首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
水稻土和菜田添加碳氮后的气态产物排放动态   总被引:1,自引:0,他引:1  
【目的】动态连续监测添加碳氮底物后各气体产物—O2、 NO、 N2O、 CH4和N2的排放,对土壤碳氮转化过程和气体产生过程做更深入的理解,揭示不同土地利用方式典型红壤的温室气体产生机制。【方法】采集长江中游金井小流域不同土地利用方式稻田和菜地土壤为研究对象,利用全自动连续在线培养检测体系(Robot系统),通过两组试验分别研究土壤碳氮转化过程中各气体产物的动态变化。试验1采用菜地和稻田土壤进行好气培养,设置不施氮对照、 添加40 mg/kg铵态氮、 添加40 mg/kg铵态氮+1%硝化抑制剂、 添加40 mg/kg硝态氮、 添加40 mg/kg硝态氮+1%葡萄糖、 缺氧条件下添加40 mg/kg硝态氮+1%葡萄糖6个处理。试验2采用稻田土壤进行淹水培养,设不施氮对照、 添加40 mg/kg铵态氮、 添加40 mg/kg铵态氮+1%硝化抑制剂、 添加40 mg/kg铵态氮+1%秸秆、 缺氧条件下添加40 mg/kg铵态氮+1%的葡萄糖、 添加40 mg/kg硝态氮、 添加40 mg/kg硝态氮+1%葡萄糖、 缺氧条件下添加40 mg/kg硝态氮+1%葡萄糖8个处理。培养温度均为20℃,土壤水分含量为70% WFPS (土壤孔隙含水量),培养周期为15天。【结果】从菜地和稻田土壤不同碳氮添加处理气态产物及无机氮的动态变化可看出: 1)菜地土壤好气培养初期硝化作用产生了大量N2O; 受低碳和低含水量的限制,反硝化作用较弱。当提供充足碳源和厌氧条件,出现N2O和NO的大量排放。2)在好气稻田和淹水稻田培养过程中,反硝化作用是N2O产生的主要途径。3)稻田土壤中,提供充足碳源和厌氧条件,各气态产物出现的顺序依次是NO、 N2O和N2,与三种气体在反硝化链式反应过程中的生成顺序一致。淹水稻田加铵态氮和碳源处理N2为主要产物,添加硝态氮处理后,N2O成为主要气态产物。当土壤碳源充足时,反硝化过程进行彻底,反硝化产物以终产物(N2)为主。4)在稻田土壤出现厌氧或添加碳源条件下,均检测到大量CH4产生; 且在甲烷产生的同时,NO-3几乎消耗殆尽。【结论】金井小流域典型红壤菜地N2O主要来自于硝化作用,好气和淹水稻田N2O主要来源于反硝化作用; 当碳源充足和厌氧时,菜地及稻田反硝化作用增强; 反硝化产物组成、 产物累积量及出峰顺序与碳源和氧气浓度有关。  相似文献   

2.
设施菜田土壤剖面中的反硝化特征   总被引:3,自引:2,他引:1  
利用田间原位硅胶管法和自动连续在线培养监测体系(Robot 系统),分别监测了设施菜田不同施肥处理土壤剖面N2O浓度以及不同土层土壤反硝化潜势、NO和N2O产生潜势。结果表明:灌溉施肥后,传统施肥处理(CN)土壤剖面50 cm和90 cm处的N2O浓度都会出现峰值,50 cm处的N2O浓度峰值都高于90 cm处; 50 cm处的N2O变幅在2.15~50.77 l/L 之间,90cm处的变幅在2.57~14.05 l/L 之间;空白处理(CK)剖面N2O浓度几乎不受灌水的影响,50 cm和90 cm处的N2O浓度变幅较小,在1.43~2.75 l/L 之间。反硝化潜势、NO和N2O产生潜势的监测结果显示,040 cm土层反硝化较为强烈;40100 cm土层中由于受碳源限制,反硝化发生及强度明显滞后,添加碳源,经过48 h培养后,能够达到与表层反硝化潜势相当的程度;厌氧条件下,上层040 cm土壤的N2O和NO产生量远高于底层40100 cm的。由此推测,原位监测的高N2O浓度,可能来源自上层的扩散,因而田间表层通量观测数据可能会低估N2O产生量。底层土壤有一定反硝化潜势,当施用有机肥后,底层土壤氮素反硝化损失不容忽视。  相似文献   

