首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seventy-six rhizobial isolates belonging to four different genera were obtained from the root nodules of several legumes (Vicia sativa, Vicia faba, Medicago sativa, Melilotus sp., Glycine max and Lotus corniculatus). The action of five commonly used herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), glyphosate (GF), dicamba, atrazine and metsulfuron-methyl] on the growth of rhizobial strains was assessed. Subsequently, GF and 2,4-D were tested in a minimum broth as C and energy sources for 20 tolerant strains. The ability of these strains to metabolize different carbon sources was studied in order to detect further differences among them. Tolerance of the bacteria to agrochemicals varied; 2,4-D and GF in solid medium inhibited and diminished growth, respectively, in slow-growing rhizobial strains. Among slow-growing strains we detected Bradyrhizobium sp. SJ140 that grew well in broth + GF as the sole C and energy source. No strain was found which could use 2,4-D as sole C source. The 20 strains studied exhibited different patterns of C sources utilization. Cluster analysis revealed three groups, corresponding to four genera of rhizobia: Rhizobium (group I), Sinorhizobium (group II) and Mesorhizobium–Bradyrhizobium (group III). On the basis of the results obtained on responses to herbicides and C sources utilization by the isolates investigated, it was possible to differentiate them at the level of strains. These results evidenced a considerable diversity in rhizobial populations that had not been previously described for Argentinean soils, and suggested a physiological potential to use natural and xenobiotic C sources.  相似文献   

2.
Kura clover (Trifolium ambiguum M.B.) is a perennial rhizomatous forage legume whose use is currently limited by difficulties in its establishment in part attributable to nodulation problems and very specific rhizobial requirements. A limited number of Kura clover-nodulating rhizobial strains are currently available and many have a limited effectiveness. In this study, 128 rhizobia were isolated from four sites in the center of origin of Kura clover (i.e., two in Azerbaijan, one in Armenia, and one in Northwest Iran) using the three ploidy levels of Kura clover (diploid, tetraploid, and hexaploid), red clover (Trifolium pratense L.), and white clover (Trifolium repens L.) plants as trap hosts. Rhizobia were fingerprinted using repetitive extragenic palindromic polymerase chain reaction (BOXA1R primer) and their genetic diversity was measured using the Shannon-Weaver diversity index. The nodulation specificity and phenotypic diversity of a subset of 13 isolates was determined. Genetic diversity among the 128 isolates was large and similar for rhizobia grouped according to their geographic origin or original host plant. Phenotypic diversity was significant; percentage of similarity among 13 isolates ranging between 38 and 92%. Nodulation specificity of the Kura clover-nodulating rhizobial isolates studied was less complex and not as clearly delineated as previously reported. Some strains originally isolated from Kura clover could effectively nodulate more than one ploidy level of Kura clover and even one or both of two other Trifolium species (i.e., red clover and white clover). Three strains formed effective nodules on both Kura clover and white clover; however, none promoted plant growth of both species to levels currently obtained with commercial inoculants when evaluated in a growth chamber. Rhizobial isolates that are highly effective with both species have yet to be identified.  相似文献   

3.
Field pea (Pisum sativum L.) is widely grown in South Australia (SA), often without inoculation with commercial rhizobia. To establish if symbiotic factors are limiting the growth of field pea we examined the size, symbiotic effectiveness and diversity of populations of field pea rhizobia (Rhizobium leguminosarum bv. viciae) that have become naturalised in South Australian soils and nodulate many pea crops. Most probable number plant infection tests on 33 soils showed that R. l. bv. viciae populations ranged from undetectable (six soils) to 32×103 rhizobia g−1 of dry soil. Twenty-four of the 33 soils contained more than 100 rhizobia g−1 soil. Three of the six soils in which no R. l. bv. viciae were detected had not grown a host legume (field pea, faba bean, vetch or lentil). For soils that had grown a host legume, there was no correlation between the size of R. l. bv. viciae populations and either the time since a host legume had been grown or any measured soil factor (pH, inorganic N and organic C). In glasshouse experiments, inoculation of the field pea cultivar Parafield with the commercial Rhizobium strain SU303 resulted in a highly effective symbiosis. The SU303 treatment produced as much shoot dry weight as the mineral N treatment and more than 2.9 times the shoot dry weight of the uninoculated treatment. Twenty-two of the 33 naturalised populations of rhizobia (applied to pea plants as soil suspensions) produced prompt and abundant nodulation. These symbioses were generally effective at N2 fixation, with shoot dry weight ranging from 98% (soil 21) down to 61% (soil 30) of the SU303 treatment, the least effective population of rhizobia still producing nearly double the growth of the uninoculated treatment. Low shoot dry weights resulting from most of the remaining soil treatments were associated with delayed or erratic nodulation caused by low numbers of rhizobia. Random amplified polymorphic DNA (RAPD) polymerase chain reaction (PCR) fingerprinting of 70 rhizobial isolates recovered from five of the 33 soils (14 isolates from each soil) showed that naturalised populations were composed of multiple (5-9) strain types. There was little evidence of strain dominance, with a single strain type occupying more than 30% of trap host nodules in only two of the five populations. Cluster analysis of RAPD PCR banding patterns showed that strain types in naturalised populations were not closely related to the current commercial inoculant strain for field pea (SU303, ≥75% dissimilarity), six previous field pea inoculant strains (≥55% dissimilarity) or a former commercial inoculant strain for faba bean (WSM1274, ≥66% dissimilarity). Two of the most closely related strain types (≤15% dissimilarity) were found at widely separate locations in SA and may have potential as commercial inoculant strains. Given the size and diversity of the naturalised pea rhizobia populations in SA soils and their relative effectiveness, it is unlikely that inoculation with a commercial strain of rhizobia will improve N2 fixation in field pea crops, unless the number of rhizobia in the soil is very low or absent (e.g. where a legume host has not been previously grown and for three soils from western Eyre Peninsula). The general effectiveness of the pea rhizobia populations also indicates that reduced N2 fixation is unlikely to be the major cause of the declining field pea yields observed in recent times.  相似文献   

