共查询到20条相似文献,搜索用时 15 毫秒
1.
Composition and toxigenic potential of the Fusarium graminearum species complex from maize ears,stalks and stubble in Brazil 下载免费PDF全文
P. R. Kuhnem T. J. Ward C. N. Silva P. Spolti M. L. Ciliato D. J. Tessmann E. M. Del Ponte 《Plant pathology》2016,65(7):1185-1191
A large collection (n = 539) of Fusarium graminearum species complex (FGSC) isolates was obtained from Brazilian maize, and collections formed according to geography and maize part: (i) kernel (n = 110) from south and south‐central Brazil; (ii) stalk (n = 134) from Paraná state (south); and (iii) stubble (n = 295) from Rio Grande do Sul state (south). Species composition, identified using a multilocus genotype approach, was assessed separately in each collection due to differences in geographic sampling. Overall, three species were found: F. meridionale (Fmer; 67% prevalence) with the nivalenol (NIV) genotype, F. graminearum (Fgra; 19%) with the 15‐acetyl (A) deoxynivalenol (DON) genotype, and F. cortaderiae (Fcor; 14%) with the NIV (49/74) or the 3‐ADON (25/74) genotype. In kernels, Fmer was spread across all locations and Fgra and Fcor were found mostly at high elevation (>800 m a.s.l.). The majority (97·8%) of stalk isolates was assigned to Fmer; three were assigned to Fgra. In the stubble, Fmer was less dominant (53%), with a shift towards Fcor as the most frequent species at high elevation sites (>600 m a.s.l.). No differences in the mycelial growth rate were observed among isolates from each species grown at 15°C. Fgra grew faster at 25°C and Fmer showed the widest range of variation across the isolates at both temperatures. The survey data suggest that Fmer may outcompete other species on ears and stalks in comparison to stubble. Additional sampling that controls for other factors, as well as direct testing of aggressiveness on ears and stalk tissue, will be needed to fully evaluate this hypothesis. 相似文献
2.
Species composition and genetic structure of Fusarium graminearum species complex populations affecting the main barley growing regions of South America 下载免费PDF全文
E. Castañares M. I. Dinolfo E. M. Del Ponte D. Pan S. A. Stenglein 《Plant pathology》2016,65(6):930-939
Members of the Fusarium graminearum species complex (FGSC), such as F. graminearum and F. asiaticum, are the main cause of fusarium head blight (FHB) of wheat and barley worldwide. In this study, 117 FGSC isolates obtained from commercial barley grain produced in Argentina (n = 43 isolates), Brazil (n = 35), and Uruguay (n = 39) were identified to species and trichothecene genotypes, and analysed using amplified fragment length polymorphism (AFLP) and sequence‐related amplified polymorphism (SRAP) markers. In addition, reductase (RED) and trichothecene 3‐O‐acetyltransferase (Tri101) were sequenced for a subset of 24 isolates. The majority of the isolates (n = 103) were identified as F. graminearum, which was the only species found in Argentina. In Uruguay, only one F. cortaderiae isolate was found among F. graminearum isolates. In Brazil, F. graminearum also dominated the collection (22/35), followed by F. meridionale (8/35), F. asiaticum (2/35), F. cortaderiae (2/35) and F. austroamericanum (1/35). Species were structured by trichothecene genotype: all F. graminearum were of the 15‐acetyldeoxynivalenol (ADON), F. meridionale, F. asiaticum and F. cortaderiae were of the nivalenol (NIV), and F. austroamericanum was of the 3‐ADON genotype. Both AFLP and SRAP data showed high levels of genetic variability, which was higher within than among countries. Isolates were not structured by country of origin. SRAP analysis grouped F. graminearum in a separate cluster from the other species within the complex. However, AFLP analysis failed to resolve the species into distinct clades with partial clustering of F. meridionale, F. austroamericanum, F. asiaticum and F. graminearum isolates. 相似文献
3.
