首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interactions between microbial communities and organic matter were analyzed for soils from the project regions ’︁Ecosystem Research in the Agricultural Landscape/FAM, Munich’ in southern Germany and ’︁Ecosystem Research in the Bornhöved Lake district’ from northern Germany using ratios between microbial biomass content (Cmic), microbial metabolic quotient (qCO2) and organic carbon content (Corg). In the agricultural soils in southern Germany, the qCO2/Corg ratio differed significantly with respect to agricultural management in contrast to ecophysiological Cmic/Corg ratio. In addition, Cmic/Corg ratio decreased from 39 to 21 mg Cmic g—1 Corg and qCO2/Corg ratio increased from 72 to 180 mg CO2‐C g—1 Cmic h—1 (g Corg g—1 soil)—1 with increasing soil depth. For the upper soil horizons from the landscape in northern Germany the two quotients differed significantly with reference to land use showing highest microbial colonization under grassland and lowest under beech forest. In contrast, C use efficiency was lowest in arable field under maize monoculture and highest in a wet grassland having a high organic C content.  相似文献   

2.
Abstract

The study was conducted to evaluate the effect of tea cultivation on soil microbial biomass and community structure. Soil pH, extractable aluminum (Al), organic carbon (Corg) and total nitrogen were considerably modified by tea cultivation. Long‐term tea cultivation resulted in the increase of microbial biomass C (Cmic), microbial biomass N (Nmic), and basal respiration. The metabolic quotient declined as the tea cultivation age increased. The adjacent citrus orchard soil showed a higher Cmic/Corg ratio than the tea orchard soils. Microtitration plates with 21 carbon sources and two different pH levels (4.7 and 7.0) were used to determine the substrate utilization pattern of these soils. The average well color development (AWCD) of the carbon sources in the plates did not vary in a consistent manner with the microbial biomass. Multivariate analysis of sole carbon source utilization pattern demonstrated that land‐use history had a significant effect on substrate utilization pattern. The pH 4.7 characterization medium can increase the discrimination of this technique and is more adequate than the conventional neutral medium for the tea orchard soils.  相似文献   

3.
In 11 rain‐fed arable soils of the Potohar plateau, Pakistan, the amounts of microbial‐biomass C (Cmic), biomass N (Nmic), and biomass P (Pmic) were analyzed in relation to the element‐specific total storage compartment, i.e., soil Corg, Nt, and Pt. The effects of climatic conditions and soil physico‐chemical properties on these relationships were highlighted with special respect to crop yield levels. Average contents of soil Corg, Nt, and Pt were 3.9, 0.32, and 0.61 mg (g soil)–1, respectively. Less than 1% of Pt was extractable with 0.5 M NaHCO3. Mean contents of Cmic, Nmic, and Pmic were 118.4, 12.0, and 3.9 µg (g soil)–1. Values of Cmic, Nmic, Pmic, soil Corg, and Nt were all highly significantly interrelated. The mean crop yield level was closely connected with all soil organic matter– and microbial biomass–related properties, but showed also some influence by the amount of precipitation from September to June. Also the fraction of NaHCO3‐extractable P was closely related to soil organic matter, soil microbial biomass, and crop yield level. This reveals the overwhelming importance of biological processes for P turnover in alkaline soils.  相似文献   

4.
Management of soil ecosystems requires assessment of key soil physicochemical and microbial properties and the spatial scale over which they operate. The objectives were to determine the spatial structure of microbial biomass and activity and related soil properties, and to identify spatial relationships of these properties in prairie soils under different management histories. Soil were sampled along a transect at 0.2 m intervals in each of five long-term treatments, namely, undisturbed, cattle grazed at two intensities, and cultivated with either wheat (Triticum aestivum L.) or cotton (Gossypium hirsutum L.). Contents of organic carbon (Corg), dissolved organic C (DOC), soluble nitrogen (Nsol), and microbial biomass C (Cmic) and N (Nmic) as well as dehydrogenase activity (DH) in 70 samples were evaluated. Results showed that long-term soil management altered the spatial structure and dependence of Corg and microbial biomass and activity. Cultivation has contributed to high nugget variance for Corg, Cmic, Nmic and DH which interfered with detection of spatial structure at the sampling scale used. Contents of Corg were spatially connected to microbial biomass and activity and to DOC in the uncultivated but not in the cultivated soils, indicating that various factors affected by management may operate at different spatial scales.  相似文献   

