首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Soil, crop, and fertilizer management practices may affect quality of organic carbon (C) and nitrogen (N) in soil. A long-term field experiment (growing barley, wheat, or canola)was conducted on a Black Chernozem (Albic Argicryoll) loam at Ellerslie, Alberta, Canada, to determine the influence of 19 years (1980 to 1998) of tillage [zero tillage (ZT) and conventional tillage (CT)], straw management [straw removed (SRem) and straw retained (SRet)], and N fertilizer rate (0, 50, and 100 kg N ha?1 in SRet and 0 kg N ha?1 in SRem plots) on macro-organic matter C (MOM-C) and N (MOM-N), microbial biomass C (MB-C), and mineralizable C (Cmin) and N (Nmin) in the 0- to 7.5-cm and 7.5- to 15-cm soil layers. Treatments with N fertilizer and SRet generally had a greater mass of MOM-C (by 201 kg C ha?1 with 100 kg N ha?1 rate and by 254 kg C ha?1 with SRet), MOM-N (by 12.4 kg N ha?1 with 100 kg N ha?1 rate and by 8.0 kg N ha?1 with SRet), Cmin(by 146 kg C ha?1 with 100 kg N ha?1 rate and by 44 kg C ha?1 with SRet), and Nmin(by 7.9 kg N ha?1 with 100 kg N ha?1 rate and by 9.0 kg N ha?1 with SRet)in soil than the corresponding zero-N and SRem treatments. Tillage, straw, and N fertilizer had no consistent effect on MB-C in soil. Correlations between these dynamic soil organic C or N fractions were strong and significant in most cases, except for MB-C, which had no significant correlation with MOM-C and MOM-N. Linear regressions between crop residue C input and mass of MOM-C, MOM-N, Cmin, and Nmin in soil were significant, but it was not significant for MB-C. The effects of management practices on dynamic soil organic C and N fractions were more pronounced in the 0- to 7.5-cm surface soil layer than in the 7.5- to 15-cm subsoil layer. In conclusion, the findings suggest that application of N fertilizer and retention of straw would improve soil quality by increasing macro-organic matter and N-supplying power of soil.  相似文献   

2.
Field experiments (established in autumn 1979, with monoculture barley from 1980 to 1990 and barley/wheat–canola–triticale–pea rotation from 1991 to 2008) were conducted on two contrasting soil types (Gray Luvisol [Typic Haplocryalf] loam soil at Breton; Black Chernozem [Albic Agricryoll] silty clay loam soil at Ellerslie) in north-central Alberta, Canada, to determine the influence of tillage (zero tillage and conventional tillage), straw management (straw removed [SRem] and straw retained [SRet]), and N fertilizer rate (0, 50 and 100 kg N ha?1in SRet, and only 0 kg N ha?1in SRem plots) on seed yield, straw yield, total N uptake in seed + straw (1991–2008), and N balance sheet (1980–2008). The N fertilizer urea was midrow-banded under both tillage systems in the 1991 to 2008 period. There was a considerable increase in seed yield, straw yield, and total N uptake in seed + straw with increasing N rate up to 100 kg N ha?1 under both tillage systems. On the average, conventional tillage produced greater seed yield (by 279 kg ha?1), straw yield (by 252 kg ha?1), and total N uptake in seed + straw (by 6.0 kg N ha?1) than zero tillage, but the differences were greater at Breton than Ellerslie. Compared to straw removal treatment, seed yield, straw yield, and total N uptake in seed + straw tended to be greater with straw retained at the zero-N rate used in the study. The amounts of applied N unaccounted for over the 1980 to 2008 period ranged from 1114 to 1846 kg N ha?1 at Breton and 845 to 1665 kg N ha?1 at Ellerslie, suggesting a great potential for N loss from the soil-plant system through denitrification, and N immobilization from the soil mineral N pool. In conclusion, crop yield and N uptake were lower under zero tillage than conventional, and long-term retention of straw suggests some gradual improvement in soil productivity.  相似文献   