3.
长期秸秆还田对设施菜田土壤反硝化特征和N2O排放的影响   总被引:2,自引:0,他引:2  
基于2004年2月-2010年9月温室菜田长期定位试验,通过室内培养和田间同步,利用静态箱法和硅胶管法分别检测土壤表层N2O通量和剖面N2O浓度的变化,以研究高碳氮比的小麦秸秆施用对设施菜田土壤反硝化过程及N2O排放的影响.结果表明,(1)与对照处理(CK)相比,添加秸秆处理(ST)显著提高0-20cm土层土壤反硝化量,促进N2O还原,增加N2产生量,显著降低追肥灌溉后表层土壤N2O的排放峰值和土壤底层50cm处N2O浓度峰值,但对20-80cm土层土壤的反硝化特征影响较少.(2)秸秆还田有利于降低设施菜田NO;淋洗风险,秸秆的深施是进一步降低菜田NO3-淋洗的有效途径,有利于土壤底层N2O的再次还原.因此,设施菜田中添加小麦秸秆并深施有利于降低N2O排放和减少NO3-的淋洗.  相似文献   

4.
不同土地利用方式土壤温室气体排放对碳氮添加的响应   总被引:7,自引:0,他引:7  
王海飞  贾兴永  高兵  黄涛  苏芳  巨晓棠 《土壤学报》2013,50(6):1170-1179
揭示不同土地利用方式下土壤N2O产生机制及其CO2和CH4的排放,有助于土壤温室气体减排措施的制定。本研究以长沙金井河流域酸性红壤上菜地、稻田、茶园和林地土壤为研究对象,控制温度和土壤含水量,采用静态培养-气相色谱法,研究4种利用方式土壤N2O、CO2和CH4的排放对不同碳氮和硝化抑制剂添加的响应。结果表明,由于土壤pH较低,酸性红壤外加氮源后仅有较小的N2O排放。葡萄糖能够促进尿素添加后N2O的排放及土壤反硝化作用N2O的排放。异养硝化作用可能是酸性红壤N2O产生的主要途径。硝化抑制剂双氰胺(DCD)对酸性红壤N2O减排无明显效果。碳氮添加后土壤N2O的总排放量表现为茶园 > 菜地 > 稻田 > 林地。外源有机碳能够显著促进4种利用方式土壤CO2的排放,表现为茶园、稻田 > 菜地、林地。但除稻田土壤CH4排放增加外,菜地、茶园和林地土壤CH4排放对外源有机碳无明显响应。  相似文献   

5.
农田土壤N_2O排放研究进展   总被引:18,自引:1,他引:18  
黄树辉  吕军 《土壤通报》2004,35(4):516-522
农田土壤的N2O排放主要是在微生物的作用下通过硝化和反硝化作用产生的。土壤中多变的理化性质影响各种微生物的生长,因而硝化和反硝化过程中产生N2O的途径也不同,尤其以硝化过程的研究进展最快。影响N2O的生成和排放有:土壤含水量、温度、O2以及土壤结构和质地等物理因素,pH和氮肥等其它因素。本文详细地阐述旱地和水田土壤中这些影响因子与N2O的作用机理的差异,及农田土壤中的N2O排放估计的方法。区分硝化和反硝化作用中生成N2O的贡献可用15N标记法和不同浓度的乙炔抑制法。  相似文献   