5.
Urban soils (constructozems) were studied in Moscow and several cities (Dubna, Pushchino, and Serebryanye Prudy) of Moscow oblast. The soil sampling from the upper 10-cm-thick layer was performed in the industrial, residential, and recreational functional zones of these cities. The biological (the carbon of the microbial biomass carbon, Cmic and the microbial (basal) respiration, BR) and chemical (pHwater and the contents of Corg, heavy metals, and NPK) indices were determined in the samples. The ratios of BR to Cmic (the microbial respiration quotient, qCO2) and of Cmic to Corg were calculated. The Cmic varied from 120 to 738 μg C/g soil; the BR, from 0.39 to 1.94 μg CO2-C/g soil per hour; the Corg, from 2.52 to 5.67%; the qCO2, from 1.24 to 5.28 μg CO2-C/mg Cmic/g soil per h; and the Cmic/Corg, from 0.40 to 1.55%. Reliable positive correlations were found between the Cmic and BR, the Cmic and Cmic/Corg, and the Cmic and Corg values (r = 0.75, 0.95, and 0.61, respectively), as well as between the BR and Cmic/Corg values (r = 0.68). The correlation between the Cmic/Corg and qCO2 values was negative (r = −0.70). The values of Cmic, BR, Corg, and Cmic/Corg were found to correlate with the ammonium nitrogen content. No correlative relationships were revealed between the determined indices and the climatic characteristics. The principal component analysis described 86% of the variances for all the experimental data and clearly subdivided the locations of the studied soil objects. The ANOVA showed that the variances of Cmic, Corg, and BR are controlled by the site location factor by 66, 63, and 35%, respectively. The specificity of the functioning of the anthropogenic soils as compared with their natural analogues was clearly demonstrated. As shown in this study, measurable biological indices might be applied to characterize the ecological, environmental-regulating, and productive functions of soils, including urban soils.  相似文献   

6.
Tree species differ in their effect on soil development and nutrient cycling. Conversion of beech coppice to pine plantations can alter soil physical and chemical properties, which in turn may have significant impacts on soil microbial biomass C and N (Cmic, Nmic). The major objective of this study was to evaluate soil quality changes associated with the forest conversion in humid NW Turkey. Results from this study showed that levels of soil organic carbon (Corg), total nitrogen (Nt), moisture, Cmic and Nmic under beech coppice were consistently higher but levels of pH, CaCO3 and EC were lower compared to pine plantation. Differences between the forest stands in Cmic and Nmic were mainly related to the size of the Corg stores in soil and to tree species. In addition, high level of CaCO3 is likely to reduce pools of soil organic C and possibly even microbial biomass C and N in pine forests. The average Cmic:Nmic ratios were higher in soils under beech coppice than pine plantation, while Cmic:Corg and Nmic:Nt percentages were similar in both forest types. These results revealed the differences in microbial community structure associated with different tree species and the complex interrelationships between microbial biomass, soil characteristics, litter quantity and quality. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The relationships of soil microbial biomass C (Cmic) or N (Nmic) with mean annual precipitation and temperature were studied along a climatic transect in the Mongolian steppe. Soil organic C (Corg) and total N (Nt), respiration rate, Cmic and Nmic at depths of 0–5 and 5–10 cm decreased with increasing aridity. The contents of Corg and Nt in the 0- to 5-cm soil layers decreased linearly with precipitation reduction along the transect. Cmic and Nmic changes with precipitation were not linear, with higher changes between 330 and 128 mm mean annual precipitation. Cmic/Corg and Nmic/Nt increased with increasing aridity. The metabolic quotient qCO2 of 0- to 5-cm soil layers was low between 330 and 273 mm precipitation. The relationship between the qCO2 of the 0- to 5-cm soil layers and the mean annual precipitation was well fitted with a quadratic function y =0.0006x2 –0.40x +86.0, where y is the qCO2 (µmol CO2-C mmol–1 Cmic) and x is the mean annual precipitation (mm). Corg, Nt, Cmic, Nmic and respiration rate decreased exponentially with increasing mean annual temperature in both the 0- to 5- and 5- to 10-cm soil layers, and change rate was lower when the mean annual temperature was higher than 2.6°C. The close relationships of the mean annual precipitation or temperature with soil Corg, Nt, Cmic, Nmic, Cmic/Corg and qCO2 indicate that each parameter can be calculated by determining the other parameters in this specific climatic range.  相似文献   