3.
A long-term experiment was conducted at the Central Research Institute for Dryland Agriculture for 13 years to evaluate the effect of low tillage cum cheaper conjunctive nutrient management practices in terms of productivity, soil fertility, and nitrogen chemical pools of soil under sorghum–mung bean system in Alfisol soils. The results of the study clearly revealed that sorghum and mung bean grain yield as influenced by low tillage and conjunctive nutrient management practices varied from 764 to 1792 and 603 to 1008 kg ha?1 with an average yield of 1458 and 805 kg ha?1 over a period of 13 years, respectively. Of the tillage practices, conventional tillage (CT) maintained 11.0% higher yields (1534 kg ha?1) over the minimum tillage (MT) (1382 kg ha?1) practice. Among the conjunctive nutrient management treatments, the application of 2 t Gliricidia loppings + 20 kg nitrogen (N) through urea to sorghum crop recorded significantly highest grain yield of 1712 kg ha?1 followed by application of 4 t compost + 20 kg N through urea (1650 kg ha?1) as well as 40 kg N through urea alone (1594 kg ha?1). Similar to sorghum, in case of mung bean also, CT exhibited a significant influence on mung bean grain yields (888 kg ha?1) which was 6.7% higher compared to MT (832 kg ha?1). Among all the conjunctive nutrient management treatments, 2 t compost + 10 kg N through urea and 2 t compost + 1 t Gliricidia loppings performed significantly well and recorded similar mung bean grain yields of 960 kg ha?1 followed by 1 t Gliricidia loppings + 10 kg N through urea (930 kg ha?1). The soil nitrogen chemical fractions (SNCFs) were also found to be significantly influenced by tillage and conjunctive nutrient management treatments. Further, a significant correlation of SNCF with total soil nitrogen was observed. In the correlation study, it was also observed that N fraction dynamically played an important role in enhancing the availability pool of N in soil and significantly influenced the yield of sorghum grain and mung bean.  相似文献   

4.
The effect of cattle manure and sulfur fertilizer on seed yield and oil composition of pumpkin (Cucurbita pepo var. Styriaca) under inoculated with Thiobacillus thiooxidans was investigated in a factorial study based on a randomized complete block design. Experimental factors consisted of cattle manure (M) (M0: 0, M1: 10; and M2: 20 t ha?1), sulfur (S) (S0: 0, S1: 250; and S2: 500 kg ha?1) and T. thiooxidans (B): inoculated (B1) and non-inoculated (B0). Results demonstrated that the application of T. thiooxidans, cattle manure, and S fertilizer decreased the soil pH. The largest number of seed per fruit (367), highest fruit yield (70.57 t ha?1), seed iron (Fe) content (16.26 mg 100 g?1), and seed yield (111 kg ha?1) was obtained when 20 t ha?1 manure was applied in combination with 500 kg ha?1 S inoculated with T. thiooxidans. In this condition, the content of S, Fe, phosphorus (P), and nitrogen (N) in plant shoots was increased by 44.8%, 22.58%, 33.89%, and 10.38%, respectively, compared to the control. Moreover, the highest content of seed protein was observed in 10 t ha?1 manure and 500 kg ha?1 S fertilizer inoculated with T. thiooxidans. When 250 kg ha?1 S fertilizer was applied, 20 t ha?1 manure decreased seed P content sharply. At the rate of 500 kg ha?1 S fertilizer, the highest content of seed P was obtained from 20 t ha?1 manure. Totally, 20 t ha?1 cattle manure, along with 500 kg ha?1 S fertilizer as well as T. thiooxidans inoculation, improved oil and seed yield of medicinal pumpkin.  相似文献   

5.
Nitrogen and sulfur play an important role in maize production. The aim of this study was to evaluate the effect of nitrogen (N) and sulfur (S) levels applied in various ratios on maize hybrid Babar yield at Peshawar in 2011 and 2013. Four N levels (120, 160, 200 and 240 kg N ha?1) and four S levels (20, 25, 30 and 35 kg S ha?1) were applied in three splits: a, at sowing; b, V8 stage; c, VT stage in ratios of 10:50:40, 20:50:30 and 30:50:20. Grains ear?1, thousand grain weight, grain yield ha?1 and soil pH were significantly affected by years (Y), N, S and their ratios, while no effect of N, S and their ratios was noted on ears plant?1. Maximum grains ear?1 (390), thousand grain weight (230.1 g) and grain yield (4119 kg ha?1) were recorded in 2013. N increased grains ear?1 (438), thousand grain weight (252 g) and grain yield (5001 kg ha?1) up to 200 kg N ha?1. Each increment of S increased grains ear?1 and other parameters up to 35 kg S ha?1, producing maximum grains ear?1 (430), thousand grain weight (245 g) and grain yield (4752 kg ha?1), while soil pH decreased from 8.06 to 7.95 with the application of 35 kg S ha?1. In the case of N and S ratios, more grains ear?1 (432), heavier thousand grains (246.7 g) and higher grain yield (4806 kg ha?1) were observed at 30:50:20 where 30% of N and S were applied at sowing, 50% at V8 and 20% at VT stage. It is concluded that 200 kg N ha?1 and 35 kg S ha?1 applied in the ratio of 30% at sowing, 50% at V8 and 20% at VT stage is recommended for obtaining a higher yield of maize hybrid Babar.  相似文献   