6.
氧化亚氮(N2O)是重要的温室气体之一,还会破坏大气臭氧层,影响全球气候变化。农田土壤是N2O最主要的排放源,由微生物主导的硝化和反硝化作用是其最主要的排放途径,因此,土壤的硝化和反硝化作用备受关注。在综合国内外相关研究的基础上,就区分硝化和反硝化作用对N2O排放贡献的研究方法、土壤N2O产生途径及其影响因素以及施用生物炭对N2O排放的影响机理进行归纳总结。结果表明:硝化和反硝化作用对生物炭的响应不同,在N2O减排效应上也存在很大的不确定性,其内在机理尚不明确。在此基础上,提出区分硝化和反硝化作用对N2O排放贡献的最佳研究方法,并就农田土壤硝化反硝化作用的影响因素以及对生物炭的响应机制进行研究展望。  相似文献   

7.
外加可溶性碳源对华北典型农田土壤N2O、CO2排放的影响   总被引:1,自引:0,他引:1  
以华北平原典型农田土壤为对象,运用静态培养系统研究方法,设置室内培养试验,研究添加不同浓度葡萄糖对土壤N2O、CO2排放的影响.结果表明:碳氮配施的外源添加方式明显促进N2O和CO2排放,其排放通量均高于对照组和只添加氮源的处理.在配施碳源葡萄糖浓度为0.5 g/kg时N2O排放通量最高(NH4+组2 500 μg/(kg·d),单位以N计,下同,NO3-组1 500 μg/(kg·d)),4.0 g/kg时N2O排放通量最低(NH4+组500 μg/(kg·d),NO3-组800 μg/(kg·d));葡萄糖浓度为2.0 g/kg时CO2排放通量最高(NH+组500mg/(kg· d)),0.5 g/kg时CO2排放通量最低(NH+组100 mg/(kg,d)).从培养开始到结束,只添加氮源的土壤NH+含量变化不明显,NO3-含量增至29.21 mg/kg(NH4+组)和62.25 mg/kg(NO3-组);而配施葡萄糖的土壤NH+含量降为不足1 mg/kg(NH4+组),NO3-含量明显减少.N2O累积排放通量与葡萄糖浓度呈负相关(NH4+组),CO2累积排放通量与葡萄糖浓度呈正相关.分析结果表明,外加可溶性碳源明显减少土壤中NH4+和NO3-含量,并且促进土壤N2O、CO2排放,其排放通量大小与C/N比有关.  相似文献   

8.
采用田间试验方法研究了半干旱半干旱地区小麦田不同土层土壤理、化、生等因素与土壤反硝化酶活性、N2O排放通量的相关性。结果表明,在冬小麦生育期内,0-5cm土层土壤硝酸还原酶活性与相应土层土壤亚硝酸还原酶活性呈显正相关,0-5cm,5-10cm土层土壤的温度与相应土层土壤硝酸还原酶活性呈显负相关,土壤硝态氮含量和pH与土壤反硝化还原酶活性的相关性因土壤的不同土层而有差异;0-5cm,5-10cm土层土壤含水量,0-5cm,10-20pH土层土壤脲酶活性,5-10cm有机碳含量,硝酸还原酶活性与土壤中N2O排放通量呈显正相关;5-10cm土层土壤温度、pH和10-20cm土层土壤磷酸酶活性、pH与之呈显负相关。土壤N2O的排放主要是土壤反硝化作用的结果。  相似文献   

