首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
基于自动导航的小麦精准对行深施追肥机设计与试验   总被引:2,自引:0,他引:2  
针对冬小麦返青期地表追施氮肥使氮素挥发导致肥料利用率低的问题,结合目前在小麦追肥过程中缺少深施氮肥作业装备的现状,进行了基于拖拉机自动导航技术实现精准对行深施氮肥的技术研究,设计了小麦精准对行精量深施追肥机。追肥机采用安装有自动导航系统的拖拉机牵引实现精准对行,以RTK-GNSS接收机测取的作业速度为基准,通过液压系统驱动排肥机构工作,双圆盘开沟器开沟深施,采用PID控制排肥轴转速与车辆行驶速度实现实时匹配,达到精量控制追肥量的目的。田间试验结果表明:设置目标追肥量为200 kg/hm2,车辆行驶速度为5 km/h时,追肥机能完成对行深施追肥作业,机具对行作业误差在±6 cm以内,追肥量偏差小于9%,可满足实际生产需求;对照撒肥机表层撒肥作业,每公顷减施氮肥25 kg左右,小麦每公顷增产486.5 kg左右。  相似文献   

2.
悬挂式深松机耕整地耕深检测方法研究   总被引:3,自引:0,他引:3  
耕深作为深松作业质量的重要指标,长期以来无法实现在线评估,目前以人工抽测为主,误差大,效率低。以提高农机深松耕整地作业质量为目标,提出一种基于深松机组姿态估测的耕深检测方法及系统。首先分析了牵引拖拉机以及悬挂式深松机在作业过程中的运动轨迹,建立了拖拉机与深松机作业耕深检测模型。该模型通过检测安装在拖拉机后悬挂杆和悬挂式深松机上的姿态传感器输出角度,实时计算深松机耕深。为验证该检测模型的精度,设计了基于嵌入式ARM内核的耕深检测传感器和深松作业检测系统,该系统集卫星定位系统(GPS)、移动网络传输(GPRS)、数据存储(SD卡)等于一体,能实时采集深松机作业耕深、作业位置、作业速度及航向信息,数据存储在检测系统的终端设备中,并通过移动网络传送至远程数据中心做进一步融合处理,以对深松作业质量进行综合评价。将耕深检测传感器进行静态标定,耕深检测标定误差小于0.88 cm,平均误差小于0.21 cm,均方根误差小于0.66 cm。利用标定后的传感器及深松作业检测系统在田间开展多组试验,试验结果显示该系统耕深检测最大误差为1.18 cm,多组试验数据的平均误差小于0.45 cm,均方根误差小于0.64 cm,表明该系统耕深检测精度和稳定性较高。  相似文献   

3.
针对设施生产物料运输的需要,研制了具有自动寻迹和协同作业功能的磁导式移动平台控制系统。利用磁导航传感器作为预设路径的检测元件,并根据磁导航传感器的特点设计了模糊PID调节器改良平台的导航性能。在此基础上,开发基于超声波传感器和红外传感器的测距系统,通过测距模块检测移动平台与从业人员之间的距离,进而实现平台协同作业的功能。试验结果表明:模糊PID控制器在解决轨迹跟踪控制方面的优越性,该系统能够在温室垄间实现预设路径的稳定导航和人机跟随,横向最大偏差不超过2.6cm,平均跟随误差不超过5.4cm,能够满足移动平台在温室内行走的运输作业要求。  相似文献   

4.
现有大田土壤电导率检测装置主要以手持式为主,存在检测效率低、实时性差等问题。基于电流-电压四端法原理设计了一种车载式大田土壤电导率在线检测系统,系统主要由恒流信号源电路、信号处理电路、Arduino控制器、GPS定位模块及车载传感器等组成,可在线检测大田土壤电导率。通过实验室和大田试验对系统性能进行了验证,试验结果表明,系统具有较好稳定性,动态响应时间约为540ms,开机预热引起的温漂最大偏差为3.70%,不考虑温差影响下系统检测精度R2为0.7342,消除温差影响后检测精度R2为0.8645~0.9156,均高于商用手持式电导率检测仪,其R2为0.6095;探究了拖拉机振动、传感器插入深度、作业速度和土壤坚实度对系统检测精度的影响,振动状态相对静止状态,检测数据最大误差为10.37%,且误差主要集中在0~10μS/cm范围内;当作业速度不大于5.0km/h和传感器插入深度大于等于10cm时,该系统可稳定进行大田土壤电导率在线检测,且检测地块土壤坚实度不应过小,以确保传感器电极与土壤充分接触。该系统可为开展基于土壤电导率在线检测的实时变量施肥技术研究提供技术支撑。  相似文献   