6.
Information regarding the evaluation of tillage effects on soil properties and rainfed wheat (Triticum aestivum L.) cultivars of Iranian fields is not available. Therefore, this research was conducted in Sanandaj (west of Iran) using a randomized complete block design in a split-plot arrangement. Three types of tillage including conventional tillage (moldboard plow to soil depth of 30 cm plus disk harrow twice), minimum tillage (chisel plow to soil depth of 15 cm plus disk harrow once) and no-tillage are assigned to the main plots. Wheat cultivars (Sardari and Azar2) were randomly distributed within the subplots in each tillage system. Results showed that the greatest bulk density and cone index were found in the minimum tillage and no tillage systems. The highest rate of grain yield was obtained in the minimum tillage system. The grain yield of Sardari cultivar (1624.1 kg ha?1) was significantly greater than that of Azar2 (1572 kg ha?1). Minimum tillage improved soil physical properties and wheat growth compared with the other tillage systems. No tillage increased microbial biomass carbon and bacteria number in soil compared with the other tillage systems. We conclude that using minimum tillage for Sardari cultivar will be more effective compared with other treatments.  相似文献   

7.
A field experiment was conducted to assess the effect of sulfur (S) fertilization on distribution of S in soil and use efficiency on blackgram in subtropical Inceptisol of acidic soil of Assam, India. Five levels of S were applied (0, 10, 20, 30 and 40 kg S ha?1) along with recommended dose of nitrogen, phosphorus and potassium. Available S content gradually decreased with the advancement of crop growth stages and lowest value was observed at 60 DAS. Different S fractions were found to increase with increasing levels of S application and 40 kg S ha?1 resulted the highest content for all S fractions. The grain and stover yield of blackgram increased significantly up to 20 kg S ha?1 which was 95.69% higher over control. Agronomic efficiency, apparent S recovery and recovery efficiency of S were higher at 10 kg S ha?1and found decreased with increase in level of S.  相似文献   

8.
The study was based on data from selected long-term field trials established at the Experimental Fields of the Institute of Field and Vegetable Crops, Novi Sad (Serbia). The effect of tillage systems on SOC concentration and SOC stock was most pronounced at 0–10 cm depth. In a 0–40 cm soil layer, in a 7-year period, no-till (NT) sequestrated 863 kg SOC ha?1 yr?1 more compared to moldboard plow tillage (PT), while the effects of disc tillage (DT) and chisel tillage (CT) were not significantly different. Unfertilized three-crop rotation (CSW) compared to two-crop rotation (CW) enhanced SOC storage in a 0–30 cm soil layer by 151 kg C ha?1 yr?1 in a 56-year period. Within fertilized treatments, SOC concentration was highest under continuous corn (CC). Mineral fertilization (F) non-significantly increased the SOC stock compared to no fertilization in corn monoculture in a 32-year period. The incorporation of mineral fertilizers and harvest residues (F + HR) and mineral fertilizers and farmyard manure (F + FYM) sequestered 195 and 435 kg C ha?1 yr?1 more than the unfertilized plot, respectively, in a 0–30 cm soil layer, in a 35-year period. Irrigation did not significantly affect SOC sequestration.  相似文献   

