首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
【Objective】This paper aims to unravel the relationship between groundwater table fluctuation in karst and the precipitation and water level of the Yellow River at Pingyin in Shandong province.【Method】The analysis was based on data measured from groundwater in two karsts in the proximity of the Yellow River, precipitation and change in water level in the river from 2007 to 2018. The response of groundwater table fluctuation to precipitation and water level in the Yellow River was calculated using cross- correlation analysis, continuous wavelet transform and cross- wavelet transform.【Result】Both precipitation and groundwater table fluctuation had a 12- month period. The responsive change in groundwater table lagged behind the precipitation by 1~8 months, and the water level in the Yellow River by 0~10 months. The precipitation and groundwater table oscillated with a period of 0.86~1.20 a and 0.86~1.36 a respectively, while the oscillation period of the Yellow River water was 1 a and 3 a. The average velocity at which water flowed from the Yellow River to the karst was 21.62~ 25.53 m/d.【Conclusion】The responsive change in groundwater table in the karst in Pingyin to water level in the Yellow River was slightly slower than to precipitation. © 2019 Authors. All rights reserved.  相似文献   

2.
《Agricultural Systems》2002,71(1-2):59-73
Feed resources and nutrition constitute the principal technical constraints to ruminant production in Asia. Four main categories of feed resources are potentially available for use in smallholder crop–animal systems. These are pastures (native and improved grasses, herbaceous legumes and multi-purpose trees), crop residues, agro-industrial by-products (AIBPs), and non-conventional feed resources (NCFRs). Priorities for the use of crop residues in terms of nutrient potential and animal species are indicated. Of the technologies developed to improve the nutritive value of crop residues, more attention has been given to chemical treatment of cereal straws than to supplementation. However, a failure to demonstrate cost-effectiveness has discouraged on-farm adoption. The production of fodder from food crop systems and the establishment of multi-purpose trees and shrubs are potentially important for insuring adequate feed supplies for ruminants and improving soil fertility, but there has been limited adoption on small farms to date. Equally, there is significant potential for the more effective use of locally-produced AIBPs and NCFRs, all of which are under-utilised currently.  相似文献   

3.
4.
【Objective】This paper studied the spatiotemporal changes in hydro-chemical properties of groundwater in irrigation districts within the Kaidu River basin, as well as the factors that affect these changes.【Method】Groundwater samples were taken in January, March, July and September in 2017 from the irrigation area in the Kaidu river basin. Spatiotemporal change in hydro-chemical properties of the groundwater and its impacting factors were analyzed using statistics, spatial interpolation, and Piper and Gibbs diagram.【Result】①The groundwater quality was generally good, with low TDS and being dominated by HCO-3, Na+, Ca2+ and SO2-4. The mean TDS was high in winter and low in summer, and it was related to the depth of groundwater table. ② Na+, Ca2+ and SO2-4 varied erratically both in time and space. ③The hydro-chemical type of the groundwater in the studied area was HCO-3-SO2-4-Na+-Ca2+, and remained almost unchanged in the four seasons. ④The rock weathering appears to affect the hydro- chemical propertied of the groundwater most. The impact of human activities was mainly in spring, summer and autumn in the oasis and lakeside region, and it was stronger in irrigation season than in non-irrigation season.【Conclusion】Our results suggest that pumping groundwater for irrigation should be rationally managed and the associated change in chemical properties of the groundwater should be monitored; this applies not only to the studied sites but also to regions on the southern slope of the Tianshan Mountain. © 2019 Authors. All rights reserved.  相似文献   

