首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium head blight (FHB) in small grain cereals is primarily caused by the members of the Fusarium graminearum species complex. These produce mycotoxins in infected grains, primarily deoxynivalenol (DON); acetylated derivatives of DON, 3‐acetyl‐DON (3‐ADON) and 15‐acetyl‐DON (15‐ADON); and nivalenol (NIV). This study reports the isolation of Fusarium cerealis in infected winter wheat heads for the first time in Canada. A phylogenetic analysis based on the TRI101 gene and F. graminearum species‐specific primers revealed two species of Fusarium: F. graminearum sensu stricto (127 isolates) and F. cerealis (five isolates). Chemotype determination based on the TRI3 gene revealed that 65% of the isolates were 3‐ADON, 31% were 15‐ADON and 4% were NIV producers. All the F. cerealis isolates were of NIV chemotype. Fusarium cerealis isolates can often be misidentified as F. graminearum as the morphological characteristics are similar. Although the cultural and macroconidial characteristics of F. graminearum and F. cerealis isolates were similar, the aggressiveness of these isolates on susceptible wheat cultivar Roblin and moderately resistant cultivar Carberry differed significantly. The F. graminearum 3‐ADON isolates were most aggressive, followed by F. graminearum 15‐ADON and F. cerealis NIV isolates. The findings from this study confirm the continuous shift of chemotypes from 15‐ADON to 3‐ADON in North America. In Canada, the presence of NIV is limited to barley samples and the discovery of NIV‐producing F. cerealis species in Canadian wheat fields may pose a serious concern to the Canadian wheat industry in the future.  相似文献   

2.
Fusarium graminearum species complexes (FGSCs), such as Fusarium asiaticum and F. graminearum, are important pathogens that cause Fusarium head blight (FHB) in several cereal crops worldwide. In this study, we collected 342 gramineous weed samples in the proximity of rice fields from May to June 2018 in Korea. Among the 500 Fusarium isolates from the weed samples, 13 species of Fusarium were identified, and F. asiaticum (41.2%), F. avenaceum (18.0%), F. acuminatum (16.4%) and F. graminearum (14.8%) were the most frequently isolated. The trichothecene genotype analysis showed that 206 F. asiaticum strains consisted of the nivalenol (NIV) genotype (n = 195, 94.7%) and 3-acetyldeoxynivalenol (3ADON) genotype (n = 11, 5.3%), whereas 74 F. graminearum strains consisted of the 15-acetyldeoxynivalenol (15ADON) genotype (n = 58, 78.4%) and 3ADON genotype (= 16, 21.6%). Geographical differences were observed in the FGSC and trichothecene genotype compositions, which appeared host-dependent between the southern provinces and mid-eastern provinces. The aggressiveness assessment of FHB showed that the 3ADON chemotype was most aggressive followed by the 15ADON and NIV chemotypes in wheat, while the NIV chemotype was most aggressive followed by the 3ADON and 15ADON chemotypes in rice. The F. asiaticum strains grew slowly and produced fewer conidia and perithecia than the F. graminearum strains, regardless of their chemotypes. The results of this study suggest that F. asiaticum with the NIV chemotype has a host preference for rice, and FHB-causing pathogens can be harboured in gramineous weeds, which play a role in the dispersal of FHB pathogens to rice and other cereal crops.  相似文献   

3.
The objective of this study was to evaluate the potential role of gramineous weeds present near paddy fields as alternative hosts for the Fusarium graminearum species complex (FGSC) that causes fusarium head blight (FHB) in rice. A total of 142 weed samples were collected from 10 gramineous weed species near paddy fields from August to October 2018 in Jiangsu Province, China. Of the 145 isolates of seven Fusarium species isolated from the weed samples, F. asiaticum was the most abundant (86.9%), followed by F. fujikuroi (5.5%), F. proliferatum (2.8%), F. graminearum (2.1%), F. tricinctum (1.4%), F. acuminatum (0.7%), and F. sporotrichioides (0.7%). Genotype and mycotoxin analyses confirmed that 72.2% of F. asiaticum isolates were producers of deoxynivalenol (DON) with 3-acetyl deoxynivalenol (3ADON), and the remainder were nivalenol (NIV) producers. Pathogenicity assays showed that both 3ADON and NIV chemotypes of F. asiaticum could cause FHB in rice, but NIV chemotypes were significantly (p < .05) more aggressive than 3ADON chemotypes. Three Fusarium mycotoxins, DON, NIV, and zearalenone, occurred naturally at low concentrations in the weed samples. Taken together, this study provides insight into the mycotoxin production and aggressiveness of F. asiaticum isolates from gramineous weeds in China.  相似文献   