8.
Various parameters of the soil microbial community may be used in soil quality evaluation and environmental risk assessment. The objectives of this study were to assess the effects of different environmental factors on the characteristics of forest humus microbial communities, and to test which environmental factors most affect the gross microbial indices and physiological profiles of these communities. Samples were taken at 71 plots located in a heavily polluted area of the Krakowsko-Cze¸stochowska upland in southern Poland. The samples were analyzed for pH in KCl (pHKCl), organic C (Corg), total N (Nt) and S (St), and for total and soluble Zn, Pb and Cd concentrations. The considered microbial parameters included basal respiration (BAS), microbial biomass (Cmic), Cmic-to-Corg ratio, and community-level physiological profiles (CLPPs) studied using BIOLOG® Ecoplates. Multiple regression analysis was used to estimate the effects of humus properties on the microbial parameters. It indicated that St and Corg-to-Nt ratio were the most important factors positively affecting Cmic (β=0.15 and 0.11, respectively) and BAS (β=0.13 and 0.08, respectively). The Cmic-to-Corg ratio was related positively to St (β=0.12) but negatively to Nt (β=−0.08). The effects of pHKCl and heavy metals on the gross microbial indices were significant but less important. The most important effect on microbial activity on BIOLOG® plates and CLPPs was from pHKCl. The other significant variables included St, Corg-to-Nt and interactions of heavy metals with pHKCl. It was concluded that Cmic, Cmic-to-Corg and BAS might be good indicators of the general status of soil microbial communities, but their use in studying heavy metal effects may entail difficulties in separating the effects of other factors. The sensitivity of the BIOLOG® test to pHKCl suggests that it may be useful for studying the effects of acidification or liming on soil microbial communities. The significant effect of the interactions between heavy metals and other variables on physiological profiles indicated that high heavy metal content affects the metabolic functions of soil microbial populations.  相似文献   

9.
The aim of study was to evaluate the variation of soil microbial biomass carbon (Cmic) and microbial respiration (MR) in three types soil (Chromic Cambisols, Chromic Luvisols and Eutric Leptosols) of mixed beech forest (Beech- Hornbeam and Beech- Maple). Soil was randomly sampled from 0–10 cm layer (plant litter removed), 90 soil samples were taken. Cmic determined by the fumigation-extraction method and MR by closed bottle method. Soil Corg, Ntot and pH were measured. There are significant differences between the soil types concerning the Cmic content and MR. These parameters were highest in Chromic Cambisols following Chromic Luvisols, while the lowest were in Eutric Leptosols. A similar trend of Corg and Ntot was observed in studied soils. Two-way ANOVA indicated that soil type and forest type have significantly effect on the most soil characteristics. Chromic Cambisols shows a productive soil due to have the maximum Cmic, MR, Corg and Ntot. In Cambisols under Beech- Maple forest the Cmic value and soil C/N ratio were higher compared to Beech-Hornbeam (19.5 and 4.1 mg C g–1, and 16.3 and 3.3, respectively). This fact might be indicated that Maple litter had more easy decomposable organic compounds than Hornbeam. According to regression analysis, 89 and 68 percentage of Cmic variability could explain by soil Corg and Ntot respectively.  相似文献   