5.
6.
[Objective]Soil moisture plays an important role in ecosystem function and hydrological processes. This paper investigated the hieratical distribution of soil moisture at different scales over a maize field.[Method] The studied site was a 50 m×50 m plot at the Experiment Station of Chinese Academy of Agricultural Sciences in Xinxiang, Henan province. We measured soil moisture in 0~100 cm soil from 36 locations at 10 m×10 m and 2 m×2 m scale, respectively.[Result]Geostatistical analysis revealed that the soil moisture was normally distributed and its confidence level at every scale was higher than that of logarithmic normal distribution. The value of the confidence level decreased as the sampling scale increased, and the difference between average soil moisture content at fine scale and moderate scale was smaller than the difference between moderate scale and large scale. In general, the confidence interval, standard deviation and coefficient of variation of the soil moisture increased with sampling scale. At large scale, the semi-variance function increased with lag distance, while at small and moderate scale, the variation function appeared to be independent of the lag distance. To achieve the same confidence level and accuracy in estimating soil moisture, the number of samples needed to be taken from the field increased with sampling scale. We also found that in estimating soil moisture, the number of samples needed to be taken depended on the required accuracy more than on the confidence level.[Conclusion]The probabilistic distribution and statistical characteristics of soil moisture in the field was scale-dependent. In estimating soil moisture, the number of sampled taken from the field needs to consider the scales to which the measured data will be applied. © The Author(s) 2019.  相似文献   

7.
We examined, over the postharvest seasons of 2005–2007, regulated deficit irrigation (RDI) for its potential of saving water and maintaining fruit yield and quality in ‘Summit’ sweet cherry. The postharvest irrigation treatments were: full irrigation (Control), receiving 80% of water in Control (RDI-80%), and receiving 50% of water in Control (RDI-50%). Midday stem water potential (Ψstem) was used for assessing plant water status. In 2006, trees produced a large crop and commercial fruit thinning had to be applied, whereas 2007 was a low crop year. The RDI treatment, first applied in 2005, reduced fruit set in 2006 and also reduced root winter starch concentration. In 2006, fruit set was lower in RDI-50% than in Control. But fruit thinning had still to be done with the final yield being the same among treatments. In 2007, RDI-50% produced more fruit and higher yields than Control. Relationship between postharvest Ψstem and crop load in the following season varied according to the year. They were negatively correlated in 2006 and positively correlated in 2007. Fruit firmness did not vary with irrigation treatments in any of the years. Fruit soluble solid concentration (SSC) and fruit relative dry matter (RDM) for RDI-50% was the highest in 2006 when RDI-50% trees had the lowest fruit set. In 2007, SSC and RDM for RDI-50% were the lowest with the trees having the highest fruit set and crop load at harvest. This study indicates that RDI-50% firstly applied in an “off” year, after crop has been harvested, can maintain fruit yield at similar levels to fully irrigated trees while saving water by 45%. Correction of biennial bearing and partial saving of thinning costs are additional advantages of this treatment.  相似文献   

8.
It is well-known that major irrigation projects have a strong scale economy, handicapping irrigation development in sub-Saharan Africa (SSA) because of the difficulty in formulating large-scale projects. Using project-level investment cost and performance data of major and minor irrigation projects, this paper examines the causes of the economy of scale phenomenon. We find that strong scale economy exists not only for major but also for minor projects, i.e., small- and micro-scale, projects. This is largely because of the existence of indivisible overhead costs such as high-opportunity-cost human resources for planning, designing and engineering management and supervision. We also find that large differences between major and minor projects in the absolute level of overhead as well as construction costs creates a strong scale diseconomy and results in better performance of minor projects. The advantage of minor projects holds even when their higher risk associated with the water source is taken into consideration. We argue that there is an urgent need to promote irrigation development in SSA through developing minor projects, and to reduce the heavy burden of overhead costs by developing the capacity of human resources at the national, local and farmer levels in the fields of irrigation engineering, irrigation agronomy, institutional development, and micro water management technologies.  相似文献   

9.
The Penman–Monteith equation (PM) is widely recommended because of its detailed theoretical base. This method is recommended by FAO as the sole method to calculate reference evapotranspiration (ETo) and for evaluating other methods. However, the detailed climatological data required by the Penman–Monteith equation are not often available especially in developing nations. Hargreaves equation (HG) has been successfully used in some locations for estimating ETo where sufficient data were not available to use PM method. The HG equation requires only maximum and minimum air temperature data that are usually available at most weather stations worldwide. Another method used to estimate ETo is the artificial neural network (ANN). Artificial neural networks (ANNs) are effective tools to model nonlinear systems and require fewer inputs. The objective of this study was to compare HG and ANN methods for estimating ETo only on the basis of the temperature data. The 12 weather stations selected for this study are located in Khuzestan plain (southwest of Iran). The HG method mostly underestimated or overestimated ETo obtained by the PM method. The ANN method predicted ETo better than HG method at all sites.  相似文献   

