首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
Knowing the structure and variations of the plexus brachialis is important in neck and shoulder surgery. The knowledge of the brachial plexus reduces the injury rate of the nerves in surgical interventions to the axillary region. The major nerve trunks of the thoracic limb were the suprascapular, subscapular, axillary, radial, musculocutaneous, median and ulnar nerves. In Van cats, the brachial plexus was formed by the ventral branches of the spinal nerves, C6-C7-C8 and T1. The 7th cervical nerve was quite thick compared to the others. The subscapular nerve was the thinnest (on the right side, the average length was 6.55 ± 0.60 mm and on the left side was 6.50 ± 0.60 mm), and the radial nerve was the thickest (the average length on the right side was 28.48 ± 0.44 mm and on the left side was 29.11 ± 0.55 mm). The suprascapular nerve was formed by the ventral branch of the 6th cervical nerve. The subscapular nerves were formed by a branch originating from the 6th cervical nerve and the two medial and caudal branches originating from the 7th cervical nerve. No communicating branch between the ulnar nerve and the median nerve was observed in the palmar region. The axillary nerve was formed by the ventral branches of the 7th nerve, the musculocutaneous nerve was formed by ventral branches of the 6th and 7th cervical nerves, and the ulnar nerve was formed by ventral branches of the 8th cervical and the 1st thoracic nerves. The radial nerve was the thickest branch in the brachial plexus. In Van cats, the origin and distribution of nerves were similar to those reported in the literature for other species of cats, with the exception of the suprascapular, subscapular and axillary nerves.  相似文献   

2.
OBJECTIVE: To reassess reference values for the components of the electrically induced blink reflex, document reference values for facial motor nerve conduction velocity, and demonstrate usefulness of the blink reflex as a diagnostic tool in peripheral facial and trigeminal nerve dysfunction in horses. ANIMALS: 10 healthy adult horses (8 males, 2 females) without neurologic abnormalities. PROCEDURE: Blink reflex tests were performed by electrical stimulation of the supraorbital nerve and facial (auriculopalpebral) nerve. Reflex and direct muscle-evoked potentials of the orbicularis oculi muscles were recorded from concentric needle electrodes inserted bilaterally in these muscles. Supraorbital and auriculopalpebral nerve blocks were performed by lidocaine hydrochloride injections. RESULTS: Supraorbital nerve stimulation elicited 2 or 3 ipsilateral and 1 contralateral reflex muscle potential in the orbicularis oculi muscles. Auriculopalpebral nerve stimulation elicited a direct and a reflex potential in the ipsilateral orbicularis oculi muscle. After left supraorbital nerve block, no responses could be elicited ipsilaterally or contralaterally upon stimulation of the blocked nerve, but bilateral responses were obtained upon stimulation of the right supraorbital nerve. After right auriculopalpebral nerve block, no responses were recorded from the right orbicularis oculi muscle upon stimulation of left or right supraorbital nerves. CONCLUSIONS AND CLINICAL RELEVANCE: Reference values for the components of the blink reflex and facial motor nerve conduction velocity will allow application of these tests to assist in the diagnosis of equine neurologic disorders involving the trigeminal and facial nerves, the brainstem, and the cranial end of the cervical segment of the spinal cord. This study reveals the usefulness of the blink reflex test in the diagnosis of peripheral trigeminal and facial nerve dysfunction in horses.  相似文献   