10.
Soil microbial and extractable C and N after wildfire   总被引:12,自引:0,他引:12  
 The effect of wildfire on soil microbes and extractable C (Cext) and N (Next) changed with respect to the time from burning and soil depth. Initially, microbial biomass C (Cmic) and N (Nmic) were drastically reduced in the soil surface layer (0–5 cm) and reduced by 50% in the subsurface (5–10 cm), whereas Cext increased by 62% in the surface layer and did not significantly change in the subsurface. These parameters were affected for the following 4 years, during which the average reductions in the soil surface and subsurface layers were, respectively, 60% and 50% for Cmic, 70% and 45% for Nmic, 60% and 40% for the ratio Cmic: organic C (Corg) and 70% and 30% for the ratio Nmic: total N (Ntot), while for Cext the surface layer was the only zone consistently affected and Cext decreased by up to 59%. Immediately after a fire, the Cext : Corg ratio increased by 3.5-fold and 2-fold in the surface and subsurface layers, respectively; thereafter for 2 years, it decreased in the surface layer (by up to 45%) while the effect on the subsurface layer was not consistent. The effect of burning on Next lasted 1 year, in which Next increased by up to 7- and 3-fold in the surface and subsurface layers, respectively, while the average Next : Ntot ratio doubled in the surface layer and increased by 34% in the subsurface. During the time in which each parameter was affected by burning, the soil factor explained a high percentage of variance in the fluctuations of Cmic, Nmic, Cmic : Corg and Nmic : Ntot, while those of Next and Next : Ntot, but not those of Cext and Cext : Corg depended on both the soil and its depth. In the burned soils similar patterns of response were found between the following parameters listed in pairs: Cmic and Nmic; Cmic : Corg and Nmic : Ntot; Cext and Next; and Cext : Corg and Next : Ntot. However, after the fire relationships found previously between the parameters studied and many other soils properties were either no longer evident, or were inverted. Although the addition of cellulose to the burned soil favoured fungal mycelium development and increased Cmic and Cext contents, the negative effect of burning on the microbial biomass and the Cext was not counteracted even under incubation conditions suitable for both microbial growth and C mineralization. Received: 28 May 1997  相似文献   

11.
《Geoderma》2002,105(3-4):243-258
Changes in management practice are reflected by soil carbon and nitrogen status, in particular by the proportion of soil organic matter (SOM) being easily transformed (active SOM). We describe SOM quality for three management practices, Organic Farming system (OF), Integrated Crop Production (ICP) and pasture sites (G), which intend to achieve sustainable management practice. The experimental sites were conventionally farmed until 1992. SOM quality was examined by describing active SOM pools, such as the decomposed ‘young soil organic matter’ (YSOM), ratio of microbial biomass carbon (Cmic) to organic carbon (Corg), ecophysiological status of the microbial biomass (qCO2), and the ratio of light particulate organic matter (POM-LF) to Corg. Ratios of soil microbial biomass (Cmic/Corg) and POM-LF (POM-LF/Corg) and the amount of decomposed YSOM were relatively similar to each other, despite differences in management practice and soil texture. Soil microbial parameters (Cmic, Cmic/Corg and qCO2) were significantly (p<0.05) affected by the amount of decomposed YSOM and the silt content in the OF. In the ICP, soil microbial parameters depended only on the amount of decomposed YSOM, which was considered to be a consequence of the more heterogeneous texture at the OF-sites. Management effects were detectable for no-tillage in the ICP leading to an accumulation of active SOM in the surface soil (0–10 cm). The ratio POM-LF/Corg showed no difference between G and OF despite markedly higher Corg-contents at the G-sites. Conclusively, all methods used indicate comparable SOM qualities for the three management systems, despite differences in soil texture and soil management during 7 years. Management practices seem to be well adapted to the site conditions.  相似文献   

12.
The aim of this work was to investigate the response of soil microbial biomass and activity to practices in organic and conventional farming systems. The study was carried out at the Irrigation District of Piauí, Brazil. Five different plots planted with “acerola” orchard (Malpighia glaba) and established at the following management were evaluated: (1) under 12 months of soil conventional management (CNV); (2) under six months of soil organic management (ORG6); (3) under 12 months of soil organic management (ORG12); (4) under 18 months of soil organic management (ORG18); and (5) under 24 months of soil organic management (ORG24). Soil microbial biomass C (Cmic), basal respiration, organic carbon (Corg), Cmic-to-Corg ratio and metabolic quotient (qCO2) were evaluated in soil samples collected at 0–10 cm depth. The highest Corg and Cmic levels occurred in organic system plots ORG18 and ORG24 compared to the conventional system. Soil respiration and Cmic-to-Corg ratio were significantly enhanced by the organic system plots. The qCO2 was greater in conventional than in organic system. These results indicate that the organic practices rapidly improved soil microbial characteristics and slowly increase soil organic C.  相似文献   