5.
为提高农机在果园复杂环境下作业精度,降低驾驶员劳动强度,设计了精准辅助导航系统。通过北斗差分定位设备获取农业机械的经纬度、航向角度以及行驶速度等数据,根据农田信息规划出全局行驶路径,实时计算农业机械行驶过程中的航向偏角、行驶距离和耕作面积并绘制行驶轨迹,根据观察航向偏角和行驶轨迹,驾驶员来修正作业机械使农机按规划路径行驶。系统采用基于红外散斑的深度立体视觉相机,降低自然光线限制,以此获取农业机械前方深度图像,根据视觉算法对图像中的作物或障碍加以检测,并计算其到农业机械和路径中心线距离,判断是否需要避障并提示驾驶员应调整方向,当调整方向进行避障后返回到已规划路径继续行驶。试验结果表明,辅助导航系统在直线行驶试验时横向行驶最大偏差小于5 cm,能够辅助驾驶员按规划路径精准行驶;基于立体视觉的障碍检测测距误差范围在4%以内,且处理每帧图像耗时最大为40 ms,实时性很高,能高效辅助驾驶员进行精确避障。   相似文献   

6.
针对黄淮海地区化肥施用过量和肥料利用率低的问题,基于GNSS拖拉机自动导航技术和液压控制技术,提出一种小麦种行、肥行精准拟合的新模式,设计了一种小麦种肥精准拟合变量施肥控制系统。通过安装在拖拉机上的自动导航系统进行施肥作业,记录导航线和施肥作业轨迹,根据机具幅宽和肥(种)管位置分布,对施肥导航线进行平移,从而完成导航播种作业,同时记录播种导航线和播种作业轨迹,实现种行、肥行精准对行作业。小麦种行、肥行精准拟合变量施肥控制系统可以根据用户设置的目标施肥量,实时计算液压电动机目标转速,同步将目标转速指令发送给施肥控制器,控制器根据光电编码器反馈的电动机转速信号,调节电液比例阀开度,进而驱动液压电动机带动排肥执行机构进行排肥,实现液压电动机转速的闭环控制,一次完成带施、旋耕、深层条施的同步变量施用。田间试验结果表明,种、肥精准对行误差最大为6 cm,误差在3 cm以内占90%以上,完全满足黄淮海地区宽窄行种植模式下的作业需求;浅层排肥量最大误差为2. 70%,变异系数最大为0. 05;深层排肥量最大误差为7. 95%,变异系数最大为0. 08,完全满足田间试验需要。田间试验设置常规施量、减量12%施肥二水平三重复,测产结果表明,与常规施肥3 900 kg/hm~2的产量相比,减量12%施肥的产量达到3 945 kg/hm~2。  相似文献   

7.
为实现打捆机作业数量的精准计数,对其他打捆机计数方法进行分析,设计了基于多传感器的秸秆打捆机计数监测系统。系统以STC15W4K61S4为微处理器为核心,集成角度传感器模块、霍尔传感器模块及全网通模块,可实现对打捆机作业量的精准计数与实时查看,并根据卡尔曼滤波算法对角度传感器舱门检测进行优化,实现打包计数精准上传。系统测试结果表明:使用接近开关计数方法计数误差为5.3%,未进行滤波处理的计数误差为2.5%,使用卡尔曼滤波器后计数误差为0%,使用卡尔曼滤波器优化后的角度值进行舱门检测可使打捆机打包计数精准度达到100%。最后,对系统进行了实地作业试验,结果表明:系统在长时间作业情况下工作效果良好,满足系统设计需求。  相似文献   