9.
以长白山阔叶红松林暗棕色森林土为研究对象,研究不同形态氮(N)添加对土壤不同粒级团聚体CO2和N2O排放的影响。采用室内短期培养试验(15 d),研究对照(CK)、氯化铵(NH4Cl,含N 150 mg kg-1)和硝酸钠(Na NO3,含N 150 mg kg-1)添加对全土(bulk soil)、大团聚体(250~1000μm)、微团聚体(53~250μm)、粉粒+黏粒(53μm)土壤组分CO2和N2O排放的影响。结果表明:CO2的排放量为大团聚体微团聚体全土粉粒+黏粒;NH4+-N添加对全土和各粒级团聚体的CO2排放没有显著影响;NO3--N添加对大团聚体和微团聚体的CO2排放有促进作用,并且在微团聚体中影响显著(P0.05),但对全土和粉粒+黏粒的CO2排放影响不显著。不同形态N添加对全土和各粒级团聚体N2O排放影响不同,NO3--N添加显著促进了N2O的排放,NO3--N添加后N2O排放量为全土大团聚体微团聚体粉粒+黏粒;NH4+-N的添加抑制了N2O的排放,NH4+-N添加后的土壤大团聚体、微团聚体和粉粒+黏粒的N2O排放量间无显著差异。由此可见,不同形态N添加影响土壤组分的CO2和N2O排放,且作用效果不一。  相似文献   

10.
从2000年9月到2001年9月,每月两次采样连续监测太湖地区湖、河和井水水体中溶解的N2O浓度、NO3^--N和NH4^ -N浓度及水温的变化,研究了湖、河、井水体NO3^--N和NH4^ -N浓度对水中溶解N2O浓度的影响。结果表明,湖、河和井水中溶解的N2O浓度与NO3^--N浓度呈显著正相关关系,也与水温呈正相关,而与NH4^ -N浓度无显著相关关系。结果还表明,浅水型水体高浓度NO3^--N和NH4^ -N的存在均是N2O产生的源;水体反硝化作用和硝化-反硝化均是水中产生N2O的重要途径。  相似文献   

11.
强酸性茶园土壤中添加不同肥料氮后N2O释放量变化   总被引:4,自引:3,他引:1  
茶园由于长期偏施氮肥,造成土壤酸化现象严重和 N2O 大量排放。本文对强酸性茶园土壤进行不同氮肥处理试验,结果表明, 通过31 d的好气培养,各施肥处理均显著提高N2O排放, 其中施硝酸钾(KNO3)处理平均每天排放的N2O最高,总排放量为对照(CK)的17倍,其次是硝酸铵(NH4NO3)处理, 尿素[CO(NH2)2]和硫酸铵[(NH4)2SO4]处理虽然能增加N2O 排放,但远远小于硝酸钾处理。对各氮肥处理硝化势的测定表明,尿素、 硫酸铵和硝酸铵处理均明显增加土壤硝化活性,而硝酸钾处理硝化势与对照相比显著降低。强酸性茶园土壤中N2O排放的主要来源是反硝化作用。氧化亚氮还原酶(nosZ)的定量PCR 分析表明,硝酸钾处理的nosZ 基因拷贝数与对照相比显著降低(P0.05)。因此,强酸性土壤中N2O还原酶活性被NO3-抑制是导致高N2O排放的重要原因之一。  相似文献   

12.
土壤中氧化亚氮的产生及减少排放量的措施   总被引:8,自引:0,他引:8  
氧化亚氮(N2O)是大气中一种痕量气体,也是一种重要的温室效应气体,还可使臭氧层遭到破坏。大气中N2O浓度呈不断上升趋势,其上升与人类活动关系极大,对环境的潜在破坏性也愈加严重。土壤是N2O的重要产生源,土壤中的硝化作用和反硝化作用是N2O的主要生成过程。过量施肥施肥、含氮有机物燃烧、毁林开荒等人类活动对N2O释放增加的影响不容忽视。人类应采取各项可行的措施来减少N2O的释放量:如提高氮肥利用效率,减少生物体燃烧,退耕还林和保护森林资源等。  相似文献   