13.
Soil microorganisms are actively involved in many processes of the soil N cycle and are strong competitors with plants for soil N. Therefore, microbial dynamics are important factors in controlling forest productivity. Nevertheless, they are poorly studied especially in relation to forest age, which can produce strong effects on the microbial community by affecting the forest floor environment. In the present study, seasonal variations of soil microbial N (Nmic) were monitored in an old floodplain hardwood forest (270 years) and in a young hardwood plantation (19 years) in two soil horizons (0–15 and 15–30 cm). Although the differences according to time of sampling and soil horizon were statistically significant, Nmic was significantly higher in old than in young forest, especially for the deeper soil layer. However, the highest percentage of total N (Ntot) immobilised in microbial biomass was found in the surface soil layer of the young plantation. Soil organic C (Corg) explained 23% of the spatial–temporal variation of Nmic over all sampling periods in the old forest, whereas the linear combination of Ntot, total extractable soil N (Ntotex) and the C/N ratio explained 59% of variation in Nmic when considering only the growing season. In contrast, Corg and Ntotex explained 59% of variation in Nmic in the young stand when considering all sampling periods and 75% when the analysis was limited to growing season. Soil moisture did not show any significant correlation with Nmic in either site. The sensitivity of Nmic to variation in Corg and Ntot seems to be affected by forest age, being higher in young than in old forest. Finally our results indicate that during the growing season, when the Ntotex availability is low, the dynamics of Nmic and Ntotex are temporally interdependent, suggesting the existence of a reciprocal control whose mechanisms deserve to be elucidated.  相似文献   

14.
The relationships between arylsulfatase and microbial activity were investigated in regional and microenvironmental scales, at three study sites in Israel, that represent different climatic regions—Mediterranean (sub-humid), mildly arid and arid.Total arylsulfatase activity was divided into extracellular and intracellular (microbial biomass enzyme) activities according to the chloroform-fumigation method. The results show that with increasing aridity, Corg (soil organic carbon), Cmic (soil microbial biomass carbon), Nmic (soil microbial biomass nitrogen) and respiration rate decreased, while Cmic/Corg and metabolic quotient (qCO2) increased. Total, extracellular and microbial biomass arylsulfatase activities decreased with aridity. Expressed as percentage of total activity, the arylsulfatase activity of microbial biomass in the soil, at 0-2 cm and 5-10 cm depths, accounted for more than 50% of the total, in most measurements. This activity was significantly higher in the arid sites than that found in the Mediterranean one for the 0-2 cm soil. The results indicate the importance of the microflora as an enzyme source in soils, especially in arid climate conditions.Enzyme activity in the different study sites was found to be influenced by microenvironmental conditions. The Mediterranean site showed a much higher enzyme activity under shrubs than that under rock fragments and in bare soil. In the arid site rock fragments created a favorable microenvironment for microbial activity on soil surface, which resulted in a much higher microbial biomass and arylsulfatase activity than that in bare soil.The total, extracellular and intracellular arylsulfatase activities, were significantly correlated with Corg, Cmic, Nmic and respiration rate (p<0.05) at all study sites. The correlation coefficients between microbial biomass and arylsulfatase activity were usually higher than those between organic carbon and enzyme activity, especially in the arid sites. Close relationships between microbial biomass and arylsulfatase activities in all the studied sites supported the hypothesis that Corg content and enzyme activities should be related to each other via microbial biomass. Arylsulfatase activity was found to be a good indicator of microbial one. The regression equations between these factors can be incorporated into models of biogeochemical cycling for their easy method of analysis.  相似文献   