3.
OBJECTIVE: To establish reference values for electrodiagnostic evaluation of peripheral nerve function in birds. ANIMALS: 6 rheas and 6 barred owls. PROCEDURE: Birds were anesthetized with propofol or isoflurane in oxygen. Using a computer-based electromyograph system and needle electrodes for stimulation and recording, electromyography (EMG) was performed on the pectoral, biceps brachialis, and gastrocnemius muscles, and evoked EMG was performed on the tibial and ulnar nerves. Motor nerve conduction velocity (MNCV) was calculated. Repetitive stimulation was performed on these 2 nerves. Late F waves were recorded for each nerve, when possible. RESULTS: Activity was evident during insertion of the electrodes, but muscles tested were electrically quiescent after spontaneous EMG. Motor nerve conduction velocity was faster in the tibial nerve than ulnar nerve but did not differ significantly between species. Mean +/- SEM MNCV was 132.3+/-7.8 m/s for the tibial nerve and 59.7+/-7.8 m/s for the ulnar nerve. A significant difference was not observed in responses at the fourth or ninth stimulation during repetitive stimulation. Subsequent to the initial stimulation, amplitudes were +/-22.7% of the initial motor potential amplitude. Recorded F waves were inconsistent, which may have been associated with technique. CONCLUSIONS AND CLINICAL RELEVANCE: Reference range (mean +/-2 SEM) for MNCV was 34.1 to 75.3 m/s for the ulnar nerve and 116.7 to 147.9 m/s for the tibial nerve in barred owls and rheas. After repetitive stimulation, motor potential amplitudes may be +/-22.7% of the initial amplitude response.  相似文献   

4.
A model for magnetic stimulation of the radial and sciatic nerves in dogs was evaluated. Onset-latencies and peak-to-peak amplitudes of magnetic and electrical stimulation of the sciatic nerve were compared, and the effect of the direction of the current in the magnetic coil on onset-latencies and peak-to-peak amplitude of the magnetic motor evoked potential was studied in both nerves. The results demonstrate that magnetic stimulation is a feasible method for stimulating the radial and sciatic nerves in dogs. No significant differences were observed in onset-latencies and peak-to-peak amplitudes during magnetic and electrical stimulation, indicating conformity between the techniques. Orthodromic or antidromic magnetic nerve stimulation resulted in no significant differences. This pilot study demonstrates the potential of magnetic stimulation of nerves in dogs.  相似文献   

5.
OBJECTIVE: To establish normal predictive values for cord dorsum potential (CDP) onset latency after thoracic and pelvic limb sensory or mixed nerve stimulation in adult dogs. ANIMALS: 26 clinically normal adult dogs. PROCEDURE: Sensory nerve action potentials (SNAP) were recorded proximally from tibial and lateral superficial radial nerves after distal stimulation. The CDP were recorded from the L4-L5 interarcuate ligament for the tibial nerve and from the C7-T1 interarcuate ligament for the radial nerve. Linear regression analyses were performed for CDP onset latency, and mean +/- SD was calculated for CDP onset to peak latency differences and sensory nerve conduction velocities (SNCV). RESULTS: For the tibial nerve, expected CDP onset latency (CDPOL) = -1.194 + 0.014 X pelvic limb length (mm; R2 = 0.912); CDPOL = -2.156 + 0.011 X pelvic limb/spinal length (mm; R2 = 0.911); and CDPOL = 0.941 + 2.197 X tibial nerve SNAP latency (milliseconds; R2 = 0.903). For the radial nerve, CDPOL = -0.9 + 0.014 x thoracic limb length (mm; R2 = 0.873); and CDPOL = 1.454 + 1.874 X radial nerve SNAP latency (milliseconds; R2 = 0.903). Mean +/- SD for CDP onset to peak latency difference for tibial and radial nerves was 3.1+/-0.3 and 3.0+/-0.4 milliseconds, respectively. CONCLUSIONS: Strong linear associations exist between CDPOL and a number of easily measured peripheral independent variables in dogs. There is also a narrow range of normal values for CDP onset to peak latency differences that is independent of limb length. CLINICAL RELEVANCE: CDP evaluation can be used to accurately assess functional severity and distribution of abnormalities in proximal sensory nerves, dorsal nerve roots, and spinal cord dorsal horns in dogs with suspected neuropathy, radiculopathy, or myelopathy involving the brachial or lumbosacral intumescences.  相似文献   

