.
The altitude profiles of temperature and pressure measured during the descent of the four Pioneer Venus probes show small contrast below the clouds but significant differences within the clouds at altitudes from 45 to 61 kilometers. At 60 kilometers, the probe which entered at 59.3 degrees north latitude sensed temperatures 25 K below those of the lower latitude probes, and a sizable difference persisted down to and slightly below the cloud base. It also sensed pressure below those of the other probes by as much as 49 millibars at a mean pressure of 200 millibars. The measured pressure differences are consistent with cyclostrophic balance of zonal winds ranging from 130 +/- 20 meters per second at 60 kilometers to 60 +/- 17 meters per second at 40 kilometers, with evidence in addition of a nonaxisymmetric component of the winds. The clouds were found to be 10 to 20 K warmer than the extended profiles of the lower atmosphere, and the middle cloud is convectively unstable. Both phenomena are attributed to the absorption of thermal radiation from below. Above the clouds, in the lower stratosphere, the lapse rate decreases abruptly to 3.5 K per kilometer, and a superimposed wave is evident. At 100 kilometers, the temperature is minimum, with a mean value of about 170 K.  相似文献   

7.
The P-wave velocity in shallow crystalline rock decreases systematically from a normal value of about 5.5 kilometers per second 20 kilometers or more from the Garlock and San Andreas faults to less than 3 kilometers per second at distances of less than 2 kilometers from these faults. This lateral velocity gradient closely resembles the shear stress profile. It is proposed that the velocity gradient results from increased fracturing nearer these major strike-slip faults and that this fracturing dominates the response of the shallow crust to tectonic stress.  相似文献   

8.
At least four active geyser-like eruptions were discovered in Voyager 2 images of Triton, Neptune's large satellite. The two best documented eruptions occur as columns of dark material rising to an altitude of about 8 kilometers where dark clouds of material are left suspended to drift downwind over 100 kilometers. The radii of the rising columns appear to be in the range of several tens of meters to a kilometer. One model for the mechanism to drive the plumes involves heating of nitrogen ice in a subsurface greenhouse environment; nitrogen gas pressurized by the solar heating explosively vents to the surface carrying clouds of ice and dark partides into the atmosphere. A temperature increase of less than 4 kelvins above the ambient surface value of 38 +/- 3 kelvins is more than adequate to drive the plumes to an 8-kilometer altitude. The mass flux in the trailing clouds is estimated to consist of up to 10 kilograms of fine dark particles per second or twice as much nitrogen ice and perhaps several hundred or more kilograms of nitrogen gas per second. Each eruption may last a year or more, during which on the order of a tenth of a cubic kilometer of ice is sublimed.  相似文献   

9.
Bally J 《Science (New York, N.Y.)》1986,232(4747):185-193
The interstellar medium in our galaxy contains matter in a variety of states ranging from hot plasma to cold and dusty molecular gas. The molecular phase consists of giant clouds, which are the largest gravitationally bound objects in the galaxy, the primary reservoir of material for the ongoing birth of new stars, and the medium regulating the evolution of galactic disks.  相似文献   

10.
Galactic sources of x-rays fluctuating in intensity are explained as being small regions, of enhanced gas density and temperature, emitting thermal Coulomb bremsstrahlung of kiloelectron-volt energies. Hydromagnetic wave motions, of the magnetic fields in the galactic spiral arms, produce the enhanced regions by compressing the clouds of ionized gas to which they are tied by their high electrical conductivity. From the observed periods of fluctuation of a few months, together with the hydromagnetic velocity, it is estimated that the average size of sources does not exceed 10(16) centimeters. By using the formula for Coulomb bremsstrahlung and requiring that the sources shall produce the observed x-ray fluxes, one finds a second estimate of size of sources in agreement at about 1016 centimeters. Such regions are too small to be observable radio sources with current radio telescopes.  相似文献   

11.
Cratering flow calculations for a series of oblique to normal (10 degrees to 90 degrees ) impacts of silicate projectiles onto a silicate halfspace were carried out to determine whether or not the gas produced upon shock-vaporizing both projectile and target material would form a downstream jet that could entrain and propel SNC meteorites from the Martian surface. The difficult constraints that the impact origin hypothesis for SNC meteorites has to satisfy are that these meteorites are lightly to moderately shocked and yet have been accelerated to speeds in excess of the Martian escape velocity (more than 5 kilometers per second). Two-dimensional finite difference calculations were performed that show that at highly probable impact velocities (7.5 kilometers per second), vapor plume jets are produced at oblique impact angles of 25 degrees to 60 degrees and have speeds as great as 20 kilometers per second. These plumes flow nearly parallel to the planetary surface. It is shown that upon impact of projectiles having radii of 0.1 to 1 kilometer, the resulting vapor jets have densities of 0.1 to 1 gram per cubic centimeter. These jets can entrain Martian surface rocks and accelerate them to velocities greater than 5 kilometers per second. This mechanism may launch SNC meteorites to earth.  相似文献   

12.
The region bounded by the inner tens of light-years at the center of the Milky Way Galaxy contains five principal components that coexist within the central deep well of gravitational potential. These constituents are a black hole candidate (Sgr A*) with a mass equivalent to 2.6 +/- 0.2 x 10(6) solar masses, a surrounding cluster of evolved stars, a complex of young stars, molecular and ionized gas clouds, and a powerful supernova-like remnant. The interaction of these components is responsible for many of the phenomena occurring in this complex and unique portion of the Galaxy. Developing a consistent picture of the primary interactions between the components at the Galactic center will improve our understanding of the nature of galactic nuclei in general, and will provide us with a better-defined set of characteristics of black holes. For example, the accretion of stellar winds by Sgr A* appears to produce far less radiation than indicated by estimates based on models of galactic nuclei.  相似文献   

