首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agricultural soils contribute significantly to atmospheric nitrous oxide (N2O). A considerable part of the annual N2O emission may occur during the cold season, possibly supported by high product ratios in denitrification (N2O/(N2+N2O)) and nitrification (N2O-N/(NO3-N+NO2-N)) at low temperatures and/or in response to freeze-thaw perturbation. Water-soluble organic materials released from frost-sensitive catch crops and green manure may further increase winter emissions. We conducted short-term laboratory incubations under standardized moisture and oxygen (O2) conditions, using nitrogen (N) tracers (15N) to determine process rates and sources of emitted N2O after freeze-thaw treatment of soil or after addition of freeze-thaw extract from clover. Soil respiration and N2O production was stimulated by freeze-thaw or addition of plant extract. The N2O emission response was inversely related to O2 concentration, indicating denitrification as the quantitatively prevailing process. Denitrification product ratios in the two studied soils (pH 4.5 and 7.0) remained largely unaltered by freeze-thaw or freeze-thaw-released plant material, refuting the hypothesis that high winter emissions are due to frost damage of N2O reductase activity. Nitrification rates estimated by nitrate (NO3) pool enrichment were 1.5-1.8 μg NO3-N g−1 dw soil d−1 in freeze-thaw-treated soil when incubated at O2 concentrations above 2.3 vol% and one order of magnitude lower at 0.8 vol% O2. Thus, the experiments captured a situation with severely O2-limited nitrification. As expected, the O2 stress at 0.8 vol% resulted in a high nitrification product ratio (0.3 g g−1). Despite this high product ratio, only 4.4% of the measured N2O accumulation originated from nitrification, reaffirming that denitrification was the main N2O source at the various tested O2 concentrations in freeze-thaw-affected soil. N2O emission response to both freeze-thaw and plant extract addition appeared strongly linked to stimulation of carbon (C) respiration, suggesting that freeze-thaw-induced release of decomposable organic C was the major driving force for N2O emissions in our soils, both by fuelling denitrifiers and by depleting O2. The soluble C (applied as plant extract) necessary to induce a CO2 and N2O production rate comparable with that of freeze-thaw was 20-30 μg C g−1 soil dw. This is in the range of estimates for over-winter soluble C loss from catch crops and green manure plots reported in the literature. Thus, freeze-thaw-released organic C from plants may play a significant role in freeze-thaw-related N2O emissions.  相似文献   

2.
Nitrous oxide emitted by soils can be produced either by denitrification in anoxic conditions or by nitrification in presence of O2. The relative importance of the two processes, particularly under varied partial pressures of O2, is not always known. This paper focuses on the influence of O2 concentration on N2O production by nitrification and denitrification in an arable Orthic Luvisol. Soil aggregates (2-3 mm size), water unsaturated, received 116 mg N kg−1 as ammonium sulphate labelled with 15N and were incubated during 14 days at different O2 partial pressures: 0, 0.35, 0.76, 1.5, 4.3 and 20.4 kPa. A 15N tracing technique was used to quantify nitrification and denitrification rates. 15N2O and 15N2 were measured. Oxygen pressure appeared to strongly influence both nitrification and denitrification rates and also N2O emissions. Nitrification rates were reduced by a factor of 6-9 when O2 decreased from 20.4 to 0.35 kPa. They were highly correlated with O2 consumption rates. Denitrification mainly occurred in complete anoxic conditions. The proportion of N2O emitted by denitrification was estimated by two independent methods: one based on 15N tracing using isotope composition of NH4, NO3 and N2O, the other based on the measurement of the 15N2O:15N2 ratio. The two methods gave close results. The highest N2O emissions were obtained under complete anoxic conditions and were due to denitrification. However, N2O emissions almost as important were obtained at day 14 with 1.5 kPa O2 pressure, and they were due to nitrification. Nitrification was the main source of N2O at O2 concentrations greater than 0.35 kPa. The amounts of N2O-N emitted by nitrification were linearly related to the amounts of N nitrified, but the slope of the regression was highly dependent on O2 concentration: it varied from 0.16 to 1.48% when O2 concentration was reduced from 20.4 to 0.76 kPa. Emissions of N2O by nitrification may then be quite significant if nitrification occurs at a reduced O2 concentration.  相似文献   