13.
  【目的】  土壤中的氧化亚氮 (N2O) 来源于硝化与反硝化作用,锰可与硝化或反硝化作用产物反应产生N2O或氮气,已有研究表明土壤中锰含量高会影响硝化作用。因此,本试验以水钠锰矿 (KMnO2·H2O) 与土壤硝化作用与反硝化作用的生物化学耦合反应为切入点,研究水钠锰矿的添加对土壤N2O释放速率及微生物的影响,进一步认识N2O释放与土壤环境因子的相互关系。  【方法】  以红壤性水稻土为供试土壤,通过微宇宙培养试验,在土壤中添加不同质量百分比的水钠锰矿 (0%、0.1%、0.3%、0.7%、1.5%),预培养7 天后,加入硫酸铵N 100 mg/kg继续培养14天。在培养第1、3、7、14天,采用气密性注射器抽取10 mL气体样品,气相色谱仪测定N2O含量;同时取土壤样品,比色法测定铵态氮与硝态氮含量。培养结束时,测定土壤pH,采用实时荧光定量PCR测定土壤16S rDNA与氨氧化细菌 (AOB) amoA基因拷贝数,高通量测序技术分析微生物群落组成及多样性。  【结果】  水钠锰矿提高了土壤N2O释放速率,增加了土壤N2O累积释放量,以添加0.1%水钠锰矿的N2O累积释放量最高,添加1.5%的最低。土壤铵态氮含量随培养时间的延长而迅速降低,硝态氮含量则迅速增加。水钠锰矿显著提高了土壤pH与表观N2O产量 (N2O-N/NO3?-N),pH随着水钠锰矿添加量的增加整体提高,N2O-N/NO3?-N则随着水钠锰矿添加量的增加呈降低趋势。适量水钠锰矿显著增加了土壤细菌16S rDNA与氨氧化细菌 (AOB) amoA基因拷贝数,并显著提高了土壤16S rDNA与AOB amoA基因拷贝数的比值,但随着水钠锰矿添加量的增加,细菌16S rDNA和AOB amoA基因拷贝数的增加量整体降低;放线菌、变形菌与拟杆菌是所有处理中的优势菌门,通过非度量多维尺度分析发现不同处理间的微生物群落结构差异显著,未添加水钠锰矿处理与添加水钠锰矿1.5%处理的微生物群落结构差异最大,其他处理的微生物群落结构介于两者之间。  【结论】  土壤中添加0.1%质量比的水钠锰矿,可以通过增加AOB的数量促进红壤性水稻土N2O的释放,显著影响微生物物种丰度与群落结构。但水钠锰矿高添加量处理对AOB的刺激作用减弱,因此,应将土壤锰含量作为影响土壤N2O释放的因素加以考虑。  相似文献   

14.
生物质炭对土壤结构改良、土壤肥力提升和农田温室气体排放具有重要意义。本研究以吉林省梨树县典型黑土为研究对象,通过培育实验,研究不同土壤水分含量(40%WHC和100%WHC)下,生物质炭种类(玉米秸秆生物质炭和稻壳生物质炭)和施加量(0%、1%和4%(w/w))对黑土N2O排放及硝化反硝化功能基因丰度的影响。结果表明,随着秸秆生物质炭施加量的增加,土壤N2O排放呈下降趋势,4%高量秸秆生物质炭添加下,土壤N2O排放量仅为1%低量秸秆生物质炭添加下的33.9%。同时土壤NO- 3-N也表现出一致性规律,4%高量生物质炭添加下土壤NO- 3-N含量显著低于1%低量生物质炭。在100%WHC土壤水分状况下,玉米秸秆生物质炭显著增加了土壤N2O排放,而稻壳生物质炭则显著降低了土壤N2O排放。高土壤水分显著促进了土壤N2O排放,进一步为实时荧光定量PCR结果所证实,高土壤水分通过增加nirS基因丰度进而促进了土壤反硝化作用过程,而4%高量稻壳生物质炭添加下nosZ基因丰度显著高于玉米秸秆生物质炭添加,表现出更强的N2O还原潜力。尽管amoA-AOA基因丰度在不同生物质炭添加量下并未发生显著变化,但amoA-AOB基因丰度在高量玉米秸秆生物质炭添加下显著下降。结果说明,土壤水分和生物质炭通过影响土壤硝化反硝化微生物的营养底物和代谢过程,进而影响土壤N2O排放特征。  相似文献   