8.
基于遥控的温室喷雾机自适应控制系统设计与试验   总被引:1,自引:0,他引:1  
在地面存在障碍及施药隐患的温室环境里,为避免喷雾机碰撞墙面或作物,防止重喷漏喷,要求喷雾机与作物之间始终保持近似平行,以保证施药效果。为此,基于串口通信,设计了无线遥控及自适应行走的实时运动控制系统。在喷雾机车体两侧及前端共布置了5个超声波测距传感器,分别用来实时检测车体到作物行两边的距离和前方路况,并设计了一种对作物行两侧距离检测的去最值平均值算法,以根据测量数据对喷雾机进行实时调整。给出了样机总体结构,介绍了运动控制系统的组成、原理及自适应调节方法,详细阐述了控制系统的软硬件设计方法,并对遥控与自适应实时运动控制系统及算法的调节性能分别进行了室内场地试验和温室环境试验。试验结果表明:自适应控制系统及算法可使喷雾机实时快速调整并沿作物行中心线行走,喷雾机实际偏移道路中心线的距离平均值为6cm,遥控系统灵敏、安全、可靠。  相似文献   

9.
为解决喷杆式喷雾机在对马铃薯等茄科茄属作物进行喷施作业时喷杆相对作物冠层距离精确测量与控制问题,设计了一套马铃薯喷雾机喷杆高度控制系统。该系统采用二维激光雷达扫描田间马铃薯的植株冠层,根据种植模式对田间马铃薯植株进行冠层单元分割,通过融合姿态传感器的数据对雷达输出数据矫正,并基于中值滤波算法、移动最小二乘曲线拟合方法处理冠层点云数据,实时解算出喷杆相对冠层顶部的垂直距离信息,同时融合油缸位移传感器数据设计了双阈值喷杆高度调控策略,实现喷杆相对马铃薯冠层距离的精准调控。系统应用于3WP-1500型喷雾机,通过高度检测精度试验和高度调节试验测试了系统性能。试验结果表明,通过激光雷达检测作物冠层高度的最大相对误差为7.16%,平均相对误差为3.95%。高度调节试验表明,通过确定最优的调节阈值,可以有效降低喷杆高度调节误差,提高系统稳定性,测试高度调节标准偏差为21.81mm,平均相对误差为3.08%,系统运行平稳,满足喷杆相对冠层距离自动控制需求。  相似文献   

10.
为解决现有无线检测系统无法精准有效反映温室内立体空间的环境变化情况,以及传感器节点定位误差大、硬件成本高等问题,设计了一种基于UWB(Ultra wide band)定位的智能温室三维温湿度检测系统。系统通过一款自主设计的集成UWB定位模块的STM32F系统板对各传感器节点进行定位,并搭载AHT25型高精度传感器对环境数据进行采集。UWB主基站使用4G网络通信模块将各传感器数据及位置信息发送到上位机,并在Web端根据HTML5技术实现温室三维温湿度场可视化,完成温室三维温湿度远程检测。系统定位测试试验证明,各传感器节点精度主要集中在10~30 cm范围内,部分节点测量位置误差大于50 cm,各节点最大丢包率为2.5%,平均丢包率为1.9%,满足温室测量基本需求,对检测温室热工缺陷区域以及研究植物生长适宜环境有重要意义。  相似文献   

11.
基于模糊自适应纯追踪模型的农业机械路径跟踪方法   总被引:20,自引:0,他引:20  
为了提高农业机械自动导航控制系统的精度,提出了一种基于模糊自适应纯追踪模型的农业机械路径跟踪方法.该方法基于纯追踪模型进行农业机械路径跟踪控制,结合农业机械运动学模型来确定车轮期望转向角;采用模糊自适应控制在线自适应地确定纯追踪模型中的前视距离,提高了路径跟踪的精度.农业机械的路径跟踪实验结果表明,路径跟踪的最大误差不超过10 cm,平均误差小于5 cm,完全满足农业机械的作业要求,验证了提出方法的可行性和有效性.  相似文献   