3.
Summary The effectiveness of wax-coated calcium carbide (as a slow-release source of acetylene) and nitrapyrin in inhibiting nitrification and emission of the greenhouse gases N2O and CH4 was evaluated in a microplot study with dry-seeded flooded rice grown on a grey clay near Griffith, NSW, Australia. The treatments consisted of factorial combinations of N levels with nitrification inhibitors (control, wax-coated calcium carbide, and nitrapyrin). The rate of nitrification was slowed considerably by the addition of wax-coated calcium carbide, but it was inhibited only slightly by the addition of nitrapyrin. As a result, the emission of N2O was markedly reduced by the application of wax-coated calcium carbide, whereas there was no significant difference in rates of N2O emission between the control and nitrapyrin treatments. Both nitrification inhibitors significantly reduced CH4 emission, but the lowest emission rates were observed in the wax-coated calcium carbide treatment. At the end of the experiment 84% of the applied N was recovered from the wax-coated calcium carbide treatment compared with 43% for the nitrapyrin and control treatments.  相似文献   

4.
Isotopomer ratios of N2O, which include intramolecular 15N-site preference in addition to conventional isotope ratios for N and O in NNO (we designate Nα and Nβ for the center and end N atom, respectively, in the asymmetric molecule), reflect production and consumption processes of this greenhouse gas. Therefore, they are useful parameters for deducing global N2O budget. This paper reports the first precise measurement of 15N-site preference in N2O produced by two species of denitrifying bacteria, Pseudomonas fluorescens (ATCC 13525) and Paracoccus denitrificans (ATCC 17741).Cultures were incubated in a batch mode with a liquid medium that contains KNO3 as unique nitrogen supply under acetylene/helium (10% v/v) atmosphere at 27 °C. Enrichment factors for 15N in bulk nitrogen in N2O (average for Nα and Nβ) fluctuated in a few tens permil showing a slight difference between the species. In contrast, 15N-site preference (difference in isotope ratios between Nα and Nβ) showed nearly constant and distinct value for the two species (23.3±4.2 and −5.1±1.8‰ for P. fluorescens and P. denitrificans, respectively). The site preference was also measured for N2O produced by inorganic reactions (nitrite reduction and hydroxylamine oxidation); a unique value (about 30‰ for the both reactions) was obtained. These results and those recently reported for nitrifying bacteria suggest that 15N-site preference in N2O can be used to identify the production processes of N2O on the level of bacterial species or enzymes involved.  相似文献   

5.
  总被引:1,自引:0,他引:1  
The contribution of nitrification to the emission of nitrous oxide (N2O) from soils may be large, but its regulation is not well understood. The soil pH appears to play a central role for controlling N2O emissions from soil, partly by affecting the N2O product ratios of both denitrification (N2O/(N2+N2O)) and nitrification (N2O/(NO2+NO3). Mechanisms responsible for apparently high N2O product ratios of nitrification in acid soils are uncertain. We have investigated the pH regulation of the N2O product ratio of nitrification in a series of experiments with slurries of soils from long-term liming experiments, spanning a pH range from 4.1 to 7.8. 15N labelled nitrate (NO3) was added to assess nitrification rates by pool dilution and to distinguish between N2O from NO3 reduction and NH3 oxidation. Sterilized soil slurries were used to determine the rates of chemodenitrification (i.e. the production of nitric oxide (NO) and N2O from the chemical decomposition of nitrite (NO2)) as a function of NO2 concentrations. Additions of NO2 to aerobic soil slurries (with 15N labelled NO3 added) were used to assess its potential for inducing denitrification at aerobic conditions. For soils with pH?5, we found that the N2O product ratios for nitrification were low (0.2-0.9‰) and comparable to values found in pure cultures of ammonia-oxidizing bacteria. In mineral soils we found only a minor increase in the N2O product ratio with increasing soil pH, but the effect was so weak that it justifies a constant N2O product ratio of nitrification for N2O emission models. For the soils with pH 4.1 and 4.2, the apparent N2O product ratio of nitrification was 2 orders of magnitude higher than above pH 5 (76‰ and 14‰). This could partly be accounted for by the rates of chemodenitrification of NO2. We further found convincing evidence for NO2-induction of aerobic denitrification in acid soils. The study underlines the role of NO2, both for regulating denitrification and for the apparent nitrifier-derived N2O emission.  相似文献   

6.
    