15.
Management intensity modifies soil properties, e.g., organic carbon (Corg) concentrations and soil pH with potential feedbacks on plant diversity. These changes might influence microbial P concentrations (Pmic) in soil representing an important component of the P cycle. Our objectives were to elucidate whether abiotic and biotic variables controlling Pmic concentrations in soil are the same for forests and grasslands, and to assess the effect of region and management on Pmic concentrations in forest and grassland soils as mediated by the controlling variables. In three regions of Germany, Schwäbische Alb, Hanich‐Dün, and Schorfheide‐Chorin, we studied forest and grassland plots (each n = 150) differing in plant diversity and land‐use intensity. In contrast to controls of microbial biomass carbon (Cmic), Pmic was strongly influenced by soil pH, which in turn affected phosphorus (P) availability and thus microbial P uptake in forest and grassland soils. Furthermore, Pmic concentrations in forest and grassland soils increased with increasing plant diversity. Using structural equation models, we could show that soil Corg is the profound driver of plant diversity effects on Pmic in grasslands. For both forest and grassland, we found regional differences in Pmic attributable to differing environmental conditions (pH, soil moisture). Forest management and tree species showed no effect on Pmic due to a lack of effects on controlling variables (e.g., Corg). We also did not find management effects in grassland soils which might be caused by either compensation of differently directed effects across sites or by legacy effects of former fertilization constraining the relevance of actual practices. We conclude that variables controlling Pmic or Cmic in soil differ in part and that regional differences in controlling variables are more important for Pmic in soil than those induced by management.  相似文献   

16.
《Applied soil ecology》2006,34(3):258-268
The potential negative impact of agricultural practices on soil and water quality is of environmental concern. The associated nutrient transformations and movements that lead to environmental concerns are inseparable from microbial and biochemical activities. Therefore, biochemical and microbiological parameters directing nitrogen (N) transformations in soils amended with different animal manures or inorganic N fertilizers were investigated. Soils under continuous corn cultivation were treated with N annually for 5 years at 56, 168, and 504 kg N ha−1 in the form of swine effluent, beef manure, or anhydrous ammonia. Animal manure treatments increased dehydrogenase activity, microbial biomass carbon (Cmic) and N (Nmic) contents, and activities of amidohydrolases, including l-asparaginase, urease, l-glutaminase, amidase, and β-glucosaminidase. Soils receiving anhydrous ammonia demonstrated increased nitrate contents, but reduced microbiological and biochemical activities. All treatments decreased Cmic:organic C (Corg) ratios compared with the control, indicating reduced microbial C use efficiency and disturbance of C equilibrium in these soil environments. Activities of all enzymes tested were significantly correlated with soil Corg contents (P < 0.001, n = 108), but little correlation (r = 0.03, n = 36) was detected between Cmic and Corg. Activities of amidase and β-glucosaminidase were dominated by accumulated enzymes that were free of microbial cells, while activities of asparaginase and glutaminase were originated predominately from intracellular enzymes. Results indicated that soil microbial and biochemical activities are sensitive indicators of processes involved in N flow and C use efficiency in semiarid agroecosystems.  相似文献   

17.
A thorough understanding of the role of microbes in C cycling in relation to fire is important for estimation of C emissions and for development of guidelines for sustainable management of dry ecosystems. We investigated the seasonal changes and spatial distribution of soil total, dissolved organic C (DOC) and microbial biomass C during 18 months, quantified the soil CO2 emission in the beginning of the rainy season, and related these variables to the fire frequency in important dry vegetation types grassland, woodland and dry forest in Ethiopia. The soil C isotope ratios (δ13C) reflected the 15-fold decrease in the grass biomass along the vegetation gradient and the 12-fold increase in woody biomass in the opposite direction. Changes in δ13C down the soil profiles also suggested that in two of the grass-dominated sites woody plants were more frequent in the past. The soil C stock ranged from being 2.5 (dry forest) to 48 times (grassland) higher than the C stock in the aboveground plant biomass. The influence of fire in frequently burnt wooded grassland was evident as an unchanged or increasing total C content down the soil profile. DOC and microbial biomass measured with the fumigation-extraction method (Cmic) reflected the vertical distribution of soil organic matter (SOM). However, although SOM was stable throughout the year, seasonal fluctuations in Cmic and substrate-induced respiration (SIR) were large. In woodland and woodland-wooded grassland Cmic and SIR increased in the dry season, and gradually decreased during the following rainy season, confirming previous suggestions that microbes may play an important role in nutrient retention in the dry season. However, in dry forest and two wooded grasslands Cmic and SIR was stable throughout the rainy season, or even increased in this period, which could lead to enhanced competition with plants for nutrients. Both the range and the seasonal changes in soil microbial biomass C in dry tropical ecosystems may be wider than previously assumed. Neither SIR nor Cmic were good predictors of in situ soil respiration. The soil respiration was relatively high in infrequently burnt forest and woodland, while frequently burnt grasslands had lower rates, presumably because most C is released through dry season burning and not through decomposition in fire-prone systems. Shifts in the relative importance of the two pathways for C release from organic matter may have strong implications for C and nutrient cycling in seasonally dry tropical ecosystems.  相似文献   