12.
基于卡尔曼滤波融合算法的深松耕深检测装置研究   总被引:1,自引:0,他引:1  
为提高实时检测耕深的准确性,设计了基于超声波传感器和红外传感器以及卡尔曼滤波融合算法的耕深检测装置,采用超声波传感器通过渡越时间法测量耕深,采用红外传感器通过三角测距法测量耕深,通过卡尔曼滤波融合算法滤除两传感器检测数据中的杂波,并进行融合。室内试验表明,在平整地面,红外传感器检测效果优于超声波传感器;在秸秆覆盖地面,超声波传感器检测效果优于红外传感器。经卡尔曼滤波融合后的数据能充分利用两传感器在不同环境中检测的有效数据。在设定耕深为30 cm和40 cm的田间试验中,超声波传感器滤波数据的平均值分别为29.51 cm和38.79 cm,深松深度变异系数分别为2.51%和3.10%;红外传感器滤波数据的平均耕深分别为32.06 cm和41.52 cm,深松深度变异系数分别为2.41%和2.76%;而经卡尔曼滤波融合后的数据平均耕深分别为30.06 cm和39.95 cm,深松深度变异系数分别为1.07%和1.00%,说明采用滤波融合后的检测数据比单个传感器更能准确检测耕深和反映耕深变化趋势。  相似文献   

13.
针对小方捆机作业过程中草捆连续、单捆动态分离称量难、捡拾器升降频繁、地面起伏大等问题,基于多传感器融合技术设计了一套方捆机草捆动态称量系统。提出了一种草捆动态分离、识别方法,构建了基于称量台实时下压力和俯仰角的双参数草捆动态称量系统,实现了单草捆动态独立称量。该系统由机械部分、传感器部分、数据采集模块、卫星定位模块、显示终端及上位机软件组成,传感器部分包括4个压力式称量传感器、称量台俯仰角传感器和草捆状态识别传感器。系统可以实时显示称量台下压力、称量台俯仰角、草捆质量、草捆状态和经纬度等信息。进行了草捆动态称量系统性能试验,结果表明,静态模式下系统的草捆质量预测值最大相对误差为0.38%;动态模式下草捆质量预测值和真实值决定系数R2达到0.996,系统预测的相对误差为-4.40%~4.30%。说明系统具有较高的准确性及较好的鲁棒性,满足田间草捆称量的实际需要,为打捆机作业质量评价提供了一种快速测量手段。  相似文献   

14.
喷杆喷雾机智能控制系统设计及试验   总被引:2,自引:0,他引:2  
为提高喷雾均匀性和农药的有效利用率,针对大田作物施药的农艺要求,设计了一种安装于大田常用喷杆喷雾机的喷雾机智能控制系统,并介绍总体方案和工作原理。该系统主要包括变量施药、喷杆高度自动调节等功能,变量施药系统通过变量调节阀调节喷雾流量,通过喷雾量与作业速度自适应控制模型,实现作业过程中药液均匀喷施;喷杆高度调节系统采用超声波传感器检测喷头与作物顶端的距离,根据设定的目标高度,控制电动缸动作,调节喷杆高度。试验表明:变量喷雾控制系统能够根据设定喷量和作业速度的变化准确发出调控指令,控制流量调节阀动作进行流量调节,提高了喷雾作业的均匀性,喷雾精度误差最小为2.24%,能够有效提高喷药作业质量;喷杆高度调节最大误差为5.40%,提高了喷杆与作物顶端距离调整的准确度。  相似文献   

15.
针对拖挂式大载荷特种车辆作业自动化以及高精度安全作业需求,以大载荷牵引车为对象,设计了一套拖挂式机组自主导航控制系统。车载程控系统采用模块化分布式系统,通过CAN总线实现系统内各模块间通信,远程运管平台与车载程控终端之间采用TCP协议进行数据通信,实现远程运管平台与车载程控系统间信息交互。建立拖挂式特种车辆的运动学模型,分析牵引作业时被牵引机具的牵引状态和最小转弯半径。针对传统纯追踪算法中固定前视距离缺陷,本文根据当前牵引车实时速度、追踪路径曲率、航向等信息动态计算前视距离,将固定前视距离改进为动态前视距离追踪,由单参数变为多参数进行优化控制参数,显著提高了轨迹追踪精度;使用随机森林算法对轨迹追踪数据进行特征提取,根据各个特征重要性指标权重,修改算法参数。在试验场地为水平倾斜度最大为2°的空旷的水泥跑道上,牵引车质量2t,被牵引机具质量10t、长22m,且牵引机组设计要求最大行驶速度为6km/h、最大横向偏差为50cm。根据复杂路径试验与数据分析,系统纠偏响应时延最大为84ms,牵引机组绝对横向误差最大为37.14cm,平均绝对误差为14.91cm,满足大载荷拖挂作业中的实际应用要求。  相似文献   