4.
Combined analyses of the natural occurrence of fusarium head blight (FHB), mycotoxins and mycotoxin‐producing isolates of Fusarium spp. in fields of wheat revealed FHB epidemics in 12 of 14 regions in Hubei in 2009. Mycotoxin contamination ranged from 0·59 to 15·28 μg g?1 in grains. Of the causal agents associated with symptoms of FHB, 84% were Fusarium asiaticum and 9·5% were Fusarium graminearum, while the remaining 6·5% were other Fusarium species. Genetic chemotyping demonstrated that F. asiaticum comprised deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐AcDON), 15‐acetyldeoxynivalenol (15‐AcDON) and nivalenol (NIV) producers, whereas F. graminearum only included DON and 15‐AcDON producers. Compared with the chemotype patterns in 1999, there appeared to be a modest shift towards 3‐AcDON chemotypes in field populations during the following decade. However, isolates genetically chemotyped as 3‐AcDON were present in all regions, whereas the chemical 3‐AcDON was only detected in three of the 14 regions where 3‐AcDON accounted for 15–20% of the DON and acetylated forms. NIV mycotoxins were detected in seven regions, six of which also yielded NIV chemotypes. The number of genetic 3‐AcDON producers was positively correlated with amounts of total mycotoxins (DON, NIV and acetylated forms) or DON in wheat grains. Chemical analyses of wheat grains and rice cultures inoculated with different isolates from the fields confirmed their genetic chemotypes and revealed a preferential biosynthesis of 3‐AcDON and 4‐AcNIV in rice. These findings suggest the importance of chemotyping coupled with species identification for improved prediction of mycotoxin contamination in wheat.  相似文献   

5.
A. Serfling  F. Ordon 《Plant pathology》2014,63(6):1230-1240
Fusarium culmorum causes head blight, produces toxins and reduces yield and quality of cereals. To prevent damage caused by fusarium head blight (FHB), azole fungicides are mainly applied. The occurrence of insensitivity to azoles is a major problem in agriculture. The present study shows that a tebuconazole insensitive strain of F. culmorum can be readily produced in the laboratory, but that the resulting strain of the fungus is of lower fitness in vitro. Insensitivity was confirmed microscopically and by cell viability and metabolic activity. The tebuconazole insensitive strain shows cross insensitivity to nine important azoles. In addition, plants inoculated with the insensitive F. culmorum strain showed no reduction of FHB symptoms and deoxynivalenol (DON) content after tebuconazole treatment, compared to an inoculation with the sensitive strain. Use of wheat cultivars carrying a high resistance level (i.e. cv. Toras) was the most effective method for reducing symptoms and decreasing DON content, independent from the level of fungicide insensitivity of the F. culmorum strain. In conclusion, resistant cultivars and a fungicide mixture which combines different mechanisms of action in fungal metabolism should be applied to avoid fungicide insensitivity of Fusarium spp. in future.  相似文献   

6.
Fusarium pseudograminearum, F. culmorum and F. graminearum are the most important fusarium crown rot (FCR) causal agents. They have the common ability to biosynthesize deoxynivalenol (DON). To elucidate the behaviour of each of the three species, a comparative study was carried out to investigate symptom progression, fungal systemic growth and translocation of DON following stem base inoculation of soft wheat. FCR symptoms were mainly localized in the inoculated area, which extended up to the second node for all inoculated species. Only the most aggressive strains caused symptoms up to the third node. Real‐time quantitative PCR showed that fungal colonization reached the third node for all the tested species, but a low percentage of plants showed colonization above the third node following inoculation with the most aggressive strains. Fungal growth was detected in symptomless tissues but none of the three species was able to colonize as far as the head tissues. However, even if the pathogens were not detected in the heads, DON was detected in head tissues of the plants inoculated with the most aggressive strains. These results demonstrate that F. pseudograminearum, F. culmorum and F. graminearum, under the same experimental conditions, follow a similar pattern of symptom progression, fungal colonization and DON translocation after stem base infection. Differences in the extent of symptoms, fungal colonization and mycotoxin distribution were mainly attributable to strain aggressiveness. These findings provide comparative information on the events following infection of the stem base of wheat by three of the most important FCR casual agents.  相似文献   