15.
土壤是产生N2O的最主要来源之一.硝化和反硝化反应是产生N2O的主要机理,由于硝化和反硝化微生物同时存在于土壤中,因而硝化和反硝化作用能同时产生N2O.N2O的来源可通过使用选择性抑制剂,杀菌剂以及加入的标记底物确定.通过对生成N2O反应的每一步分析,主要从抑制反应发生的催化酶和细菌着手,总结了测量区分硝化、反硝化和DNRA反应对N2O产生的贡献方法.并对15N标记底物法,乙炔抑制法和环境因子抑制法作了详细介绍.  相似文献   

16.
土壤是产生N2O的最主要来源之一。硝化和反硝化反应是产生N2O的主要机理,由于硝化和反硝化微生物同时存在于土壤中,因而硝化和反硝化作用能同时产生N2O。N2O的来源可通过使用选择性抑制剂,杀菌剂以及加入的标记底物确定。通过对生成N2O反应的每一步分析,主要从抑制反应发生的催化酶和细菌着手,总结了测量区分硝化、反硝化和DNRA反应对N2O产生的贡献方法。并对15N标记底物法,乙炔抑制法和环境因子抑制法作了详细介绍。  相似文献   

17.
无机氮和葡萄糖添加对土壤微生物生物量和活性的影响   总被引:1,自引:0,他引:1  
于跃跃  赵炳梓 《土壤学报》2012,49(1):139-146
以黄淮海平原潮土为研究对象,通过室内恒温恒湿培养方法,比较研究了土壤中纤维素是否存在时,外源无机氮和葡萄糖添加对土壤微生物生物量及其活性的影响变化。实验设8个处理,包括不加任何物质的对照(CK)、添加无机氮(N)、葡萄糖(G)、纤维素(C)处理及葡萄糖和无机氮同时添加(G+N)处理,以及在纤维素存在基础上添加无机氮(C+N)、葡萄糖(C+G)、葡萄糖和无机氮同时添加(C+G+N)处理。在33天培养时间内,分别在不同的时间间隔内测定了土壤CO2累积释放量、微生物生物量碳(Cmic)、及脱氢酶(DHD)、β-葡萄糖苷酶(GLU)、过氧化氢酶(CAT)、碱性磷酸酶(APH)活性。结果表明,所有测定的微生物性质在CK与C处理间均没有显著性差异。与CK和C处理相比,其他所有处理的土壤CO2累积释放量均显著增加,其中C+G+N处理达最大值;G、G+N、C+G、C+G+N处理的土壤Cmic含量及DHD和APH活性显著提升,尤其在培养的前14天,而N和C+N处理则与CK处理相似,表示添加葡萄糖可显著增加上述处理生物活性水平,而添加无机氮则不能。添加无机氮和葡萄糖对GLU和CAT的影响不明显,大部分情况下它们在处理间没有表现出显著性差异。相关性分析表明,CO2释放速率始终与APH活性成显著正相关,但与Cmic和其他酶活性之间的相关关系则随着培养时间的不同而发生变化,这可能与不同培养时间的微生物组成或微生物利用底物的模式发生改变有关。聚类分析结果进一步表明,8个处理的土壤微生物活性水平可明显分成3组,其中活性水平最高的组只包含C+G+N处理,该结果提示在难分解纤维素存在时,无机氮和易利用有机碳的同时添加对提升土壤微生物活性的重要性。  相似文献   