9.
An experiment was conducted to study the biochemical response of rapeseed (Brassica campestris L.) to sulphur (S) fertilization at grey terrace soil. There were five treatments: S0 (control), S1 (20 kg S ha?1), S2 (40 kg S ha?1), S3 (60 kg S ha?1) and S4 (80 kg S ha?1). Chlorophyll content in the leaf was determined at 30, 40, 50 and 60 days after emergence (DAE). The biochemical properties were found responsive to S. The highest chlorophyll content of mustard leaves was found in 60 kg S ha?1 at 50 DAE. The same treatment also showed the maximum N content in the leaves at 45 DAE. The highest oil content was recorded in 60 kg S ha?1. Other chemical characters such as acid value, peroxide and saponification values were lowest in 60 kg S ha?1 while iodine value was found highest in the same S level. Non-essential fatty acids such as palmitic, stearic and erucic acid were increased in the rapeseed with decrease in S level, whereas essential fatty acids were maximum in 60 kg S ha?1. Therefore, 60 kg S ha?1 can be recommended to produce quality rapeseed in grey terrace soil of Bangladesh.  相似文献   

10.
Abstract

Two Ferralsols (350 and 600 g kg?1 clay) from the Brazilian Cerrado Region were evaluated for long‐term effects (5 and 8 years) of no tillage on carbon (C) stocks in particulate (>53 µm) and mineral‐associated (<53 µm) soil organic matter (SOM) fractions. Carbon stocks in particulate SOM increased under no tillage compared with conventional tillage, and the rate was higher in the clayey soil (0.62 Mg C ha?1 yr?1) than in the sandy clay loam soil (0.31 Mg C ha?1 yr?1). In contrast, the mineral‐associated SOM in the top soil layer (0–20 cm) was not affected by tillage system. Sequestration of atmospheric C in tropical no‐tillage soils seems to be due to accumulation of C in labile SOM fractions, with highest rates in clayey soils probably due to physical protection.  相似文献   

11.
Abstract: Soil quality indicators and nematode abundance were characterized in a loessial soil under long‐term conservation tillage to evaluate the effects of no‐till, double‐disk, chisel, and moldboard plow treatments. Indicators included soil electrical conductivity (EC), soil texture, soil organic matter (SOM), and total particulate organic matter (tPOM). Nematode abundance was positively correlated with EC, silt content, and total POM and negatively correlated with clay content. Clay content was the main source of variation among soil quality indicators and was negatively correlated with nematode abundance and most indicators. The gain in SOM in the no‐till system amounted to 10887 kg over the 24 years or 454 kg ha?1 year?1, about half of this difference (45%) resulting from soil erosion in plowed soils. The balance of gain in SOM with no till (249 kg ha?1 year?1) was due to SOM sequestration with no till. No‐till management reduced soil erosion, increased SOM, and enhanced soil physical characteristics.  相似文献   

12.
Most plant nutrients are optimally available when soil pH is close to neutral. In this experiment the effects of Thiobacillus and Mycorrhiza on nutrient uptake and grain yield of maize were studied on an alkaline soil as a factorial experiment with randomized complete blocks design. Treatments consisted of Mycorrhiza fungi (M): inoculated (m1) and noninoculated (m0), Thiobacillus (T): inoculated (t1) and noninoculated (t0), and sulfur (S) (S0, S1: 250, and S2: 500 kg ha?1). Inoculation of Mycorrhiza, Thiobacillus, and S application decreased soil pH and increased grain yield and seed oil content. The lowest soil pH and the greatest S content were obtained from the combination of Thiobacillus and 500 kg ha?1 S. Inoculation of Thiobacillus and S application significantly decreased root colonization. The greatest iron (Fe) content was in the combination of Mycorrhiza inoculation and 500 kg ha?1 S. Grain P content significantly increased with Mycorrhiza inoculation and S application. The greatest grain yield obtained from combination of Thiobacillus with 500 kg ha?1 S.  相似文献   