Stable 15N isotope dilution and tracer techniques were used in cultivated (C) and uncultivated (U) ephemeral wetlands in central Saskatchewan, Canada to: (1) quantify gross mineralization and nitrification rates and (2) estimate the relative proportion of N2O emissions from these wetlands that could be attributed to denitrification versus nitrification-related processes. In-field incubation experiments were repeated in early May, mid-June and late July. Mean gross mineralization and nitrification rates (10.3 and 3.1 mg kg−1 d−1, respectively) did not differ between C and U wetlands on any given date. Despite these similarities, the mean NH4+ pool size in the U wetlands (17.2 mg kg−1) was two to three times that of the C wetlands (6.7 mg kg−1) whereas the mean NO3 pool size in U wetlands (2.2 mg kg−1) was less than half that of C wetlands (5.8 mg kg−1). Mean N2O emissions from the C wetlands decreased from 112.8 to 17.0 ng N2O m2 s−1 from May to July, whereas mean U-wetland N2O emissions ranged only from 31.8 to 51.1 ng N2O m2 s−1 over the same period. This trend is correlated to water-filled pore space in C wetlands, demonstrating a soil moisture influence on emissions. Denitrification is generally considered the dominant emitter of N2O under anaerobic conditions, but in the C wetlands, only 49% of the May emissions could be directly attributed to denitrification, decreasing to 29% in July. In contrast, more than 75% of the N2O emissions from the U wetlands arose from denitrification of the soil NO3 pool throughout the season. These land use differences in emission sources and rates should be taken into consideration when planning management strategies for greenhouse gas mitigation.  相似文献   

7.
Arctic soils emit nitrous oxide, which is a potent greenhouse gas and also represents an important loss of nitrogen to oligotrophic Arctic ecosystems. However, little is known about the temperature sensitivity of nitrous oxide release in Arctic soils or the organisms mainly responsible for it. We investigated controls on nitrous oxide emissions in an Arctic soil across a typical temperature range (between 4 and 13 °C) on Truelove Lowland, Devon Island, Canada (75°40′N 84°35′W) at two different moisture contents. When fertilized with ammonia or nitrate, nitrous oxide emissions and temperature dependence of nitrous oxide emissions were insensitive to soil moisture content but linked to nitrification rates. Stable isotope analysis revealed that nitrous oxide was predominantly released by nitrifiers. However, nitrous oxide emissions were not linked to nitrifier prevalence with an insignificant (P < 0.219) increase in amoA genes and a (P < 0.01) decrease in archaeal nitrifiers. In contrast, denitrifier nosZ prevalence was 10,000 times greater than that of nitrifiers and was related to nitrous oxide emission potential when soils were fertilized with nitrate. Manipulating water-filled pore space should have changed the pattern of N2O emissions. We used selective inhibitors to further explore why denitrification did not occur under field conditions when we manipulated water-filled pore space or when we used 15N analysis. When fungi were inhibited in the soil, nitrous oxide emissions from denitrifiers increased with no change in nitrous oxide released by nitrifiers. When fungi were active in the soil, there was little available nitrate but when fungi were inhibited, available soil nitrate increased over the incubation period. The dominance of nitrifiers in nitrous oxide emissions from Arctic soils under field conditions is linked to the competition for nitrate between fungi and denitrifiers.  相似文献   

8.
Summary Field studies of the effects of different N fertilizers on emission of nitrous oxide (N20) from three Iowa soils showed that the N2O emissions induced by application of 180 kg ha–1 fertilizer N as anhydrous ammonia greatly exceeded those induced by application of the same amount of fertilizer N as aqueous ammonia or urea. On average, the emission of N2O-N induced by anhydrous ammonia was more than 13 times that induced by aqueous ammonia or urea and represented 1.2% of the anhydrous ammonia N applied. Experiments with one soil showed that the N2O emission induced by anhydrous ammonia was more than 17 times that induced by the same amount of N as calcium nitrate. These findings confirm indications from previous work that anhydrous ammonia has a much greater effect on emission of N2O from soils than do other commonly used N fertilizers and merits special attention in research relating to the potential adverse climatic effect of N fertilization of soils.Laboratory studies of the effect of different amounts of NH4OH on emission of N2O from Webster soil showed that the emission of N2O-N induced by addition of 100 g NH4OH-N g–1 soil represented only 0.18% of the N applied, whereas the emissions induced by additions of 500 and 1 000 g NH4OH-N g–1 soil represented 1.15% and 1.19%, respectively, of the N applied. This suggests that the exceptionally large emissions of N2O induced by anhydrous ammonia fertilization are due, at least in part, to the fact that the customary method of applying this fertilizer by injection into soil produces highly alkaline soil zones of high ammonium-N concentration that do not occur when urea or aqueous ammonia fertilizers are broadcast and incorporated into soil.  相似文献   