6.
The caudal mesenteric ganglion (CMG) is located ventral to the abdominal aorta involving the initial portion of the caudal mesenteric artery. Its macro and microstructural organization was studied in 40 domestic dogs. From the CMG, there were three nerves: the main hypogastric, the left hypogastric and the right hypogastric. The main hypogastric nerve emits two branches: the left colonic nerve and the cranial rectal nerve. Afterwards they give rise to branches to the descending colon (colonic nerves) and rectum (rectal nerves). The cranial rectal nerve, and left and right hypogastric nerves were directed to the pelvic ganglia. The microscopic study permitted the observation of the histological organization of the CMG, which is a ganglionic complex composed of an agglomeration of ganglionic units. Each ganglionic unit is composed of three major cell types: principal ganglion neurones (PGNs), glial cells and small intensely fluorescent (SIF) cells, and they were separated by nerve fibres, septa of connective tissue (types 1 and 3 collagen fibres), fibroblasts and intraganglionic capillaries. Hence, the ganglionic unit is the morphological support for the microstructural organization of the CMG complex. Further, each ganglionic unit is constituted by a cellular triad (SIF cells, PGN and glial cells), which is the cytological basis for each ganglionic unit.  相似文献   

7.
Neuronal nitric oxide synthase (nNOS) has been implicated in peripheral nerve lesions and regeneration. The CAPON adaptor protein interacts with the PDZ domain of nNOS, helping to regulate nNOS activity at post-synaptic sites in neurones, but it is not known whether its expression is altered in sciatic nerves after chronic nerve constriction injury. In the present study, the spatiotemporal expression of CAPON was determined in chronically constricted rat sciatic nerves. Similar to the level of protein expression, CAPON mRNA was significantly up-regulated for almost 5 weeks following sciatic nerve injury. Immunohistochemistry demonstrated that increased CAPON was found mainly in S-100-positive Schwann cells. In addition, co-immunoprecipitation demonstrated an interaction between CAPON and nNOS in Schwann cells and the interaction was enhanced in injured sciatic nerves. CAPON may be involved in peripheral nerve regeneration through regulation of nNOS activity.  相似文献   

8.
The circulation and innervation to porcine cervical trachea were studied in 54 animals in situ. The antemortem response of porcine tracheal muscle was measured isometrically during selective injection of acetylcholine into the cranial thyroid arterial circulation. A predominantly unilateral (70.4%), rather than bilateral (3.7%), arterial circulation was identified; a cranial thyroid artery was not demonstrated in 25.9% of swine, suggesting dominant perfusion from the caudal thyroid circulation. After animals were killed, dye injection through the dominant cranial thyroid trunk demonstrated homogeneous perfusion of the muscle in all instances. In 20 of these animals, the distribution of parasympathetic innervation to porcine tracheal muscle was studied by selective electrical stimulation of the vagus nerves in situ. Tracheal smooth muscle response was measured isometrically, using settings (20 v, 20 Hz) causing maximal contractile force. Bilateral electrical stimulation caused active tracheal tension of 23.2 +/- 1.9 g/cm. Unilateral stimulation of the left vagus nerve caused 17.8 +/- 1.5 g/cm contraction, which was significantly greater than the response caused by selective stimulation of the right vagus nerve (12.1 +/- 1.6 g/cm; P less than 0.001). Innervation to porcine cervical trachea, although bilateral, is derived predominantly from the left vagus nerve; circulation is derived almost always from the left cranial thyroid artery.  相似文献   

9.
The anatomical features of the autonomous nerves, including the greater, lesser and least splanchnic nerves, were examined in 4 female and 4 male adult pigs (Sus scrofa). The origin and course of these nerves were examined with regard to sex and the side of the body. The greater splanchnic nerve was present in all of the animals included in the study, whereas the lesser splanchnic nerve was present at a rate of 87.5% on the right side and 75% on the left side of the median plane. On the other hand, the least splanchnic nerve was present on the right side at a rate of 62.5% and on the left side at a rate of 37.5%. The greater, lesser and least splanchnic nerves on the right side of the median plane were determined to originate from a more cranial location. Furthermore, these nerves were observed to be longer and larger on the right side in comparison with the left side. Evaluation of the findings revealed no significant difference between both sides of the median plane with regard to the origin, course and dimensions of these nerves. Similarly, no significant difference was detected between sexes.  相似文献   