13.
Abstract

To assess their impacts on net global warming, total greenhouse gas emissions (mainly CO2, N2O and CH4) from agricultural production in arable land cropping systems in the Tokachi region of Hokkaido, Japan, were estimated using life cycle inventory (LCI) analysis. The LCI data included CO2 emissions from on-farm and off-farm fossil fuel consumption, soil CO2 emissions induced by the decomposition of soil organic matter, direct and indirect N2O emissions from arable lands and CH4 uptake by soils, which were then aggregated in CO2-equivalents. Under plow-based conventional tillage (CT) cropping systems for winter wheat, sugar beet, adzuki bean, potato and cabbage, on-farm CO2 emissions from fuel-consuming operations such as tractor-based field operations, truck transportation and mechanical grain drying ranged from 0.424 Mg CO2 ha?1 year?1 for adzuki bean to 0.826 Mg CO2 ha?1 year?1 for winter wheat. Off-farm CO2 emissions resulting from the use of agricultural materials such as chemical fertilizers, biocides (pesticides and herbicides) and agricultural machines were estimated by input–output tables to range from 0.800 Mg CO2 ha?1 year?1 for winter wheat to 1.724 Mg CO2 ha?1 year?1 for sugar beet. Direct N2O emissions previously measured in an Andosol field of this region showed a positive correlation with N fertilizer application rates. These emissions, expressed in CO2-equivalents, ranged from 0.041 Mg CO2 ha?1 year?1 for potato to 0.382 Mg CO2 ha?1 year?1 for cabbage. Indirect N2O emissions resulting from N leaching and surface runoff were estimated to range from 0.069 Mg CO2 ha?1 year?1 for adzuki bean to 0.381 Mg CO2 ha?1 year?1 for cabbage. The rates of CH4 removal from the atmosphere by soil uptake were equivalent to only 0.020–0.042 Mg CO2 ha?1 year?1. From the difference in the total soil C pools (0–20 cm depth) between 1981 and 2001, annual CO2 emissions from the CT and reduced tillage (RT) soils were estimated to be 4.91 and 3.81 Mg CO2 ha?1 year?1, respectively. In total, CO2-equivalent greenhouse gas emissions under CT cropping systems in the Tokachi region of Hokkaido amounted to 6.97, 7.62, 6.44, 6.64 and 7.49 Mg CO2 ha?1 year?1 for winter wheat, sugar beet, adzuki bean, potato and cabbage production, respectively. Overall, soil-derived CO2 emissions accounted for a large proportion (64–76%) of the total greenhouse gas emissions. This illustrates that soil management practices that enhance C sequestration in soil may be an effective means to mitigate large greenhouse gas emissions from arable land cropping systems such as those in the Tokachi region of northern Japan. Under RT cropping systems, plowing after harvesting was omitted, and total greenhouse gas emissions from winter wheat, sugar beet and adzuki bean could be reduced by 18%, 4% and 18%, respectively, mainly as a result of a lower soil organic matter decomposition rate in the RT soil and a saving on the fuels used for plowing.  相似文献   

14.
A greenhouse experiment with soybean grown on sulfur (S) and boron (B) deficient calcareous soil was conducted for two years in northwest India to study the influence of increasing sulfur and boron levels on yield and its attributing characters at different growth stages (55 days, maturity). The treatments included four levels each of soil applied sulfur viz. 0, 6.5, 13.4, 20.1 mg S kg?1 and boron viz. 0, 0.22, 0.44, 0.88 mg B kg?1 at the time of sowing. The highest dry matter yield at 55 days after sowing, DAS (19.3 g pot?1) and maturity (straw yield ?25.2 g pot?1 and grain yield ?7.3 g pot?1) was recorded with B0.44 S13.4 treatment combination. The combined applications of sulfur and boron yielded highest oil content with B0.44S13.4 (21.7%) treatment level. Chlorophyll ‘a’ and ‘b’ increased significantly with successive levels of sulfur and boron addition at 55 DAS. The mean sulfur and boron uptake in straw and grains increased significantly with increasing levels of sulfur and boron up to 13.4 mg kg?1 and 0.44 mg kg?1 and decreased non-significantly thereafter. At both the growth stages, a synergistic interactive effect of combined application of sulfur and boron was observed with B0.44 S13.4 treatment level for sulfur and boron uptake in straw and grains.  相似文献   

15.
A field study was performed for two consecutive seasons to evaluate the effect of polyacrylamide (PAM), tillage systems and particle size on soil physical properties and wheat grain yield. The PAM rates were 0, 10 and 20 kg ha?1 while the tillage treatments included no-tillage (NT), moldboard plowing (CT1), and chisel plowing (CT2). Soil fine particles size of two locations were A (25.2 silt + clay) and B (38.5 silt + clay). Location B reported higher organic matter and total porosity while lower in bulk density. The CT1 and NT treatments denoted better soil organic matter percentage. The CT1 presented maximum infiltration rate compared to other tillage systems. No tillage showed better soil water contents while the minimum was in CT1 of location A and CT2 of location B. Increasing the PAM rate increased total porosity, infiltration rate and soil water content while decreased soil bulk density. Possibly, the presence of compacted layer in location A hindered the effect of PAM. At location B, the CT2 with PAM of 20 kg ha?1 had the highest grain yield compared to other tillage systems. The PAM is beneficial for soil and water conservation and can be used in agriculture.  相似文献   