7.
Fusarium head blight in wheat spikes is associated with production of mycotoxins by the fungi. Although flowering is recognized as the most favourable host stage for infection, a better understanding of infection timing on disease development and toxin accumulation is needed. This study monitored the development of eight characterized isolates of F. graminearum, F. culmorum and F. poae in a greenhouse experiment. The fungi were inoculated on winter wheat spikes before or at anther extrusion, or at 8, 18 and 28 days later. Disease levels were estimated by the AUDPC and thousand‐kernel weight (TKW). The fungal biomass (estimated by qPCR) and toxin concentration (deoxynivalenol and nivalenol, estimated by UPLC‐UV‐MS/MS) were measured in each inoculated spike, providing a robust estimation of these variables and allowing correlations based on single‐individual measurements to be established. The toxin content correlated well with fungal biomass in kernels, independently of inoculation date. The AUDPC was correlated with fungal DNA, but not for early and late infection dates. The highest disease and toxin levels were for inoculations around anthesis, but early or late infections led to detectable levels of fungus and toxin for the most aggressive isolates. Fungal development appeared higher in kernels than in the chaff for inoculations at anthesis, but the opposite was found for later inoculations. These results show that anthesis is the most susceptible stage for FHB, but also clearly shows that early and late infections can produce significant disease development and toxin accumulation with symptoms difficult to estimate visually.  相似文献   

8.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

9.
Y. Zhang  W. Chen  W. Shao  J. Wang  C. Lv  H. Ma  C. Chen 《Plant pathology》2017,66(9):1404-1412
Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most devastating wheat diseases in China. Phenamacril is a novel cyanoacrylate fungicide with a unique chemical structure and specific mode of action against Fusarium spp. In this study, the molecular, biological and physiological characteristics of laboratory‐induced mutants of F. graminearum with resistance to phenamacril were investigated. Compared to the wildtype strains, the phenamacril‐resistant mutants showed obvious defects in various biological and physiological characteristics, including vegetative growth, carbon source utilization, response to oxidative and osmotic stresses, sensitivity to cell wall and cell membrane integrity inhibitors, cell membrane permeability, glycerol accumulation and pathogenicity. The phenotypes of the phenamacril‐resistant mutants exhibited many variations. Sequencing indicated that the three parental strains studied were identical, and the mutants TXR1, TXR2, BMR1, BMR2, SYR1 and SYR2 each had a single point mutation in the amino acid sequence encoded by the myosin‐5 gene (FGSG_01410). These results provide new reference information for future investigations concerning the resistance mechanism of F. graminearum to phenamacril and could offer important relevant data for the management of FHB caused by F. graminearum.  相似文献   

10.
Members of the Fusarium graminearum species complex (FGSC), such as F. graminearum and F. asiaticum, are the main cause of fusarium head blight (FHB) of wheat and barley worldwide. In this study, 117 FGSC isolates obtained from commercial barley grain produced in Argentina (= 43 isolates), Brazil (= 35), and Uruguay (= 39) were identified to species and trichothecene genotypes, and analysed using amplified fragment length polymorphism (AFLP) and sequence‐related amplified polymorphism (SRAP) markers. In addition, reductase (RED) and trichothecene 3‐O‐acetyltransferase (Tri101) were sequenced for a subset of 24 isolates. The majority of the isolates (= 103) were identified as F. graminearum, which was the only species found in Argentina. In Uruguay, only one F. cortaderiae isolate was found among F. graminearum isolates. In Brazil, F. graminearum also dominated the collection (22/35), followed by F. meridionale (8/35), F. asiaticum (2/35), F. cortaderiae (2/35) and F. austroamericanum (1/35). Species were structured by trichothecene genotype: all F. graminearum were of the 15‐acetyldeoxynivalenol (ADON), F. meridionale, F. asiaticum and F. cortaderiae were of the nivalenol (NIV), and F. austroamericanum was of the 3‐ADON genotype. Both AFLP and SRAP data showed high levels of genetic variability, which was higher within than among countries. Isolates were not structured by country of origin. SRAP analysis grouped F. graminearum in a separate cluster from the other species within the complex. However, AFLP analysis failed to resolve the species into distinct clades with partial clustering of F. meridionale, F. austroamericanum, F. asiaticum and F. graminearum isolates.  相似文献   