Diversity and pathogenicity of Fusarium graminearum species complex from maize stalk and ear rot strains in northeast China 下载免费PDF全文
The Fusarium graminearum species complex (FGSC) is an important group of pathogens distributed in maize‐producing areas worldwide. This study investigated the genetic diversity and pathogenicity of 40 FGSC isolates obtained from stalk rot and ear rot samples collected from 42 locations in northeastern China during 2013 and 2014. A phylogenetic tree of translation elongation factor (EF‐la) sequences designated the 40 isolates as F. graminearum sensu stricto (67.5%) and F. boothii (32.5%). By using inter‐simple sequence repeat analysis (ISSR), it was shown that the isolates were divided into two clades, which corresponded to the species identity of the isolates. However, the isolates from the two different diseases could not be distinguished in pathogenicity. The disease severity index of seedlings inoculated with stalk isolates was slightly higher than that of seedlings inoculated with isolates from infected ears, whereas the pathogenicity of the stalk and ear isolates were identical. 相似文献
4.
Fusarium graminearum species complexes (FGSCs), such as Fusarium asiaticum and F. graminearum, are important pathogens that cause Fusarium head blight (FHB) in several cereal crops worldwide. In this study, we collected 342 gramineous weed samples in the proximity of rice fields from May to June 2018 in Korea. Among the 500 Fusarium isolates from the weed samples, 13 species of Fusarium were identified, and F. asiaticum (41.2%), F. avenaceum (18.0%), F. acuminatum (16.4%) and F. graminearum (14.8%) were the most frequently isolated. The trichothecene genotype analysis showed that 206 F. asiaticum strains consisted of the nivalenol (NIV) genotype (n = 195, 94.7%) and 3-acetyldeoxynivalenol (3ADON) genotype (n = 11, 5.3%), whereas 74 F. graminearum strains consisted of the 15-acetyldeoxynivalenol (15ADON) genotype (n = 58, 78.4%) and 3ADON genotype (n = 16, 21.6%). Geographical differences were observed in the FGSC and trichothecene genotype compositions, which appeared host-dependent between the southern provinces and mid-eastern provinces. The aggressiveness assessment of FHB showed that the 3ADON chemotype was most aggressive followed by the 15ADON and NIV chemotypes in wheat, while the NIV chemotype was most aggressive followed by the 3ADON and 15ADON chemotypes in rice. The F. asiaticum strains grew slowly and produced fewer conidia and perithecia than the F. graminearum strains, regardless of their chemotypes. The results of this study suggest that F. asiaticum with the NIV chemotype has a host preference for rice, and FHB-causing pathogens can be harboured in gramineous weeds, which play a role in the dispersal of FHB pathogens to rice and other cereal crops. 相似文献
5.
Molecular,biological and physiological characterizations of resistance to phenamacril in Fusarium graminearum 下载免费PDF全文
Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating wheat diseases in China. Phenamacril is a novel cyanoacrylate fungicide with a unique chemical structure and specific mode of action against Fusarium spp. In this study, the molecular, biological and physiological characteristics of laboratory‐induced mutants of F. graminearum with resistance to phenamacril were investigated. Compared to the wildtype strains, the phenamacril‐resistant mutants showed obvious defects in various biological and physiological characteristics, including vegetative growth, carbon source utilization, response to oxidative and osmotic stresses, sensitivity to cell wall and cell membrane integrity inhibitors, cell membrane permeability, glycerol accumulation and pathogenicity. The phenotypes of the phenamacril‐resistant mutants exhibited many variations. Sequencing indicated that the three parental strains studied were identical, and the mutants TXR1, TXR2, BMR1, BMR2, SYR1 and SYR2 each had a single point mutation in the amino acid sequence encoded by the myosin‐5 gene (FGSG_01410). These results provide new reference information for future investigations concerning the resistance mechanism of F. graminearum to phenamacril and could offer important relevant data for the management of FHB caused by F. graminearum. 相似文献
6.