16.
If soil solution phosphorus (P) optimum levels for plant growth (external P) are known, P adsorption isotherms or their equations could further be used to assess how much fertilizer P may be needed for optimum plants yield (QFPN) by adjusting this known external solution P requirement in the soil (ESPR). Surface soil samples were collected from a farmer's field area and research area. An adsorption study was conducted on Ustic Endoaquerts (S1 soil), Typic Calciargids (S2 soil), and Typic Torripsamments (S3 soil) to develop the two-surface Langmuir-type equations. Phosphorus adsorption data were obtained by equilibrating 10-g soil samples in 100 mL of 0.01 M calcium chloride (CaCl2) containing various amounts of monopotassium phosphate (KH2PO4). Thereafter, 11 P fertilizer rates were calculated by two-surface Langmuir-type equations to adjust different estimated soil solution P levels (EPAS) that were designated as treatments (0.05 to 0.90 mg L?1). Then field experiments on lentil (cv. Niab Masoor 2002) were conducted according to a randomized complete block design (RCBD) on these soils to determine internal (plant tissue), external (soil solution), and fertilizer P requirements. Maximum lentil seed yield (Mg ha?1) was 0.87 with T4 (0.17 mg P L?1) in S1 soil, 1.8 with T3 (0.20 mg P L?1) in S2 soil, and 0.73 with T7 (0.28 mg P L?1) in S3 soil, obtained by applying 170 kg P2O5 ha?1 in S1 soil, 110 kg P2O5 ha?1 in S2 soil, and 78 kg P2O5 ha?1 in S3 soil. Internal P concentrations (%) of the whole plant associated with 95% of maximum lentil seed yield at flowering stage were 0.245, 0.210, and 0.315 in S1, S2, and S3 soils, respectively. Internal P requirements of lentil seed were 0.290 in S1, 0.245% in S2, and 0.380% in S3 soil. The ESPRs for 95% of maximum yield of lentil were 0.16 mg L?1, in S1 soil, 0.23 mg L?1 in S2 soil, and 0.27 mg L?1 in S3 soil. The QFPN estimated from graphs corresponding to these ESPR values were 160 kg P2O5 ha?1 in S1 soil, 125 kg P2O5 ha?1 in S2 soil, and 74 kg P2O5 ha?1 in S3 soil. The QFPNs estimated from corresponding two-surface Langmuir-type equation by using respective ESPR values were 164, 127, and 75 kg P2O5 ha?1 in S1, S2, and S3 soil, respectively. Field-applied P2O5 amounts to adjust soil solution P levels (mg L?1) at 0.166 (T4), 0.229 (T4), and 0.281 (T7) were 170, 126, and 78 kg ha?1 in S1, S2, and S3 soil, respectively. Based on the results of these studies, we propose that QFPNs estimated by graphs against identified ESPR values or calculated by the use of corresponding two-surface Langmuir-type equations are in close proximity to the field-applied P to adjust desired EPAS value. Therefore, either of the two techniques may be used to estimate QFPN for optimum lentil yield. Close  相似文献   

17.
A 4-year (2008–2009 to 2011–2012) study was conducted on the effect of mineral phosphorus (P) + sulphur (S) and biofertilizers on rain-fed chickpea (Cicer arietinum L.) at the Punjab Agricultural University’s Research Station, Ballowal Saunkhri, India. The experiment comprised of five combinations of P and S, viz. control (P0S0), no P + 10 kg S ha?1 (P0S10), 15 kg P + 10 kg S ha?1 (P15S10), no P + 20 kg S ha?1 (P0S20) and 30 kg P + 20 kg S ha?1 (P30S20); and three seed inoculation levels, viz. control, Rhizobium and phosphate-solubilizing bacteria (PSB), were laid out in randomized complete block design. Combined application of P + S resulted in improved growth, nodulation, yield attributes and yield. The increase in seed yield over control due to P + S ranged from 11.8% to 17.7%. Seed inoculation with Rhizobium recorded the highest growth, nodulation, yield attributes and yield of chickpea and was statistically at par with PSB and significantly better than no inoculation. Highest benefit/cost ratio (B:C, 2.19) was obtained in P30S20. In view of environmental pollution and high costs of chemical fertilizers, biofertilizers alone or in combination may help to achieve sustainable and ecological agricultural production.  相似文献   