4.
In this study, soybean nodules were collected from 12 sites in the State of Mato Grosso, in the Brazilian Cerrados, where both exotic soybean [Glycine max (L.) Merrill] and bradyrhizobial strains have been introduced from 1 to 18 years before. All soils were originally devoid of rhizobia capable of effectively nodulating soybean and varied in terms of chemical and physical properties, inoculation procedures, and cropping systems. Rhizobial genetic diversity was assessed on 240 isolates by rep-PCR fingerprinting with BOX primer, and indices of diversity (abundance-based coverage estimator and traditional and modified Shannon indices) were applied to the profiles obtained. The genetic diversity was much greater than expected, as after the introduction of a maximum of four strains, up to 13 profiles were identified, some sharing many similar bands with the inoculant strains, but others quite distinct from the putative parental genotypes. The increase in the number of rep-PCR profiles could be attributed to genetic variability due to the stressful tropical environmental conditions, but also might indicate that indigenous rhizobia become capable of nodulating the host legume. After the third year of cropping with the host legume, inoculation did not affect rhizobial diversity. A high content of clay decreased diversity in comparison with that seen in a sandy soil, probably due to reduced aeration. Diversity was higher under the no-tillage system when compared to the conventional tillage management, highlighting the importance of maintaining crop residues in tropical soils. Understanding the ecology of exotic rhizobia after being introduced into new cropping areas represents a first step towards the establishment of better strategies of inoculation, which in turn may result in sustainability and higher plant yields.  相似文献   

5.
Biological nitrogen fixation plays a key role in agriculture sustainability, and assessment of rhizobial diversity contributes to worldwide knowledge of biodiversity of soil microorganisms, to the usefulness of rhizobial collections and to the establishment of long-term strategies aimed at increasing contributions of legume-fixed N to agriculture. Although in recent decades the use of molecular techniques has contributed greatly to enhancing knowledge of rhizobial diversity, concerns remain over simple issues such as the effects of sampling on estimates of diversity. In this study, rhizobia were isolated from nodules of plants grown under field conditions, in pots containing soil, or in Leonard jars receiving a 10−2 or a 10−4 serially-diluted soil inoculum, using one exotic (soybean, Glycine max) and one indigenous (common bean, Phaseolus vulgaris) legume species. The experiments were performed using an oxisol with a high population (105 cells g−1 soil) of both soybean rhizobia, composed of naturalized strains introduced in inoculants and of indigenous common-bean rhizobia. BOX-PCR was used to evaluate strain diversity, while RFLP-PCR of the ITS (internally transcribed spacer) region with five restriction enzymes aimed at discriminating rhizobial species. In both analyses the genetic diversity of common-bean rhizobia was greater than that of soybean. For the common bean, diversity was greatly enhanced at the 10−4 dilution, while for the soybean dilution decreased diversity. Qualitative differences were also observed, as the DNA profiles differed for each treatment in both host plants. Differences obtained can be attributed to dissimilarity in the history of the introduction of both the host plant and the rhizobia (exotic vs. indigenous), to host-plant specificity, rhizobial competitiveness, and population structure, including ease with which some types are released from microcolonies in soil. Therefore, sampling method should be considered both in the interpretation and comparison of the results obtained in different studies, and in the setting of the goals of any study, e.g. selection of competitive strains, or collection of a larger spectrum of rhizobia. Furthermore, effects of sampling should be investigated for each symbiosis.  相似文献   