以多菌灵为主的苯并咪唑类杀菌剂一直是小麦抽穗扬花期防控赤霉病的主要手段之一。本研究对2018年我国主要麦区采集的1 464株赤霉病菌菌株进行多菌灵抗性分子检测。共检测出多菌灵抗性菌株97株,抗性频率为6.63%,同时发现抗性菌株以F167Y突变频率最高,其次为E198Q和F200Y。通过比较不同省份间多菌灵抗性发生频率发现,长江中下游麦区赤霉病菌群体抗性频率明显高于黄淮麦区群体。本研究相比之前研究中的抗性频率大幅度上升,表明在多菌灵的选择压力下,多菌灵抗性种群发展迅速。为防止抗性群体的进一步发展,致使多菌灵防治赤霉病失效,应采用混配、复配药剂、不同作用机理的杀菌剂交替轮换使用来防治小麦赤霉病。 相似文献
7.
Pathogenicity of Fusarium graminearum and F. meridionale on soybean pod blight and trichothecene accumulation 下载免费PDF全文
M. L. Chiotta M. S. Alaniz Zanon J. M. Palazzini M. M. Scandiani A. N. Formento G. G. Barros S. N. Chulze 《Plant pathology》2016,65(9):1492-1497
Soybean (Glycine max) is the most important crop in Argentina. At present Fusarium graminearum is recognized as a primary pathogen of soybean in several countries in the Americas, mainly causing seed and root rot and pre‐ and post‐emergence damping off. However, no information about infections at later growth stages of soybean development and pathogenicity of F. graminearum species complex is available. Therefore, the objectives of this study were to compare the pathogenicity of F. graminearum and F. meridionale isolates towards soybean under field conditions and to evaluate the degree of pathogenicity and trichothecene production of these two phylogenetic species that express different chemotypes. Six isolates of F. graminearum and F. meridionale were evaluated during 2012/13 and 2013/14 soybean growing seasons for pod blight severity, percentage of seed infected in pods and kernel weight reduction. The results showed a higher aggressiveness of both F. graminearum and F. meridionale species during the 2013/14 season. However, the differences in pathogenicity observed between the seasons were not reflected in a distinct trichothecene concentration in soybean seeds at maturity. Fusarium meridionale isolates showed similar pathogenicity to F. graminearum isolates but they were not able to produce this toxin in planta during the two field trials. 相似文献
8.
Nivalenol‐producing Fusarium cerealis associated with fusarium head blight in winter wheat in Manitoba,Canada 下载免费PDF全文
Fusarium head blight (FHB) in small grain cereals is primarily caused by the members of the Fusarium graminearum species complex. These produce mycotoxins in infected grains, primarily deoxynivalenol (DON); acetylated derivatives of DON, 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON); and nivalenol (NIV). This study reports the isolation of Fusarium cerealis in infected winter wheat heads for the first time in Canada. A phylogenetic analysis based on the TRI101 gene and F. graminearum species‐specific primers revealed two species of Fusarium: F. graminearum sensu stricto (127 isolates) and F. cerealis (five isolates). Chemotype determination based on the TRI3 gene revealed that 65% of the isolates were 3‐ADON, 31% were 15‐ADON and 4% were NIV producers. All the F. cerealis isolates were of NIV chemotype. Fusarium cerealis isolates can often be misidentified as F. graminearum as the morphological characteristics are similar. Although the cultural and macroconidial characteristics of F. graminearum and F. cerealis isolates were similar, the aggressiveness of these isolates on susceptible wheat cultivar Roblin and moderately resistant cultivar Carberry differed significantly. The F. graminearum 3‐ADON isolates were most aggressive, followed by F. graminearum 15‐ADON and F. cerealis NIV isolates. The findings from this study confirm the continuous shift of chemotypes from 15‐ADON to 3‐ADON in North America. In Canada, the presence of NIV is limited to barley samples and the discovery of NIV‐producing F. cerealis species in Canadian wheat fields may pose a serious concern to the Canadian wheat industry in the future. 相似文献
9.