10.
11.
In 25 adult dogs of various breeds, recurrent laryngeal nerve fibers were electrically stimulated at 2 points along their extralaryngeal course. Evoked compound muscle action potentials were recorded in the ipsilateral intrinsic laryngeal muscles, using a percutaneous needle electrode. Latencies, amplitudes, and durations were measured. Latencies were correlated with neck length (r = 0.88 on left and 0.82 on right). Five of the dogs were euthanatized, and the nerve length between the 2 stimulating needle electrodes was measured; calculated conduction velocities (mean +/- SD) were 55 +/- 6 m/s (left) and 57 +/- 6 m/s (right). In 38 additional canine cadavers, the lengths of the exposed left and right recurrent laryngeal nerves were correlated with neck length (r = 0.44 on left and 0.56 on right). A linear regression model is proposed for predicting normal latencies, despite variations in neck length among different breeds of dogs.  相似文献   

12.
We describe the morphological organization of the deer brachial plexus in order to supply data to veterinary neuroclinics and anaesthesiology. The deer (Mazama gouazoubira) brachial plexus is composed of four roots: three cervical (C6, C7 and C8) and one thoracic (T1). Within each sex group, no variations are observed between the left and the right brachial plexus, though sex-related differences are seen especially in its origin. The origin of axillary and radial nerves was: C6, C7, C8 and T1 in males and C8-T1 (radial nerve) and C7, C8 and T1 (axillary nerve) in females; musculocutaneous nerve was: C6-C7 (males) and C8-T1 (females); median and ulnar nerves was: C8-T1 (males) and T1 (females); long thoracic nerve was: C7 (males) and T1 (females); lateral thoracic nerve was: C6, C7, C8 and T1 (males) and T1 (females); thoracodorsal nerve was: C6, C7, C8 and T1 (males) and C8-T1 (females); suprascapular nerve was: C6-C7 (males) and C6 (females) and subscapular nerve was: C6-C7 (males) and C7 (females). This study suggests that in male deer the origin of the brachial plexus is more cranial than in females and the origin of the brachial plexus is slightly more complex in males, i.e. there is an additional number of roots (from one to three). This sexual dimorphism may be related to specific biomechanical functions of the thoracic limb and electrophysiological studies may be needed to shed light on this morphological feature.  相似文献   

13.
Some morphometrical parameters of the axons making up the controlateral sciatic nerves, both in the male and female rabbits were calculated and compared by means of a Zeiss Vidas image analyser (Ober Kochen, Germany). The results show that the fibres constituting the left nerve have a greater mean diameter but a lower mean density than those constituting the right nerve. This suggests that the diameter of the myelinated fibres and the density of both the myelinated and unmyelinated fibres do not vary from male to female. On the other hand, the G ratio and the diameter of the unmyelinated axons do, since the nerves on the right side (in both sexes) have higher morphometric values, on average, than the controlateral ones.  相似文献   

14.
CASE DESCRIPTION: A 2-year-old Griffon Vendéen was examined because of a 1-month history of right hind limb lameness after a traumatic injury. CLINICAL FINDINGS: Neurologic examination revealed monoplegia and anesthesia of the right hind limb distal to the stifle (femorotibial) joint except for the area supplied by the cutaneous saphenous nerve. Results of electromyographic testing were consistent with a severe lesion of the tibial and peroneal nerves at the level of the stifle joint. TREATMENT AND OUTCOME: Exploratory surgery revealed an 80-mm-long gap in both the peroneal and tibial branches of the right sciatic nerve. A section of the left cutaneous saphenous nerve was interposed to graft the nerve defects. The dog received joint mechanotherapy and electrophysiologic therapy during the reinnervation process. Ten months after surgery, the dog had recovered almost completely. Neurologic examination revealed diminished flexion of the tarsal and digital joints. Repeat electromyographic testing revealed no abnormal spontaneous electrical activity in the right hind limb musculature, and small compound muscle action potentials were recorded in the right interosseous and cranial tibial muscles. CLINICAL RELEVANCE: Without surgical treatment, neurotmesis injury results in poor recovery of motor and sensory functions and may result in amputation. If a nerve defect exists, nerve grafting should be considered, even if the procedure is delayed until well after the injury. The sensory portion of the cutaneous saphenous nerve is a potential source of peripheral nerve for grafting in dogs. Reinnervation is a long-term process and physiologic support and owner involvement are necessary, but nearly complete functional recovery is possible.  相似文献   