18.
Winged bean [Psophocarpus tetragonolobus (L.) DC] plants, line UPS31, were grown in pots of sulfur (S)-deficient soil in a glasshouse without added S or with five levels of added S. The seed was inoculated with rhizobia (Bradyrhizobia sp. strain CB756) and plants were later given additional mineral nitrogen (N). Harvests of shoots were made at 39 and 78 days after sowing (DAS). Shoot dry matter yield, total S (ST), S reducible by hydriodic acid (SHI) – a measure of sulfate – and N were determined. At 78 DAS, the critical concentration (at 90% maximum yield) of ST in shoots was 0.9 mg S g?1 dry matter and in young leaves was 1.4 mg S g?1 dry matter. Plants with these concentrations or below would be considered S-deficient. The usefulness of critical concentrations of SHI or ratios of SHI/ST, and N/ST as indicators of S status is discussed.  相似文献   

19.
Using two drought resistant wheat (Triticum aestivum L.) cultivars, ‘Changwu134’ and ‘Changhan58,’ a field experiment was conducted in ChangWu Agro-ecological Experiment Station on China's Loess Plateau during 2008 and 2009 to compare the effects of different fertilizer and tillage treatments on the fructan contents as well as fructan exo-hydrolase (FEH) activity in relation to wheat yield. We found that ‘Changhan58’ had greater yield and fructan content in the penultimate internode and higher FEH activity than did ‘Changwu134.’ For ‘Changhan58.’ applying 195 kg·ha?1(120 +75) N plus 45000 kg·ha?1 of pig manure and 120 kg·ha?1 phosphate under conservation tillage produced the highest yield (6769 ka/ha), fructan content in penultimate internode, water use efficiency (WUE), as well as FEH activity among the fertilizer and tillage treatments. Therefore, routine soil management for wheat should focus on combined use of manures and inorganic fertilizer to enhance the amount and transportation efficiency of WSC and ultimately ensure greater yield.  相似文献   

20.
Yield and nitrogen (N)-content in wheat was studied under applied treatments of crop residues (legume vs. cereal), tillage depths (deep vs. shallow) and N-fertilizer rates (0, 40, 80, 120 and 160 kg ha?1) at wheat-maize cropping systems. Experiments were conducted at Agronomy Research farm, the University of Agriculture, Peshawar Pakistan, during winter season 2009–2010 and 2010–2011 crop growth seasons. Well-chopped crop residues (5 t ha?1) on dry matter basis of legume (Vigna unguicuata) and cereal (Zea mays) were applied to soil and subsequently plowed with mold-board plow as deep tillage (DT) and cultivator as shallow tillage (ST) treatment (main plot treatments). A month after residue and tillage application, seedbed was prepared and wheat was planted with drill in rows 25 cm apart in middle of November each year. Phosphorus and potassium were applied uniformly 80 and 40 kg ha?1, respectively during seedbed preparation. N-fertilizer rates were applied in two splits: half 15 days after sowing (DAS) and other half 45 DAS (sub-plot treatment). Uniform cultural practices were applied during crop growth and development. Legumes residues amendments showed better responses than cereal but lower than no-residue treatment for N-content in leaf blade before anthesis (LBA), after anthesis (LAA), straw N-content (SNC), grain N-content (GNC), grain N-uptake (GNU), crop N-removal (CNR), recovery efficiency of added nitrogen (REAN), N-use efficiency (NUE), grain N-uptake (GNU) and grain yield. Likewise, shallow tillage proved better than deep tillage system for LBA, LAA, SNC, GNC, GNU, CNR, REAN, NUE, GNU and grain yield. Increased N-fertilizer from control onwards showed significant (p > 0.05) increments in LBA, LAA, SNC, GNC, GNU, CNR, N-uptake and grain yield. Treatments interaction was also found significant (p > 0.05). Study suggested, regardless of the given treatments, GNU and grain yield were in strong positive linear relationship. Legume residue incorporated shallow out yielded GNU and NUE of spring wheat in wheat-maize cropping system. It is concluded that LR and ST with 120 kg N ha?1 ensures production of good wheat quantity and quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号