13.
In late December 1990, a new radio source appeared near the center of our galaxy rivaling the intensity of Sgr A(*) (the compact radio source at the galactic center). Following its first detection, the flux density of the galactic center transient (GCT) increased rapidly to a maximum 1 month later, and then declined gradually with a time scale of about 3 months. Surprisingly, the GCT maintained a steep radio spectrum during both its rising and decay phases. The neutral hydrogen (HI) absorption shows similar absorption to that in front of Sgr A(*); this indicates that the GCT lies near the galactic center. Furthermore, both HI and OH observations show an additional deep absorption at +20 kilometers per second with respect to the local standard of rest. Thus, the GCT is either embedded in or located behind a molecular cloud moving with that velocity. The cloud can be seen on infrared images. Its opacity is shown to be inadequate to conceal a supernova near the galactic center. It is argued that the GCT was probably transient radio emission from synchrotron-radiating plasma associated with an x-ray binary system.  相似文献   

14.
Triton's plumes are narrow columns 10 kilometers in height, with tails extending horizontally for distances over 100 kilometers. This structure suggests that the plumes are an atmospheric rather than a surface phenomenon. The closest terrestrial analogs may be dust devils, which are atmospheric vortices originating in the unstable layer close to the ground. Since Triton has such a low surface pressure, extremely unstable layers could develop during the day. Patches of unfrosted ground near the subsolar point could act as sites for dust devil formation because they heat up relative to the surrounding nitrogen frost. The resulting convection would warm the atmosphere to temperatures of 48 kelvin or higher, as observed by the Voyager radio science team. Assuming that velocity scales as the square root of temperature difference times the height of the mixed layer, a velocity of 20 meters per second is derived for the strongest dust devils on Triton. Winds of this speed could raise particles provided they are a factor of 103 to 104 less cohesive than those on Earth.  相似文献   

15.
Lunar seismic data from artificial impacts recorded at three Apollo seismometers are interpreted to determine the structure of the moon's interior to a depth of about 100 kilomneters. In the Fra Mauro region of Oceanus Procellarum, the moon has a layered crust 65 kilometers thick. The seismic velocities in the upper 25 kilometers are consistent with those in lunar basalts. Between 25 and 65 kilometers, the nearly constant velocity (6.8 kilometers per second) corresponds to velocities in gabbroic and anorthositic rocks. The apparent velocity is high (about 9 kilometers per second) in the lunar mantle immediately below the crust.  相似文献   

16.
High-resolution spectra of nearby stars show absorption lines due to material in the local interstellar cloud. This cloud is deduced to be moving at 26 kilometers per second with respect to the sun, and in the same direction as the "interstellar wind" flowing through the solar system. Measurements by the Ulysses spacecraft show that neutral helium is drifting through the solar system at the same velocity, but neutral hydrogen appears to be moving at only 20 kilometers per second, a result confirmed by new measurements of the hydrogen emission line taken by the High-Resolution Spectrograph on the Hubble Space Telescope. These results indicate that neutral hydrogen atoms from the local interstellar cloud are preferentially decelerated at the heliospheric interface, most likely by charge-exchange with interstellar protons, while neutral helium is unaffected by the plasma. The magnitude of the observed deceleration implies an interstellar plasma density of 0.06 to 0.10 per cubic centimeter, which in turn implies that the heliospheric shock should be less than 100 astronomical units from the sun.  相似文献   

17.
The central few hundred parsecs of the Milky Way host a massive black hole and exhibit very violent gas motion and high temperatures in molecular gas. The origin of these properties has been a mystery for the past four decades. Wide-field imaging of the (12)CO (rotational quantum number J = 1 to 0) 2.6-millimeter spectrum has revealed huge loops of dense molecular gas with strong velocity dispersions in the galactic center. We present a magnetic flotation model to explain that the formation of the loops is due to magnetic buoyancy caused by the Parker instability. The model has the potential to offer a coherent explanation for the origin of the violent motion and extensive heating of the molecular gas in the galactic center.  相似文献   

18.
Winds in the lower atmosphere of Venus, inferred from three-dimensional radio interferometric tracking of the descents of the Pioneer day and north probes, are predominantly easterly with speeds of about 1 meter per second near the surface, 50 meters per second at the bottom of the clouds, and more than 200 meters per second within the densest, middle cloud layer. Between about 25 and 55 kilometers altitude the average flow was slanted equatorward, with superimposed wavelike motions and alternating layers of high and low shear.  相似文献   

19.
The calculated energy efficiency of mass ejection for iron and anorthosite objects striking an anorthosite planet at speeds of 5 to 45 kilometers per second decreases with increasing impact velocity at low escape velocities. At escape velocities of >10(5) and >2 x 10(4) centimeters per second, respectively, the slower impactors produce relatively less ejecta for a given impact energy. The impact velocities at which ejecta losses equal meteorite mass gains are found to be approximately 20, 35, and 45 kilometers per second for anorthosite objects and approximately 25, 35, and 40 kilometers per second for iron objects striking anorthosite surfaces for the gravity fields of the moon, Mercury, and Mars.  相似文献   

20.
In the current cosmological model, only the three lightest elements were created in the first few minutes after the Big Bang; all other elements were produced later in stars. To date, however, heavy elements have been observed in all astrophysical environments. We report the detection of two gas clouds with no discernible elements heavier than hydrogen. These systems exhibit the lowest heavy-element abundance in the early universe, and thus are potential fuel for the most metal-poor halo stars. The detection of deuterium in one system at the level predicted by primordial nucleosynthesis provides a direct confirmation of the standard cosmological model. The composition of these clouds further implies that the transport of heavy elements from galaxies to their surroundings is highly inhomogeneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号