11.
Piriformospora indica (Sebacinaceae) is a cultivable root endophytic fungus. It colonizes the roots of a wide range of host plants. In many settings colonization promotes host growth, increases yield and protects the host from fungal diseases. Evaluation was made of the effect of P. indica on fusarium head blight (FHB) disease of winter (cv. Battalion) and spring (cv. Paragon, Mulika, Zircon, Granary, KWS Willow and KWS Kilburn) wheat and consequent contamination by the mycotoxin deoxynivalenol (DON) under UK weather conditions. Interactions of P. indica with an arbuscular mycorrhizal fungus (Funneliformis mosseae), fungicide application (Aviator Xpro) and low and high fertilizer levels were considered. Piriformospora indica application reduced FHB disease severity and incidence by 70%. It decreased mycotoxin DON concentration of winter and spring wheat samples by 70 and 80%, respectively. Piriformospora indica also increased aboveground biomass, 1000‐grain weight and total grain weight. Piriformospora indica reduced disease severity and increased yield in both high and low fertilizer levels. The effect of P. indica was compatible with F. mosseae and foliar fungicide application. Piriformospora indica did not have any effects on plant tissue nutrients. These results suggest that P. indica might be useful in biological control of Fusarium diseases of wheat.  相似文献   

12.
The severity of fusarium wilt is affected by inoculum density in soil, which is expected to decline during intervals when a non‐susceptible crop is grown. However, the anticipated benefits of crop rotation may not be realized if the pathogen can colonize and produce inoculum on a resistant cultivar or rotation crop. The present study documented colonization of roots of broccoli, cauliflower and spinach by Fusarium oxysporum f. sp. lactucae, the cause of fusarium wilt of lettuce. The frequency of infection was significantly lower on all three rotation crops than on a susceptible lettuce cultivar, and the pathogen was restricted to the cortex of roots of broccoli. However, F. oxysporum f. sp. lactucae was isolated from the root vascular stele of 7·4% of cauliflower plants and 50% of spinach plants that were sampled, indicating a greater potential for colonization and production of inoculum on these crops. The pathogen was also recovered from the root vascular stele of five fusarium wilt‐resistant lettuce cultivars. Thus, disease‐resistant plants may support growth of the pathogen and thereby contribute to an increase in soil inoculum density. Cultivars that were indistinguishable based on above‐ground symptoms, differed significantly in the extent to which they were colonized by F. oxysporum f. sp. lactucae. Less extensively colonized cultivars may prove to be superior sources of resistance to fusarium wilt for use in breeding programmes.  相似文献   

13.
In this study, the Arabidopsis thaliana NPR1 (non‐expressor of PR genes) gene was integrated into an elite wheat cultivar, and the response of the transgenic wheat expressing NPR1 to inoculation with Fusarium asiaticum was analysed. With seedling inoculation, the transgenic lines showed significantly increased fusarium seedling blight (FSB) susceptibility, whereas floret inoculation resulted in enhanced fusarium head blight (FHB) resistance. Quantitative real‐time PCR revealed that expression of two defence genes, PR3 and PR5, was associated with susceptible reactions to FSB and FHB, whereas the PR1 gene was activated in resistance responses. This inverse modulation by the constitutively expressed NPR1 gene suggests that NPR1 has a bifunctional role in regulating defence responses in plants. Therefore, it is unsuitable for improving overall resistance to FSB and FHB in wheat.  相似文献   