The introduction of imidazolinone‐tolerant rice varieties has made selective Oryza sativa (weedy rice) control possible. We hypothesised that Italian weedy rice populations have variable degrees of susceptibility to imazamox prior to imidazolinone‐tolerant variety introduction. To this end, 149 Italian weedy rice populations collected from fields never before cultivated with imidazolinone‐tolerant varieties were tested in a glasshouse‐based, whole‐plant response screening study. Imazamox was applied to all populations post‐emergence at a rate of 70 g a.i. ha?1, resulting in 70–90% shoot biomass reduction in the majority of cases. The results prompted a second study of the seedling dose response of four weedy rice populations from the initial study group. Three imidazolinone‐tolerant and one conventional rice variety were also included. The seedling roots were cut six days after germination and exposed to different concentrations of imazamox. The root regrowth associated with each concentration‐exposure was then measured. Imazamox concentrations to inhibit weedy rice root growth by 50% varied by about two orders of magnitude, or between 0.0018 and 0.12 mm . Even with this result, imidazolinone‐tolerant varieties were at least 31.8 times less susceptible than weedy rice populations, suggesting that Italian weedy rice populations were not tolerant to imazamox before introduction of these varieties. 相似文献
10.
RNA silencing of PEX6 gene causes decrease in pigmentation,sporulation and pathogenicity of Fusarium oxysporum 下载免费PDF全文
Peroxisomes are single membrane‐bound organelles that play a pivotal role in various developmental processes in all eukaryotic cells. This study targeted the PEX6 gene, which encodes for peroxisomal biogenesis factor 6, by RNA interference (RNAi) in Fusarium oxysporum f. sp. lycopersici. Fusarium oxysporum is a soilborne filamentous, hemibiotrophic fungus that invades tomato roots and colonizes the xylem vessels, thereby causing complete wilting of infected tomato plants. The expression of FoPEX6 in F. oxysporum was found to be higher during early stages of growth and development. The FoPEX6 gene was isolated and a hairpin RNAi construct was prepared and introduced into F. oxysporum 4471 through glass‐bead transformation. The fungal transformation status, i.e. integration, expression and presence of the intended small interfering RNAs (siRNAs), was confirmed by PCR, qPCR and stem‐loop PCR, respectively. The silenced fungal transformants exhibited reduced pigmentation and a significant reduction in sporulation as compared to the wild type. They also showed dramatic reduction in pathogenicity (virulence) on tomato, based on root infection and fruit invasion assays. These results suggest that PEX6 has a central role in pigmentation, sporulation and pathogenicity in F. oxysporum. 相似文献
11.
Screening crop accessions for allelopathic activity is of paramount importance for crop allelopathy research. Previous bioassays often did not use a mixed culture of donor and target plants, did not use soil and were not conducted under natural conditions. In this study, we designed an inhibitory‐circle method in which a rice accession (donor plant) and Echinochloa crus‐galli (target plant) were cultured together in paddy soil under natural conditions. First, we determined that the highest allelopathic activity of allelopathic rice accession PI312777 was at the 5‐leaf stage, and the suitable distance of rice seedlings and E. crus‐galli was 12 cm apart. This method was then validated by a field test. A further 40 rice accessions were evaluated for allelopathic activity to E. crus‐galli using this method. Two rice accessions, PI312777 and Taichung Native 1, had highly allelopathic activity to E. crus‐galli (inhibitory rate > 50%), while another accession, Lemont, had non‐allelopathic activity. These experimental results were in accordance with previous studies using direct field experiments. The inhibitory‐circle method integrated three necessary conditions, that is donor and target plants grown together, with soil as the medium and under natural conditions for reliable results. The ‘inhibitory‐circle method’, which combined donor and target plants, soil medium and field conditions, can give reliable results in one step, compared with laboratory screening methods. Also, the ‘inhibitory‐circle method’ gave results in 30‐35 days, thereby substantially reducing the requirements for time, labour and cost. 相似文献
12.