9.
温慧洋  焦燕  杨铭德  谷鹏  白曙光  杨洁 《土壤》2019,51(4):724-731
为揭示盐碱土壤中参与氨氧化过程和硝酸盐还原过程的amoA和narG基因丰度与N_2O排放的响应规律,本研究选取内蒙古河套灌区3种不同盐碱程度土壤(轻度盐土SA、强度盐土SB和盐土SC),通过控制室内温度和土壤质量含水量进行室内培养试验,并运用荧光定量PCR(real-time PCR)技术研究了盐碱土壤中N_2O排放速率、氨氧化细菌和narG(膜结合型硝酸还原酶)型反硝化细菌丰度与土壤环境因子之间的偶联关系。结果表明:SA、SB和SC3种盐碱土壤中,N_2O平均排放速率随着土壤盐碱程度的升高而升高,值分别为16.9、30.8、69.6μg/(kg·d);氨氧化细菌和narG型反硝化细菌丰度分别为0.415×10~4、6.91×10~4、9.44×10~4 copies和2.61×10~4、5.36×10~4、13.5×10~4 copies,表明在一定盐分条件下,土壤中的盐分能够促进氨氧化细菌和narG型反硝化细菌丰度。RDA分析结果显示,N2O平均排放速率与氨氧化细菌和narG型反硝化细菌丰度具有显著的正相关(r=0.863、0.975,P0.01);土壤pH、EC、速效钾和有机碳是盐碱土壤中影响N2O排放速率的主要环境因子,其中,土壤pH、EC、速效钾和N_2O排放速率存在显著正相关(r=0.968、0.983、0.987,P0.01),土壤有机碳和N_2O排放速率存在负相关(r=–0.800,P0.05),土壤有效磷和总氮与N_2O排放速率的相关性未达到显著水平(P0.05)。  相似文献   

10.
A laboratory investigation was performed to compare the fluxes of dinitrogen (N2), N2O and carbon dioxide (CO2) from no-till (NT) and conventional till (CT) soils under the same water, mineral nitrogen and temperature status. Intact soil cores (0-10 cm) were incubated for 2 weeks at 25 °C at either 75% or 60% water-filled pore space (WFPS) with 15N-labeled fertilizers (100 mg N kg−1 soil). Gas and soil samples were collected at 1-4 day intervals during the incubation period. The N2O and CO2 fluxes were measured by a gas chromatography (GC) system while total N2 and N2O losses and their 15N mole fractions in the soil mineral N pool were determined by a mass spectrometer. The daily accumulative fluxes of N2 and N2O were significantly affected by tillage, N source and soil moisture. We observed higher (P<0.05) fluxes of N2+N2O, N2O and CO2 from the NT soils than from the CT soils. Compared with the addition of nitrate (NO3), the addition of ammonium (NH4+) enhanced the emissions of these N and C gases in the CT and NT soils, but the effect of NH4+ on the N2 and/or N2O fluxes was evident only at 60% WFPS, indicating that nitrification and subsequent denitrification contributed largely to the gaseous N losses and N2O emission under the lower moisture condition. Total and fertilizer-induced emissions of N2 and/or N2O were higher (P<0.05) at 75% WFPS than with 60% WFPS, while CO2 fluxes were not influenced by the two moisture levels. These laboratory results indicate that there is greater potential for N2O loss from NT soils than CT soils. Avoiding wet soil conditions (>60% WFPS) and applying a NO3 form of N fertilizer would reduce potential N2O emissions from arable soils.  相似文献   