14.
To increase digestibility for ruminant livestock and for lignocellulosic ethanol conversion efficiency in sorghum (Sorghum bicolor), brown midrib (bmr) lines carrying bmr6 or bmr12 and the double mutant (bmr6 bmr12) in two backgrounds (RTx430 and Wheatland) were developed, resulting in lines with significantly reduced lignin, as compared with the near‐isogenic wildtype. Under greenhouse conditions, these lines had previously demonstrated no increased susceptibility, and some lines were more resistant to the highly virulent stalk rot pathogen, Fusarium thapsinum, compared to the wildtype. Fusarium stalk rot of sorghum is a destructive disease that under high temperatures or drought conditions may lead to lodging. To determine if greenhouse observations could be extended to field environments, bmr and near‐isogenic wildtype lines were inoculated with F. thapsinum at field locations, Mead (irrigated) and Havelock (dryland) in Nebraska, USA. Analysis of mean lesion lengths showed those of most bmr lines were statistically similar to the wildtype. Across both genetic backgrounds, bmr6 and bmr6 bmr12 double mutant plants grown at Mead had significantly smaller mean lesion lengths than the corresponding wildtype ( 0.05). To assess responses of the two genetic backgrounds to controlled (greenhouse) water stress, wildtype RTx430 and Wheatland plants were inoculated with F. thapsinum under well‐watered and water stress conditions. Mean lesion lengths resulting on water deficit plants were significantly larger than those on well‐watered plants (= 0.01). These results indicate that this bioassay can be used to screen sorghum lines in the greenhouse for increased resistance or tolerance to both drought and fusarium stalk rot.  相似文献   

15.
The Fusarium graminearum species complex (FGSC) is an important group of pathogens distributed in maize‐producing areas worldwide. This study investigated the genetic diversity and pathogenicity of 40 FGSC isolates obtained from stalk rot and ear rot samples collected from 42 locations in northeastern China during 2013 and 2014. A phylogenetic tree of translation elongation factor (EF‐la) sequences designated the 40 isolates as F. graminearum sensu stricto (67.5%) and F. boothii (32.5%). By using inter‐simple sequence repeat analysis (ISSR), it was shown that the isolates were divided into two clades, which corresponded to the species identity of the isolates. However, the isolates from the two different diseases could not be distinguished in pathogenicity. The disease severity index of seedlings inoculated with stalk isolates was slightly higher than that of seedlings inoculated with isolates from infected ears, whereas the pathogenicity of the stalk and ear isolates were identical.  相似文献   

16.
Fusarium graminearum, Fusarium culmorum and Fusarium cerealis are major causal agents of Fusarium Head Blight (scab) which is a disease of global significance in all cereal growing areas. These fungi produce trichothecene mycotoxins, principally nivalenol (NIV) and deoxynivalenol (DON). Genes Tri13 and Tri7 from the trichothecene biosynthetic gene cluster convert DON to NIV (Tri13) and NIV to 4-acetyl-NIV (Tri7). We have developed positive–negative PCR assays based on these two genes, which accurately indicate a DON or NIV chemotype in F. graminearum, F. culmorum and F. cerealis. These assays are useful in assessing the risk of trichothecene contamination, and can be informative in epidemiological studies. All NIV chemotype isolates studied have functional copies of both Tri13 and Tri7, and all DON-producing isolates have both genes disrupted or deleted. We have identified several mutations in these genes, which are conserved across F. graminearum lineage, RAPD and SCAR groupings and between the three species. There appears to be evidence of inter-species hybridisation within the trichothecene biosynthetic gene cluster.  相似文献   

17.
山东省小麦赤霉病菌种群组成及其致病力分化   总被引:2,自引:2,他引:0  
由禾谷镰孢菌群Fusarium graminearum clade引起的赤霉病是小麦的重要病害。为明确山东省小麦赤霉病菌的种群组成及其致病力,于2011年和2012年从山东省15地市分离了95株小麦赤霉病菌,在形态和分子生物学鉴定种的基础上,采用鉴定B型毒素化学型的特异性引物进行毒素化学型分析。在95个菌株中,93株分离物为禾谷镰孢菌F.graminearum,2株为燕麦镰孢菌F.avenaceum。94株分离物为脱氧雪腐镰孢菌烯醇(deoxynivalenol,DON)化学型,1株为雪腐镰孢菌烯醇(nivalenol,NIV)化学型。在94株DON毒素化学型菌株中,90株为15-乙酰脱氧雪腐镰孢菌烯醇(15-acetyldeoxynivalenol,15-AcDON)化学型,4株为3-乙酰脱氧雪腐镰孢菌烯醇(3-acetyldeoxynivalenol,3-AcDON)化学型。在小麦扬花期,采用单花滴注接种法对29个菌株进行了致病力测定,供试菌株的致病力分化明显。表明在山东省冬小麦产区,产15-AcDON毒素的F.gra-minearum是小麦赤霉病菌的优势种群。  相似文献   