18.
利用15N同位素标记方法,研究在两种水分条件即60%和90% WHC下,添加硝酸盐(NH4NO3,N 300 mg kg-1)和亚硝酸盐(NaNO2,N 1 mg kg-1)对中亚热带天然森林土壤N2O和NO产生过程及途径的影响.结果表明,在含水量为60% WHC的情况下,高氮输入显著抑制了N2O和NO的产生(p<0.01);但当含水量增为90% WHC后,实验9h内抑制N2O产生,之后转为促进.所有未灭菌处理在添加NO2-后高氮抑制均立即解除并大量产生N2O和NO,与对照成显著差异(p<0.01),在60% WHC条件下,这种情况维持时间较短(21 h),但如果含水量高(90% WHC)这种情况会持续很长时间(2周以上),说明水分有效性的提高和外源NO2-在高氮抑制解除中起到重要作用.本实验中N2O主要来源于土壤反硝化过程,而且加入未标记NO2-后导致杂合的N2O(14N15NO)分子在实验21 h内迅速增加,表明这种森林土壤的反硝化过程可能主要是通过真菌的“共脱氮”来实现,其贡献率可多达80%以上.Spearman秩相关分析表明未灭菌土壤NO的产生速率与N2O产生速率成显著正相关性(p<0.05),土壤含水量越低二者相关性越高.灭菌土壤添加NO2-能较未灭菌土壤产生更多的NO,但却几乎不产生N2O,表明酸性土壤的化学反硝化对NO的贡献要大于N2O.  相似文献   

19.
N2O是重要的温室气体之一,由此引起的全球变暖和臭氧层破坏是当今重要的环境问题。采用遮光密闭箱和气相色谱法研究了氮肥施用对小麦地N2O释放和反硝化作用的影响。结果表明,小麦生长季节里,高氮、中氮以及不施氮处理N2O平均排放通量分别为2.71、2.42、1.97 gN.hm-.2d-1;尿素、硫酸铵、硝酸钾3种氮肥品种处理下,平均N2O排放通量分别为2.42、2.14、3.13 gN.hm-2.d-1。小麦生长季节里,高氮、中氮以及不施氮处理平均反硝化速率分别为4.91、4.50、1.67 gN.hm-.2d-1;尿素、硫酸铵、硝酸钾3种氮肥品种处理下,平均反硝化速率分别为4.50、3.68、5.29 gN.hm-.2d-1。氮肥施用明显促进了土壤-植物系统中N2O排放通量和反硝化作用,氮肥施用量水平和N2O排放通量、反硝化作用呈正相关。硝酸钾对N2O排放通量和反硝化作用贡献最大,硫酸铵最小。研究还表明,小麦地N2O释放和反硝化作用与季节有一定相关性,温度较高季节排放量及反硝化作用明显,反之则较弱。  相似文献   

20.
利用15N同位素标记方法,研究在两种水分条件即60%和90% WHC下,添加硝酸盐(NH4NO3, 300mgN kg-1)和亚硝酸盐(NaNO2, 1mgN kg-1)对中亚热带天然森林土壤N2O和NO产生过程及途径的影响。结果表明,在含水量为60% WHC的情况下,高氮输入显著抑制了N2O和NO的产生(p<0.01);但当含水量增为90% WHC后,实验9h内抑制N2O产生,之后转为促进。所有未灭菌处理在添加NO2-后高氮抑制均立即解除并大量产生N2O和NO,与对照成显著差异(p<0.01)。在60% WHC条件下,这种情况维持时间较短(21h),但如果含水量高(90% WHC)这种情况会持续很长时间(2wk以上),说明水分有效性的提高和外源NO2-在高氮抑制解除中起到重要作用。本实验中N2O主要来源于土壤反硝化过程,而且加入未标记NO2-后导致杂合的N2O(14N15NO)分子在实验21h内迅速增加,表明这种森林土壤的反硝化过程可能主要是通过真菌的“共脱氮”来实现,其贡献率可多达80%以上。Spearman等级相关分析表明未灭菌土壤NO的产生速率与N2O产生速率成显著正相关性(p<0.05),土壤含水量越低二者相关性越高。灭菌土壤添加NO2-能比未灭菌土壤产生更多的NO,但却几乎不产生N2O,表明酸性土壤的化学反硝化对NO的贡献要大于N2O。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号