11.
Summary Containers filled with soil mixed with potassium nitrate highly enriched in 15N were planted with corn (Zea mays L.) and kept in a phytotron under controlled conditions for 79 days. Soil water content was normally maintained at exactly 60% water-holding capacity (–33 kPa), but it was increased several times to 85% (–5 kPa) for short periods to favour denitrification. The soil headspace was sealed from the phytotron atmosphere and aerated by a continuous stream of air. Nitrous oxide emission was measured by estimating the N2O concentration differences in the air entering and leaving the containers. Emission of N2 was estimated by mass spectroscopy from changes in the N2 composition in the temporarily enclosed soil headspace. Both methods were carefully checked for accuracy by different tests. At specific times during the experiment the distribution of 15N between plants and soil was determined and a 15N balance established. Emission of N gases peaked at times of increased water content and reached maxima of 149 and 142 g N pot–1 day–1 for N2O and N2, respectively. While N losses of 5% ± 2% were indicated by the 15N balance, only 1.1% ± 0.3% loss from 2.7 g applied N was estimated from the N2O and N2 measurements after 79 days. Possible reasons for these differences are discussed.  相似文献   

12.
    
Soil compaction and soil moisture are important factors influencing denitrification and N2O emission from fertilized soils. We analyzed the combined effects of these factors on the emission of N2O, N2 and CO2 from undisturbed soil cores fertilized with (150 kg N ha−1) in a laboratory experiment. The soil cores were collected from differently compacted areas in a potato field, i.e. the ridges (ρD=1.03 g cm−3), the interrow area (ρD=1.24 g cm−3), and the tractor compacted interrow area (ρD=1.64 g cm−3), and adjusted to constant soil moisture levels between 40 and 98% water-filled pore space (WFPS).High N2O emissions were a result of denitrification and occurred at a WFPS≥70% in all compaction treatments. N2 production occurred only at the highest soil moisture level (≥90% WFPS) but it was considerably smaller than the N2O-N emission in most cases. There was no soil moisture effect on CO2 emission from the differently compacted soils with the exception of the highest soil moisture level (98% WFPS) of the tractor-compacted soil in which soil respiration was significantly reduced. The maximum N2O emission rates from all treatments occurred after rewetting of dry soil. This rewetting effect increased with the amount of water added. The results show the importance of increased carbon availability and associated respiratory O2 consumption induced by soil drying and rewetting for the emissions of N2O.  相似文献   

13.
    
The link between differences in the community composition of nitrifiers and denitrifiers to differences in the emission of nitrous oxide (N2O) from soils remains unclear. Nitrifier and denitrifier community composition, abundance and N2O emission activity were determined for two common landscapes characteristic of the North American “prairie pothole region”: cultivated wetlands (CW) vs. uncultivated wetlands (UW). The hypotheses of this study were: (1) landscape selects for different nitrifier and denitrifier communities, (2) denitrification was the dominant N2O emitting process, and (3) a relationship exists between nitrifier and denitrifier community composition, their abundance, and N2O emission. Comparisons were made among soils from three CW and three UW at the St. Denis National Wildlife Area. Denaturing gradient gel electrophoresis was used to compare community composition, and quantitative polymerase chain reaction was used to estimate community size. Incubation experiments on re-packed soil cores with 15N-labeled nitrate were performed to assess the relative contributions of nitrification and denitrification to total N2O emission. Results indicate: (1) nitrification was the primary source of N2O emission, (2) cultivation increased nitrifier abundance but decreased nitrifier richness, (3) denitrifier abundance was not affected by cultivation but richness was increased by cultivation, and (4) differences in nitrifier and denitrifier communities composition and abundance between land-use and landform did not correspond to differences in N2O emission.  相似文献   