Perspectives on the specific targeting of Fusarium graminearum for the development of alternative head blight treatment approaches 下载免费PDF全文
Diseases of agricultural crops caused by fungi have devastating economic and health effects. Fusarium head blight (FHB) is one of the most damaging diseases of wheat and other small grain cereals. FHB reduces agricultural yield while also affecting food supply and safety through deposition of toxins (mycotoxins/phytotoxins). Control of FHB growth and toxin accumulation in grains remain major challenges. While the ultimate goal in the battle against FHB is the development of resistant wheat varieties, the actual use of fully resistant plants that preclude any need for treatment with fungicides remains out of sight. Current antifungals being applied against FHB are generally azole‐based inhibitors. However, usage of these azole‐based fungicides is being complicated by the facts that these are active only during specific short‐lived developmental time periods, fungi are developing increased resistance to them and they are having significant environmental impacts. As such, there is a great need for more targeted, specific and effective antifungal agents to address the significant threat of FHB. This review provides an overview of some of the more promising fungal targets that are currently being investigated for antifungal development. 相似文献
13.
Fusarium species and chemotypes associated with fusarium head blight and fusarium root rot on wheat in Sardinia 下载免费PDF全文
V. Balmas B. Scherm A. Marcello M. Beyer L. Hoffmann Q. Migheli M. Pasquali 《Plant pathology》2015,64(4):972-979
Environmental conditions in Sardinia (Tyrrhenian Islands) are conducive to fusarium root rot (FRR) and fusarium head blight (FHB). A monitoring survey on wheat was carried out from 2001 to 2013, investigating relations among these diseases and their causal agents. FHB was more frequently encountered in the most recent years while FRR was constantly present throughout the monitored period. By assessing the population composition of the causal agents as well as their genetic chemotypes and EF‐1α polymorphisms, the study examined whether the two diseases could be differentially associated to a species or a population. Fusarium culmorum chemotypes caused both diseases and were detected at different abundances (88% 3‐ADON, 12% NIV). Fusarium graminearum (15‐ADON genetic chemotype) appeared only recently (2013) and in few areas as the causal agent of FHB. In F. culmorum, two haplotypes were identified based on an SNP mutation located 34 bp after the first exon of the EF‐1α partial sequence (60% adenine, 40% thymine); the two populations did not segregate with the chemotype but the A‐haplotype was significantly associated with FRR in the Sardinian data set (P = 0·001), suggesting a possible fitness advantage of the A‐haplotype in the establishment of FRR that was neither dependent on the sampling location nor the sampling year. The SNP determining the Sardinian haplotype is distributed worldwide. The question whether the A‐haplotype segregates with characters facilitating FRR establishment will require further validation on a specifically sampled international data set. 相似文献
14.
Fusarium species associated with stalk rot and head blight of grain sorghum in Queensland and New South Wales,Australia 下载免费PDF全文
Historical records report Fusarium moniliforme sensu lato as the pathogen responsible for Fusarium diseases of sorghum; however, recent phylogenetic analysis has separated this complex into more than 25 species. During this study, surveys were undertaken in three major sorghum‐producing regions in eastern Australia to assess the diversity and frequency of Fusarium species associated with stalk rot‐ and head blight‐infected plants. A total of 523 isolates were collected from northern New South Wales, southern Queensland and central Queensland. Nine Fusarium species were isolated from diseased plants. Pathogenicity tests confirmed F. andiyazi and F. thapsinum were the dominant stalk rot pathogens, whilst F. thapsinum and species within the F. incarnatum–F. equiseti species complex were most frequently associated with head blight. 相似文献
15.
16.
17.