10.
The Syrdarya river is an example of a transboundary basin with contradictory water use requirements between its upstream and downstream parts. Since the winter of 1992-93, the operational regime of the upstream Toktogul reservoir on the Naryn river - the main tributary of the Syrdarya - has shifted from irrigation to hydropower generation mode. This significantly increased winter flow and reduced summer flow downstream of the reservoir. Consequently, excessive winter flow is diverted to the saline depression called Arnasai, while water for summer irrigation is lacking. This study suggests to store the excessive winter flows temporarily in the upstream aquifers of the Fergana valley and to use it subsequently for irrigation in summer. It is estimated that groundwater development for irrigation could be practiced on one-third of the irrigated land of the valley, and conjunctive use of groundwater and canal water on another third; the rest will remain under canal irrigation. This strategy will lower the groundwater table and create aquifer capacity for temporal storage of excessive water—“water banking”. This use of the term is only one of many concepts to which “water banking” or “groundwater banking” is applied. In this paper, the term is applied for temporary storing of river flow in subsurface aquifers. Pilot modeling studies for the Sokh aquifer - one of the 18 aquifers of the Fergana valley - supported that this strategy is a feasible solution for the upstream-downstream issues in the Syrdarya river basin. Field studies of water banking are required to determine the scale of adoption of the proposed strategy for each aquifer of the Fergana valley.  相似文献   

11.
Agricultural intensification in the Sahel can be described as climbing a ladder. The capital, labour, management and institutional requirements increase when farmers climb the ladder, but the potential gains are also higher. The first step on this ladder are agricultural practices without any financial outlay but with increasing labour demand, such as organic fertilizer use, seed priming, water harvesting and harvesting grains at physiological maturity to improve fodder quality. The next step on the ladder is the use of micro-fertilising, popularly known as microdose, at the rate of 0.3 g NPK fertilizer per pocket in sorghum and millet. The following step is the development of improved crop/livestock systems characterized by use of higher rates of mineral fertilisers and manure, increasing cowpea density and improved animal fattening. The last step presented on the ladder is the development of more commercially orientated agriculture characterized by development of cash crops, milk production and/or agroforestry systems. Evidences from the field support the observation that farmers intensify their production in a sequential manner similar to the way described in this paper. The technologies presented can facilitate agricultural intensification by reducing the risks and minimising the cost in agricultural production.  相似文献   

12.
Cavitation will reduce the turbine performance and even damage the turbine components. To verify the effects of splitter blades on improving the cavitation performance,the cavitation flow inside a Francis turbine runner with splitter blades was numerically simulated by using the Singhal cavitation model and the standard k-εturbulence model. The distributions of static pressure and gas volume fractions on the surface of the runner blades were predicated under different conditions,and the cavitation in the flow field of the runner was analyzed. The results show that the static pressure and gas volume fractions are more uniformly distributed on the short blades than those on the long blades in Francis turbines with splitter blades,and there is almost no cavitation on the short blades; their distributions are more uniform under small flow conditions than those under large flow conditions; and large gas volume fractions are concentrated at the outlet tip near the band on the suction side of the long blade. The installation of splitter blades can improve the cavitation performance of conventional Francis turbines.  相似文献   

13.
In consideration of the problem that the effect of conduit structure on water hammer has been ignored in the classical theory, the Poisson coupling between the fluid and the pipeline was stu died and a fourteen equation mathematical model of fluid-structure interaction (FSI) was developed in this paper. Then, the transfer matrix method (TMM) was used to calculate the modal frequency, modal shape and frequency response. The results were compared with that in experiment to verify the correctness of the TMM and the results show that the fluid-structure coupling has a greater impact on the modal frequencies than the modal shape. Finally, the influence on the response spectrum of diffe rent damping ratios was studied and the results showed that the natural frequency under different dam ping ratios has changed little but there is a big difference for the pressure spectrum. With the decrease of damping ratio, the damping of the system on frequency spectrum is more and more significant and the dispersion and dissipation is more and more apparent. So the appropriate damping ratio should be selected to minimize the effects of the vibration of the FSI.  相似文献   