14.
The contribution of nitrifiers (ammonia-oxidizing bacteria (AOB)) and denitrifiers to nitrous oxide (N2O) emission from arctic soils remains inconclusive. Based on preliminary experiments, we hypothesized that AOB are the primary producers of N2O in a high arctic lowland ecosystem on Devon Island, Nunavut, Canada. In part 1 of the study, flux chambers were installed in a catena to determine in situ fluxes of gases (N2O and carbon dioxide (CO2)) from 16 June to 13 July 2004. Although fluxes were low, N2O production occurred in the wettest area of the landscape when ammonium levels were high. As ammonium, but not nitrate, levels declined in the wet sedge meadow, N2O emissions correspondingly decreased. In part 2, the contribution of nitrification and denitrification to N2O production was assessed by Acetylene Inhibition Assay and 15N isotopically enriched incubations. Ammonium fertilization stimulated N2O emissions to a greater extent than nitrate, and acetylene had a greater impact on N2O emissions in ammonium-fertilized soils than in nitrate-amended soils. Stable isotope analysis indicated that at 50-55% water filled pore space, nitrification was the dominant (>80%) N2O emitting process. In part 3, molecular analyses of the two N2O producing groups indicated the both nitrifiers and denitrifiers did not differ between landforms. Our results suggest nitrifier denitrification is the dominant process occurring in these arctic soils and that the role of denitrifiers in N2O release from arctic soils needs to be re-evaluated.  相似文献   

15.
    
Molecular nitrogen (N2) and nitrous oxide (N2O) generated by denitrification increase N losses in the soil–plant system. This study aimed to quantify N2 and N2O from potassium nitrate (K15NO3) applied to soils with different textures and moisture contents in the absence and presence of a source of carbon (C) using the 15N tracer method. In the three soils used (sandy texture (ST), sandy clay loam texture (SCLT), and clayey texture (CT)), three moisture contents were evaluated (40%, 60%, and 80% of the water holding capacity (WHC)) with (D+) and without (D?) dextrose added. The treatments received 100 mg N kg?1 (KNO3 with 23.24 atom% 15N). N2 emissions occurred in all of the treatments, but N2O emissions only occurred in the D+ treatment, showing increases with increasing moisture content. SCLT with 80% WHC in the D+ treatment exhibited the highest accumulated N emission (48.26 mg kg?1). The 15N balance suggested trapping of the gases in the soil.  相似文献   

16.
    
Summary Field studies to determine the effect of different rates of fertilization on emission of nitrous oxide (N2O) from soil fertilized with anhydrous ammonia showed that the fertilizer-induced emission of N2O-N in 116 days increased from 1.22 to 4.09 kg ha–1 as the rate of anhydrous ammonia N application was increased from 75 to 450 kg ha–1. When expressed as a percentage of the N applied, the fertilizer-induced emission of N2O-N in 116 days decreased from 1.6% to 0.9% as the rate of fertilizer N application was increased from 75 to 450 kg N ha–1. The data obtained showed that a 100% increase in the rate of application of anhydrous ammonia led to about a 60% increase in the fertilizer-induced emission of N2O.Field studies to determine the effect of depth of fertilizer injection on emission of N2O from soil fertilized with anhydrous ammonia showed that the emission of N2O-N in 156 days induced by injection of 112 kg anhydrous ammonia N ha–1 at a depth of 30 cm was 107% and 21 % greater than those induced by injection of the same amount of N at depths of 10 cm and 20 cm, respectively. The effect of depth of application of anhydrous ammonia on emission of N2O was less when this fertilizer was applied at a rate of 225 kg N ha–1.  相似文献   

17.
三氯生(Triclosan, TCS)和三氯卡班(Triclocarban, TCC)是典型的药品与个人护理用品,在土壤生态系统中被广泛检出,且存在增加土壤微生物抗药性及抑制土壤呼吸的潜在风险,但目前有关TCS和TCC对土壤氮转化过程及氧化亚氮(N_2O)排放的影响尚不清楚。基于此,采用室内培养实验和15N稀释-富集法,结合氮转化数值模型,研究了不同浓度梯度下TCS(2和5mg·kg~(-1))和TCC(1和2 mg·kg~(-1))的单独及联合存在对水稻土氮初级转化速率以及N_2O排放的影响。结果表明,1mg·kg~(-1)TCC及5mg·kg~(-1)TCS+2mg·kg~(-1)TCC处理对水稻土氮素的矿化-同化无显著影响,其余TCS和TCC处理均显著促进了氮的矿化-同化循环。此外,TCS和TCC处理显著降低了自养硝化速率、硝态氮的微生物固定速率以及硝酸盐异化还原成铵(Dissimilatory nitrate reduction to ammonium, DNRA)速率(2 mg·kg~(-1)TCS处理及5mg·kg~(-1)TCS+2mg·kg~(-1)TCC对DNRA速率无显著影响)。值得关注的是,TCS和TCC单一和联合处理均显著增加了N_2O的累积排放量,其累积排放量为对照的1.13倍~1.44倍。本研究表明,TCS和TCC改变了水稻土好氧氮转化过程,可能对稻田生态系统氮循环产生不利影响;TCC和TCS对水稻土N_2O排放的促进作用也增加了稻田生态系统对温室效应和臭氧层破坏的潜在贡献,因此,未来评价TCS和TCC土壤生态风险时,应考虑其对氮转化过程和N_2O排放的潜在影响。  相似文献   