18.
蒙古高原草原土壤微生物量碳氮特征   总被引:48,自引:0,他引:48  
李香真  曲秋皓 《土壤学报》2002,39(1):97-104
沿着水分梯度采集了蒙古高原不同草原类型表层土壤样品 1 44个 ,分析了土壤微生物量C、N含量及其与年平均温度和降雨量的关系。结果表明 :蒙古高原草原土壤微生物量C、N与土壤有机C、全N、降雨量、温度均表现出了很好的相关性。微生物量C变化在5 1 7~ 797mgkg- 1之间 ,微生物量N变化在 1 1 0~ 1 1 8 6mgkg- 1之间。微生物量C∶N比变化在 5~ 9之间。土壤微生物量碳 (Cmic)占土壤有机碳 (Corg)的比例 (Cmic Corg)变化在 1 1 5 %~ 4 1 %之间 ,Cmic Corg与土壤有机C、全N、降雨量均成显著的负相关。土壤呼吸表现为草甸草原土壤 >典型草原 >荒漠草原 ,土壤呼吸与降雨量显著正相关 ,与温度显著负相关。呼吸熵 (QCO2 )与降雨量成二次抛物线关系。放牧对微生物量的影响与不同草原类型和放牧率有关。  相似文献   

19.
The aim of this study was to survey and evaluate the microbial respiration of main soil types (gleyic Cryosols, umbric Albeluvisols, albic Luvisols, luvic Chernozems, Kastanozems) across European Russia, from semiarid to polar climatic zones. Soil was sampled from 0–5 and 5–10 cm layers at natural (forest, grassland, fallow) and corresponding sites under agricultural land use. Soil microbial biomass carbon (Cmic) determined by the substrate-induced respiration method and basal respiration (BR) were measured under standardized laboratory conditions (22 °C, 60% WHC). The ratios of BR/Cmic and Cmic/Corg were also calculated. Cmic and BR were highest in polar (gleyic Cryosols) and temperate (albic Luvisols, luvic Chernozems) climatic zones, the lowest were in boreal (umbric Luvisols) and semiarid (Kastanozems). Cmic, BR and Cmic/Corg ratios were higher in 0–5 cm layers compared to the corresponding 5–10 cm and in natural sites versus in arable. Principal component analysis yielded a clear separation of the vegetation zones with respect to the several principal components (PC). PC 1 was composed of Cmic, BR, soil chemical (Corg, Ntot) and texture parameters. PC 2 was composed of climatic (MAT, MAP) and soil pH variables. Three-way ANOVA indicated that “soil type”, “ecosystem” and “layer” factors, and their interactions accounted for almost 98 and 99% of the total variance in Cmic and BR, respectively.  相似文献   

20.
A study was conducted to examine the responses of microbial activity and nitrogen (N) transformations along an altitudinal gradient. The gradient was divided into three parts. Three areas were sampled: upper part (UP): coniferous forest, corn field, and abandoned corn field; middle part (MP): tropical cloud forest, grassland, and corn field (COL); and lower part (LP): tropical deciduous forest and sugarcane. The results showed that soil microbial biomass carbon (C) and basal respiration were significantly higher in MP and UP than in LP, whereas the microbial quotient (Cmic/Corg) was higher in LP and MP than in UP. The metabolic quotient (qCO2) was similar among gradient parts evaluated. Net N mineralization, ammonification, and nitrification rates were higher in UP than MP and LP. We found that in UP, the forest conversion to cropland resulted in no significant differences in microbial activity and N transformation rates between land uses. In MP, microbial biomass C, ammonification, and net N mineralization rates decreased significantly with conversion to cropland, but Cmic/Corg and nitrification were higher in COL. Basal respiration and qCO2 were significantly lower in COL when compared with other land uses. In LP, lower microbial biomass C, Cmic/Corg, and nitrification rates but higher ammonification and net N mineralization rates were observed in tropical deciduous forest than in sugarcane. No significant differences in basal respiration and qCO2 were found between uses of LP. Clearly, then, soil organic C is not equally accessible to the microbial community along the gradient studied. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号