15.
Electrophysiologic assessment of the blink reflex test and the muscle-evoked potentials evoked by stimulation of the facial nerve were performed in 15 healthy adult Beagles before and after supraorbital (trigeminal) and facial anesthetic nerve blocks performed by lidocaine injections. Unilateral electrical stimulation of the supraorbital nerve elicited 2 ipsilateral (R1 and R2) and a contralateral (Rc) reflex muscle potential in orbicularis oculi muscles. Electrical stimulation of the facial nerve elicited 2 muscle potentials (a direct response [D] and a reflex faciofacial response [RF]) in the ipsilateral orbicularis oculi muscle. Anesthetic block of the left supraorbital nerve resulted in bilateral lack of responses upon left supraorbital nerve stimulation, but normal responses in right and left orbicularis oculi muscles upon right supraorbital stimulation. Right facial anesthetic block produced lack of responses in the right orbicularis oculi muscle regardless the side of supraorbital nerve stimulation. Results of this study demonstrate that the blink reflex can be electrically elicited and assessed in dogs. Reference values for the blink reflex responses and for the muscle potentials evoked by direct facial nerve stimulation in dogs are provided. The potential usefulness of the electrically elicited blink reflex test in the diagnosis of peripheral facial and trigeminal dysfunction in dogs was demonstrated.  相似文献   

16.
In this study, the left and right cranial cervical ganglia (ganglion cervicale craniale) of eight young (four male, four female) domestic pigs weighing around 70-80 kg were inspected macro anatomically. The cranial cervical ganglion (CCG) was found cranio-ventrally of the distal ganglion of the vagus nerve, medial of the jugular process extremity, ventral of the atlas, dorsal of the epiglottis base and medial of the common root (CR) established by the internal carotid and occipital arteries. The internal carotid nerve and jugular nerve ramified from the cranial part of CCG. The jugular nerve gave branches that merged with the vagus and glossopharyngeal nerves. Other nerve branches originating from the cranial part of the ganglion reached to the external carotid artery and CR. The internal carotid nerve varied among cadavers in number of branches (two to four). These branches did not travel along the side of the internal carotid artery. The central part of CCG gave thin nerve branches that reached to various anatomical structures including the first and second cervical nerves, wall of the pharynx, accessory nerve, hypoglossal nerve, vagus nerve, external carotid artery and CR. The caudal part of CCG gave nerve branches that merged with the vagus, cranial laryngeal nerves, and common carotid artery. The external carotid nerves, which were two or three in number, also originated from the caudal part of CCG. In conclusion, the nerves ramifying from CCG of the pig varied in number among cadavers. Compared with literature raised in other species, there are also differences in number of nerve branches and course pattern of these nerves.  相似文献   