18.
Summary Nitrification activity (formation of NO 2 + NO 3 per unit soil weight) was measured in the surface layer of 15 presubmerged soils incubated in petri dishes under flooded but aerobic conditions. soils with pH above 5 nitrified quickly, whereas soils with pH below this level did not nitrify or nitrified slowly. The pH values between 7 and 8.5 were optimal for nitrification. Organic-matter levels in the 15 soils of our study did not influence their nitrification activities. In a follow-up greenhouse pot study, after a period of 3 weeks, 15N-balance measurements showed that the loss of N through apparent denitrification did not follow the nitrification patterns of the soils observed in the petri dishes. Apparent denitrification accounted for 16.8% and 18.9% loss of 15N from a soil with insignificant nitrification activity and a soil with high nitrification activity, respectively. These results, thus, indicate a lack of correspondence between the nitrification activities of soil and the denitrification loss of N when the former was measured in the dark and the latter was estimated in the light. Soils that nitrified in the darkness of the incubator did not nitrify in the daylight in the greenhouse.  相似文献   

19.
丛枝菌根真菌调控土壤氧化亚氮排放的机制   总被引:1,自引:1,他引:1       下载免费PDF全文
氮素是陆地生态系统初级生产力的主要限制因子,自Haber-Bosch反应以来,氮肥的生产和施用极大地提高了粮食产量.然而过量施用氮肥导致氮肥利用率低,并造成了严重的环境污染,包括氮沉降、硝态氮淋洗以及N2O排放等.微生物直接参与土壤氮素循环,固氮微生物、氨氧化和反硝化微生物分别在土壤固氮、铵态氮转化和硝态氮转化过程中起...  相似文献   

20.
设施菜田土壤氧化亚氮(N2O)脉冲式排放期间通常伴随着亚硝酸盐(NO2-)的大量积累,为揭示NO2-对设施菜田土壤N2O排放的影响机制,以两种典型蔬菜种植区土壤(碱性土壤/酸性土壤)为研究对象,通过室内培养试验,对比厌氧和好氧培养条件下添加NO2-后两种土壤无机氮转化与N2O、氮气(N2)和二氧化碳(CO2)等气体排放,以及氨氧化单加氧酶α亚基调控基因(amoA)、亚硝酸盐还原酶调控基因(nirK和 nirS,统称nir)和N2O还原酶调控基因(nosZ)的丰度和转录情况。结果显示:受pH等环境因素影响,土壤中NO2-含量并不一定与N2O排放之间存在相关性,但添加NO2-的处理显著增加了两种土壤的N2O排放量和N2O/(N2O+N2)指数(IN2O)(P<0.05)。碱性土壤中,60 mg?kg-1外源NO2-对土壤CO2排放无明显抑制作用,厌氧培养条件下nirK基因、好氧培养条件下amoA和nirS基因均出现了添加NO2-后转录拷贝数显著高于空白处理的现象,而nosZ基因无此现象。酸性土壤中,amoA转录活性整体较低,好氧空白处理时nirS基因转录拷贝数随培养时间的延长而增加(P<0.05);60 mg?kg-1外源NO2-明显降低了酸性土壤的CO2排放量、相关基因的丰度及转录拷贝数。上述结果显示,土壤中积累的NO2-会通过诱导nir基因转录与N2O还原酶竞争电子和抑制N2O还原酶活性等途径,增加土壤的IN2O,影响有氧条件下N2O的排放途径,研究结果将为探索设施菜田土壤氮素高效利用和N2O减排提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号