16.
基于近地光谱信息的玉米变量追肥技术是实现氮肥科学合理施用的有效途径。为提高追肥控制系统的光谱信息获取精度及控制精度,对光谱传感器布置方式及系统控制方法进行了优化设计,并进行了田间追肥试验。对行式及分布式布置方式对比试验表明:光谱传感器分布式布置方式采集NDVI优于对行式布置方式,获取NDVI均值平均提高6.4%,方差平均降低0.038。NDVI采集数据采用滑动窗口均值滤波算法进行滤波,滑动窗口边长为15,均方差为0.0079。系统响应特性试验表明,系统的平均响应时间为1.5s,平均稳态误差绝对值为0.775r/min,平均超调量为10.6%,系统在排肥轮工作转速范围内具有较高的控制精度。田间施肥量控制效果评价试验表明,排肥理论转速与监测转速的平均相对误差为3.35%,可以实现精准施肥的目标。  相似文献   

17.
针对温室植保机器人作业过程中,UWB节点之间频繁出现的非视距通信现象导致UWB系统定位精度低和稳定性差的问题,提出了一种基于UWB测距值修正的融合定位方法。首先,设计了基于测距残差的UWB节点间通信类型识别方法;其次,分析了视距和非视距通信下UWB测距误差产生原因并建立了两种通信条件下的测距值修正模型;最后,基于扩展卡尔曼滤波器设计了UWB测距修正值和IMU数据融合方法,实现了温室机器人作业过程中的可靠定位。在温室环境下的实际验证结果表明:非视距通信条件下,经过UWB测距修正的融合定位方法的定位误差为11.95 cm,相较于未进行UWB测距值修正的融合定位方法,定位误差降低83.11%,可为温室植保机器人提供稳定的高精度定位信息。  相似文献   

18.
在长有小灌木等干扰物和机耕道崎岖不平的复杂香蕉园环境中,机器人定位导航方法有时效果不佳、甚至失效,准确测量机器人与香蕉树的最短距离是实现定位与导航的前提和关键,为此提出一种基于拟合滤波的激光和超声波香蕉树测距方法。首先,在各采样时刻由激光和超声波传感器分别测得机器人到香蕉树的距离数据,并相互校验,生成待测香蕉树的一组距离数据;选择二次多项式以最小二乘法对该组距离数据进行拟合,基于拟合的二次多项式和设定阈值对该组距离数据进行滤波,去除其中偏差较大的距离;最后,对滤波后的距离数据中3个最小值求平均值,以此作为机器人到待测香蕉树的最短距离。实验表明,该测距方法在理想环境下对香蕉树的最大测距误差率为1.0%,在有小灌木等干扰物或者道路崎岖不平的环境以及室外自然场景下最大测距误差率为2.0%,相应的最大测距误差为1.0cm,且测距稳定性良好。  相似文献   

19.
为获得更加准确、全面、实时的农田障碍物信息,提高农业机械智能体自主导航定位的精度,提出一种基于北斗系统和视觉导航的组合定位方法。针对农田环境,选择BDS、视觉CCD为外部传感器,设计一种基于扩展卡尔曼滤波器(EKF)的数据融合算法,该算法融合了BDS和视觉传感器数据,实时定位农机智能体的位置。系统通过对导航角度和行驶进度进行跟踪,完成绝对定位。通过机器视觉图像处理,获取导航基准和作业目标信息,完成相对定位。通过试验验证该算法的有效性,并通过卡尔曼滤波算法(KF)的成果进行对比分析。结果表明:滤波后的路径更平滑,抖动偏差减小,坐标数据比KF滤波结果更稳定、更平滑。此外,距离的平均误差可以从滤波前的0.119 5 m降低到滤波后的0.07 0 m,有效地降低了过程噪声。且位置偏差在±0.1 m以内,精度较高,提升了农机智能体自主导航的定位精度。  相似文献   

20.
清选系统是便携式谷物联合收获机的重要部分。为此,针对丘陵山区用的双行便携式谷物联合收获机,清选作业时吸杂风机转速过高的问题,对吸杂口偏置型分离筒进行了结构设计。通过自制的分离筒吸杂口偏置型清选装置试验台,对吸杂口的旋转角度与偏置距离进行试验研究,得到了小麦清选性能较好的旋转角度与偏置距离分别为30°和30mm,为便携式谷物联合收割机清选系统的设计提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号