17.
Background: Hypothyroidism has been implicated in the development of multiple peripheral mono‐ and polyneuropathies in dogs. The objectives of this study were to evaluate the clinical and electrophysiologic effects of experimentally induced hypothyroidism on the peripheral nervous system of dogs. Hypothesis: Chronic hypothyroidism will induce peripheral nerve sensorimotor dysfunction. Animals: Eighteen purpose‐bred, female dogs. Methods: Prospective, longitudinal study: Hypothyroidism was induced by radioactive iodine administration in 9 dogs, and the remaining 9 served as untreated controls. Neurological examinations were performed monthly. Electrophysiologic testing consisting of electromyography (EMG); motor nerve conduction studies of the sciatic‐tibial, radial, ulnar, and recurrent laryngeal nerves; sciatic‐tibial and ulnar F‐wave studies; sensory nerve conduction studies of the tibial, ulnar, and radial nerves; and evaluation of blink reflex and facial responses were performed before and 6, 12, and 18 months after induction of hypothyroidism and compared with controls. Results: Clinical evidence of peripheral nervous dysfunction did not occur in any dog. At 6 month and subsequent evaluations, all hypothyroid dogs had EMG and histologic evidence of hypothyroid myopathy. Hypothyroid dogs had significant (P≤ .04) decreases in ulnar and sciatic‐tibial compound muscle action potentials over time, which were attributed to the concurrent myopathy. No significant differences between control and hypothyroid dogs were detected in electrophysiologic tests of motor (P≥ .1) or sensory nerve conduction velocity (P≥ .24) or nerve roots (P≥ .16) throughout the study period, with values remaining within reference ranges in all dogs. Conclusion: Chronic hypothyroidism induced by thyroid irradiation does not result in clinical or electrophysiologic evidence of peripheral neuropathy, but does cause subclinical myopathy.  相似文献   

18.
The aim of this study was to test the applicability of electrical stimulation of lumbar spinal nerve roots and obtain normative electrical root stimulation (ERS) data for L7 nerve root and sciatic nerve in dogs. For that purpose ERS and sciatic nerve stimulations were performed consecutively, in totally 40 healthy dogs. ERS was applied in the L7/S1 intervertebral space via monopolar needle electrodes. Muscle responses were recorded from the gastrocnemius muscles on the left and right hind limbs. Sciatic nerve stimulation was performed at the greater trochanter level on the left hind limb, with records obtained from the left gastrocnemius muscle. Mean root latencies of the left and right side were 5.22?±?0.49 ms and 5.29?±?0.53 ms, respectively. There was no significant difference in root latency between the right and left sides. The mean terminal latency was 3.82?±?0.46 ms. The proximal motor nerve conduction velocity of the sciatic nerve was 63.15?±?3.43 m/s. The results of this study show that ERS provides objective data about the integrity of lumbar spinal nerve roots by evaluating the entire population of motor fibres and total length of the motor axon in dogs. ERS can be considered a useful diagnostic method for confirmation of diagnoses of lumbosacral diseases.  相似文献   

19.
In this study, the origin and course of the greater, lesser and least splanchnic nerves was investigated in 12 adult New Zealand rabbits with regard to sex and the side of the body. There were no significant differences between the female and male rabbits. The greater and lesser splanchnic nerves were present in all the cadavers examined. However, the least splanchnic nerve was found on the right side in 50% of the cadavers (nos. 2, 4, 6, 7, 11 and 12), and on the left side in 75% (1, 2, 4, 6, 7, 8, 9, 11 and 12). With regard to the origin and pattern of the greater, lesser and least splanchnic nerves, there were significant differences between the right and left sides of the body even in the same rabbit. No significant difference was observed between sexes.  相似文献   

20.
AIMS: This study was undertaken in order to determine whether wild Burchell's Zebra (Equus burchelli) are affected by Idiopathic Laryngeal Hemiplegia (ILH). ILH has a high prevalence in the domestic horse and a negative control population has not been identified. METHODS: The work was conducted in two phases on two large farms in central Kenya during routine culls. The larynges of 42 zebra were removed and the left and right intrinsic laryngeal adductor and abductor muscles and recurrent laryngeal nerves were isolated. The muscles were weighed and biopsy samples of left and right recurrent laryngeal nerve and cricoarytenoideus lateralis muscles from 16 animals were taken for histological examination. RESULTS: Left adductor muscles were observed to be significantly lighter than right adductor muscles (p = 0.001). There was no significant difference between the weights of left and right laryngeal abductors (p = 0.260). There was no light microscopic evidence of pathological changes consistent with ILH in any of the muscle or nerve samples. CONCLUSIONS: Zebra do not appear to suffer from ILH and equids unaffected by ILH can have significantly lighter muscles on the left of the larynx. CLINICAL RELEVANCE: Mild asymmetries of the larynx on palpation may not be a reliable indicator of ILH. Zebra may be a potentially useful negative control animal for observational ILH studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号