14.
《Agricultural Systems》2002,71(1-2):169-177
The importance of crop–animal systems in Asia, the multiple roles played by animals and the opportunities for increasing their contribution to these systems justifies continued research effort. An assessment of the role of livestock in mixed farming systems in 14 countries has identified priority systems, technical constraints and weaknesses in the national organisations. Future research needs to focus on the rain-fed production systems, where most of the livestock are found. There is an overriding need for a farming systems perspective to the research agendas that involves inter-disciplinarity and community-based participation. Such an approach will be more complex, require concentrated effort and more efficient resource use, but will be associated with considerable benefits due to a greater integration of effort.  相似文献   

15.
【Objective】The objective of this paper is to present experimental results on efficacy of fertilization in improving aggregation and carbon and nitrogen accumulation in soil reclaimed from subsided areas caused by coal mining.【Method】The experiment was conducted under conventional irrigation with non-fertilization as the CK. We compared three treatments: applying organic fertilizer, inorganic fertilizer, and mixture of organic and inorganic fertilizer. For each treatment, we measured the size of soil aggregates, and carbon and nitrogen content in 0~20 cm and 20~40 cm soil in a coal mining-induced subsided area at Jincheng City in Shanxi Province.【Result】Compared to CK, organic fertilizer significantly increased the content of macro-aggregates sized >1 mm, and reduced the content of micro-aggregates sized < 0.25 mm. Inorganic fertilization enhanced formation of micro-aggregates, compared to organic fertilization. Applying organic fertilizer significantly increased the average weight diameter (MWD) and geometric mean diameter (GMD) of the aggregates, and reduced the fractal dimension D of the aggregates. The content of organic carbon and total nitrogen in soil under organic fertilization was the highest, followed by organic-inorganic fertilization. The content of carbon and total nitrogen in soil with a single application of inorganic fertilizer was much lower than that under organic fertilization. Majority of organic carbon and total nitrogen were found in aggregates > 0.2 mm, 1~2 mm and 0.25~1 mm, especially under organic and organic-inorganic fertilization. The C∶N ratio in all aggregates (except those in 0.053~0.25 mm) was much lower under organic and organic-inorganic fertilization than under CK, and C∶N ratio in CK and inorganic fertilization was comparable.【Conclusion】Fertilizations, especially organic fertilizer, can enhance macro-aggregation in reclaimed soil from subsided areas induced by coal mining. It also increased the content of organic carbon and total nitrogen in the aggregates. © 2019 Authors. All rights reserved.  相似文献   

16.
The findings of a study of factors influencing the uptake of pressurised irrigation technologies by smallholders in developing countries are presented. The paper reviews the physical and technical characteristics that determine their suitability for use by smallholders. It also identifies a range of pre-conditions relating to water availability, institutional support and economic opportunity that must be satisfied before smallholders will adopt even low-technology pressurised irrigation systems.The review demonstrates that where physical, economic and institutional conditions are right some forms of pressurised modern irrigation technology permit smallholder irrigation of high value crops where surface irrigation would be inappropriate. However, the paper warns against the danger of wide-scale promotion of such technologies without considering the issues of institutional and technical support. Where pressurised systems are promoted to increase water use efficiency it is essential that they be well designed, installed and operated for savings to be realised.  相似文献   

17.
The discipline of Agricultural Mechanization Engineering in Shandong University of Technology is thefirst one in the history of the University with its own superiority and characteristics in the development ofdiscipline and professional training.About 40 0 0 undergraduate students have graduated from the disci-pline,34graduate students have enrolled M.Sc.program and1 1 students have enrolled joint- training Ph Dprogram with other universities in the area of agricultural mechanization engin…  相似文献   