The cultivation of aerobic rice in the tropics enables farmers to save water without lowering productivity. Unfortunately, this system suffers from declining yields due to a disease complex involving nematodes, pathogenic Pythium spp. and nutrient deficiencies. Assessing the impact of each underlying factor can contribute to efficient disease control measures. This study therefore investigated pathogenic and genotypic variability among Pythium species from affected aerobic rice fields in the Philippines using pathogenicity assays and sequence information from the internal transcribed spacer (ITS) region and β‐tubulin gene. Three closely related Pythium spp., P. arrhenomanes, P. graminicola and P. inflatum, were recovered from affected aerobic rice fields. All P. arrhenomanes isolates reduced rice seedling growth, whereas only a few P. graminicola isolates and no P. inflatum isolates were pathogenic, indicating that P. arrhenomanes is probably the most important species affecting rice. Both P. arrhenomanes and P. graminicola isolates showed little genetic variation, despite the observed pathogenic variation within P. graminicola. Intraspecific variation was higher among P. inflatum isolates, but again no correlation was observed with phenotype. When screening P. arrhenomanes isolates from other hosts such as sugarcane, maize and several grasses, a link between pathogenic and genetic variability was detected. However, rice and maize isolates seemed to lack host specificity, and therefore crop rotation with maize might be a risky strategy to manage yield decline in Philippine aerobic rice fields. 相似文献
18.
In this study, an isolate of Magnaporthe oryzae expressing the green fluorescent protein gene (gfp) was used to monitor early events in the interaction of M. oryzae with resistant rice cultivars harbouring a blast resistance (R) gene. In the resistant cultivars Saber and TeQing (Pib gene), M. oryzae spores germinated normally on the leaf surface but produced morphologically abnormal germ tubes. Germling growth and development were markedly and adversely affected in leaves of these resistant cultivars. Penetration of host cells was never seen, supporting the idea that disruption of germling development on the leaf surface might be one of the resistance mechanisms associated with Pib function. Thus, this particular R gene appeared to function in the absence of host penetration by the fungal pathogen. Confocal laser scanning microscopy of M. oryzae‐infected susceptible rice cultivars showed the dimorphic growth pattern that is typically observed during the biotrophic and necrotrophic stages of leaf colonization in susceptible cultivars. The suitability of the gfp‐expressing M. oryzae isolate for further research on R‐gene function and identification of resistant genotypes in rice germplasm collections is discussed. 相似文献
19.
Leaf blight is a common disease affecting Sansevieria trifasciata in many countries, including Malaysia. In the present study, Fusarium isolates were consistently recovered from the diseased leaves collected from various locations throughout the country. Based on morphology and multigene phylogenetic analysis using mitochondrial small subunit (mtSSU), intergenic spacer region (IGS) and translation elongation factor 1-α (TEF1-α) gene sequences, seven Fusarium species were identified, with F. oxysporum being the most prevalent (67.6%) among 34 isolates. Pathogenicity tests resulted in the discovery of pathogenic isolates that belonged to F. oxysporum, F. proliferatum, and F. pseudocircinatum, whereas all isolates of F. brachygibbosum, F. concentricum, F. mangiferae, and F. solani were nonpathogenic. The results suggest that several Fusarium species are accountable for causing disease on S. trifasciata in Malaysia. 相似文献
20.
Between 2006 and 2008, 146 isolates of Fusarium spp. were obtained from bakanae‐diseased rice plants and seeds from the major rice‐growing regions of Italy. These isolates were identified based on translation elongation factor (EF‐1α) sequence and pathogenicity tests were used to assess their aggressiveness against the susceptible rice cultivar Galileo. Use of the EF‐1α sequence gave reliable identification and showed that Fusarium fujikuroi, the causal agent of bakanae disease, was the most abundant Fusarium spp. isolated. These data were confirmed by inoculation of the isolates to rice seeds which were then germinated in the greenhouse, showing that only F. fujikuroi isolates were able to cause bakanae disease. Pathogenic isolates were identified with different levels of aggressiveness. Phylogenetic analysis based on EF‐1α sequences generated a tree which separated the various Fusarium species into different clusters with high bootstrap values. 相似文献