18.
Fusarium head blight (FHB), a devastating disease that affects wheat, is caused by a complex of Fusarium species. The overall impact of Fusarium spp. in wheat production arises through the combination of FHB and mycotoxin infection of the grain harvested from infected wheat spikes. Spike infection occurs during opening of flowers and is favoured by high humidity or wet weather accompanied with warm temperatures. Available possibilities for controlling FHB include the use of cultural practices, fungicides and biological approaches. Three cultural practices are expected to be of prime importance in controlling FHB and the production of mycotoxins: soil preparation method (deep tillage), the choice of the preceding crop in the rotation and the selection of appropriate cultivar.  相似文献   

19.
The root endophytic fungus Piriformospora indica (Sebacinacea) forms mutualistic symbioses with a broad range of host plants, increasing their biomass production and resistance to fungal pathogens. This study evaluated the effect of P. indica on fusarium crown rot disease of wheat, under in vitro and glasshouse conditions. Interaction of P. indica and Fusarium isolates under axenic culture conditions indicated no direct antagonistic activity of P. indica against Fusarium isolates. Seedlings of wheat were inoculated with P. indica and pathogenic Fusarium culmorum or F. graminearum and grown in sterilized soil‐free medium or in a non‐sterilized mix of soil and sand. Fusarium alone reduced emergence and led to visible browning and reduced root growth. Roots of seedlings in pots inoculated with both Fusarium isolates and P. indica were free of visible symptoms; seed emergence and root biomass were equivalent to the uninoculated. DNA was quantified by real‐time polymerase chain reaction (qPCR). The ratio of FusariumDNA to wheat DNA rose rapidly in the plants inoculated with Fusarium alone; isolates and species were not significantly different. Piriformospora indica inoculation reduced the ratio of Fusarium to host DNA in the root systems. The reduction increased with time. The ratio of P. indica to wheat DNA initially rose but then declined in root systems without Fusarium. With Fusarium, the ratio rose throughout the experiment. The absolute amount of FusariumDNA in root systems increased in the absence of P. indica but was static in plants co‐inoculated with P. indica.  相似文献   

20.
Fusarium culmorum (Fc) and F. graminearum (Fg) belong to the predominant causal agents of fusarium crown and root rot (FCR) in wheat. While many studies have been done to investigate crown rot, including stem base infection, root colonization and mycotoxin production associated with root rot is not well understood. In this study the impact of mycotoxins on the colonization of wheat roots and stem bases was analysed by using Fc and Fg isolates that varied in both quantity and types of trichothecenes they produce. Seedling inoculations in growth chambers with a high deoxynivalenol (DON)- and 3-acetyldeoxynivalenol (3ADON)-producing isolate led to more severe symptoms and 20-times greater colonization of the stem base, as measured by Fc DNA accumulation, than isolates that produced less DON/3ADON. In contrast to stem base colonization, in vitro inoculations of roots with a Tri5 deletion mutant deficient in Fg trichothecene production led to three-times higher colonization than the wildtype. Furthermore, an Fc isolate that produced low levels of zearalenone resulted in twice the level of colonization of a high DON/3ADON-producing isolate included in the study. When root inoculation with a low DON/3ADON-producing Fc isolate was supplemented with exogenous DON, DON production decreased by more than half per unit weight of Fc DNA, and root colonization doubled compared to the untreated control. Therefore, in contrast to its potential role as an aggressiveness factor in stem base infection, trichothecene production by Fc and Fg is detrimental to the early stages of wheat root colonization in FCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号