18.
The word ‘integrated’ is prone to different interpretations in relation to various disciplines and sectors. When approaching operational water management, one would dream that integration would encompass effective links between scientific disciplines and technical features, with a good knowledge of interactions among different environmental compartments (land/water, terrestrial/coastal, surface/groundwater etc.), of pollution pathways, of various pressures and impacts (including from climate change) etc. The world of management effectively involves many different actors, representing different economic sectors (e.g. agriculture, industry), the civil society, stakeholder organisations, including the representation of citizens, and it is often (wrongly) thought that any kind of decision-making is carried out in an agreed and harmonious way. The theory is at least paved through IWRM principles as they are conceived within the framework of the EU Water Framework Directive (WFD), so we might say that we have actually no choice but to make it work!! But what is the reality in practice? The difficulty is to consider mandatory policy obligations on the one side, technical feasibility and scientific knowledge on the other side, and reflect whether and how these can be properly interfaced. This has been the subject of dynamic discussions within the past 6 years in the framework of EU-funded research projects aiming to support policy WFD developments and implementation. One of the key conclusions of these discussions among scientists, policy-makers and stakeholders underlined the need to develop a conceptual framework for a science-policy interface related to water, which would enable to gather various initiatives and knowledge. This paper discusses on-going developments in this field with an European perspective.  相似文献   

19.
《Agricultural Systems》1999,60(2):123-135
The use of crop models to simulate the nitrogen (N) cycle in crop rotations is of major interest because of the complexity of processes that simultaneously interact. We studied the performance of the Erosion Productivity Impact Calculator (EPIC) model in simulating the N cycle in two different rotations under irrigation: tomato (Lycopersicon esculentum Mill.)–safflower (Carthamus tinctorius L.) and tomato–wheat (Triticum aestivum L.). Processing tomatoes were grown on raised beds and furrow irrigated in 1994 in the Sacramento Valley of California, USA. Safflower and wheat were grown in 1995 and 1994–95, respectively, after the previous tomato crop. A data set from safflower grown on different plots in 1994 was used to calibrate the model for this crop. The model accurately predicted the yield, biomass and N uptake of the crops in the rotation. Soil inorganic N was also accurately simulated in the two rotations. The model predicted important amounts of N leached during the winter period of 1994–95 due to the heavy rainfall. The model was used to explore the influence of rotation type (tomato–safflower or tomato–wheat) and irrigation type (fixed amounts and dates or flexible automatic irrigation). Simulation results of the two rotations during 10 years (1986–95) predicted average losses by leaching higher than 200 kg N ha−1 for each rotation period, irrespective of the rotation type. Losses were more important during the fall–winter and increased as rainfall increased above a threshold rainfall of 300 mm. The flexible automatic irrigation resulted in lower N leached during the tomato crop season. Simulation results indicated that a fallow period during the fall–winter following processing tomatoes should be avoided because of the high risk of N leaching losses. The introduction in the rotation of a deep-rooted crop, such as safflower, grown with low irrigation, drastically reduced the risk of N leaching during the following fall–winter period, without substantial yield reductions.  相似文献   

20.
《Agricultural Systems》1999,60(2):99-112
The continuing debate on sustainability has raised wide concerns towards integration of environmental and economic aspects into the development decision-making process. This paper develops a framework for environmental–economic decision making that includes the environmental and economic sustainability criteria, and local people's preferences in the context of a lowland irrigated agriculture system using multi-criteria decision-making techniques. Several criteria, such as land capability/suitability, energy input/output ratio, water demand and environmental costs, are considered as environmental sustainability criteria. Economic sustainability is measured from farmers', governments and societal viewpoints using extended cost-benefit analysis. The Geographic Information System (GIS) technique has been used to evaluate spatial sustainability criteria. The involvement of local people at various levels of the decision- making process is emphasized and their opinions are sought in the decision-making process using a two-stage field survey. The results of the multi-criteria analysis combining both environmental and economic sustainability criteria are discussed, and economic incentives for sustainable intensification of lowland irrigated agriculture are outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号