6.
Hairy vetch (Vicia villosa Roth, HV) is widely grown as a legume cover crop throughout the U.S.A., with biological nitrogen fixation (BNF) through symbiosis with Rhizobium leguminosarum biovar viciae (Rlv) being one of the most sought after benefits of its cultivation. This study determined if HV cultivation history and plant genotype affect genetic diversity of resident Rlv. Soil samples were collected from within farmers’ fields at Graham, Cedar Grove and Ivanhoe sites in North Carolina and pairs of genetically similar hairy vetch genotypes used as trap hosts. A total of 519 Rlv strains were isolated from six paired field soils, three with and three without histories of HV cultivation. A total of 46 strains failed to PCR-amplify the nifH gene; however nodC PCR amplification of these nifH-negative strains resulted in amplification of 22 of the strains. Repetitive element polymerase chain reaction (rep-PCR) with BOX-A1R primer and redundancy analysis showed rhizobial diversity to vary greatly within and between fields, with over 30 BOX banding patterns obtained across the six fields. Cluster analysis of BOX-PCR banding patterns resulted in 36 genetic groups of Rlv at a similarity level of 70%, with 15 of the isolates from fields with HV history not belonging to any of the clusters. Site was found to be the main driver of isolate diversity overall, explaining 57%, of the total variation among rhizobia occupying HV nodules, followed by history of hairy vetch cultivation. Evidence of a HV host genotype influence on the populations of rhizobia that infect hairy vetch was also observed, with plant genotype explaining 12.7% of the variation among all isolates. Our results show that second to site, HV cultivation history was the most important driver of rhizobial nodule community structure and increases the genetic diversity of resident Rlv in soils.  相似文献   

7.
We analysed the genetic properties of non-rhizobial root nodule endophytes (NRE) isolated from indigenous legumes in Flanders. In total, 654 isolates were obtained from 30 different plant species within the Faboideae legume subfamily. Partial sequencing of the 16S rRNA gene revealed a large diversity of different taxa from the classes Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmibacteria, Flavobacteria and Sphingobacteria. Many of the isolates belonged to the genera Bacillus (17.9%) and Pseudomonas (15.9%). No symbiosis (nodC) or nitrogen fixation related genes (nifH) could be detected amongst the isolates, which indicate the endophytic nature of the bacteria. Statistical analysis grouped the investigated plant species into six clusters according to the presence of particular NRE. However, no correlations could be found within these six clusters towards plant tribes or ecoregions the plants had been sampled from. Cluster analysis of the ecoregions according to the presence of NRE, revealed correlations between bacterial genera and those areas. However, groups present in the ecoregions did not correlate with the groups present in the different plant clusters. When combining our previous study on rhizobial diversity recovered from the same sampling campaign (De Meyer et al., 2011) with the current study, 84.1% of the isolates belonged to the traditional rhizobia groups and only 15.9% were NRE. The Loamy ecoregion yielded the lowest number of culturable NRE (8.04%) and the Campine ecoregion the highest number (24.19%). The present study highlights the frequent presence of these NRE in root nodules. The occurrence of certain rhizobia was correlated with the presence of particular NRE, suggesting their presence may not be accidental, however their functions remain unclear at this point.  相似文献   

8.
Different legume populations are known to accommodate different genotypes of Rhizobium leguminosarum. However, in contrast to interspecific diversity and composition, very little is known regarding which environmental factors drive the genetic diversity and genetic composition of a single Rhizobium species. Based on chromosomal and plasmid genes, we quantified the genetic diversity and compositional differences of R. leguminosarum biovar viciae genotypes associated with twenty-four different Vicia cracca populations across a wide environmental and geographical range. Long-term soil nitrogen availability had a positive effect on chromosomal and plasmid diversity, whereas salinity had a negative effect on chromosomal diversity. Soil pH and geographic distance were the main factors driving compositional differences among populations. In contrast to differences in chromosomal composition, differences in the symbiotic plasmid composition were primarily related to geographic distance or unmeasured related environmental factors (e.g. host plant genetic differentiation). We propose different hypotheses to explain how long-term soil nitrogen availability affects rhizobial genetic diversity. Furthermore, our findings demonstrate that ecological processes that are known to operate at the interspecific level do not necessarily result in the same patterns at the intraspecific level.  相似文献   

9.
The nodulation of provenances of Acacia seyal, Acacia tortilis and Faidherbia albida, and other indigenous multipurpose tree species were tested in 14 different soil samples collected from diverse agro-ecological zones in southern Ethiopia. Associated rhizobia were isolated from these and from excavated nodules of field standing mature trees, and phenotypically characterized. Indigenous rhizobia capable of eliciting nodules on at least one or more of the woody legume species tested were present in most of the soils. Tree species were markedly different in nodulation in the different site soils. Sesbania sesban and Acacia abyssinica showed higher nodulation ability across the different sites indicating widespread occurrence of compatible rhizobia in the soils. The nodulation patterns of the different provenances of Acacia spp. suggested the existence of intraspecific provenance variations in rhizobial affinity which can be exploited to improve N fixation through tree selection. Altogether, 241 isolates were recovered from the root nodules of trap host species and from excavated nodules. Isolates were differentiated by growth rate and colony morphology and there were very fast-, fast-, slow-, and very slow-growing rhizobia. The bulk of them (68.5%) were fast-growing acid-producing rhizobia while 25.3% were slow-growing alkali-producing types. Fast-growing alkali-producing (2.9%) and slow-growing acid-producing strains (3.3%) were isolated from trap host species and excavated nodules, respectively. All isolates fell into four colony types: watery translucent, white translucent, dull glistering and milky (curdled) type. The diversity of indigenous rhizobia in growth rate and colony morphology suggested that the collection probably includes several rhizobial genera.  相似文献   

10.
Nodule formation in legumes is a process that starts with root infection by rhizobia. The present study assessed the population and infectivity of the indigenous rhizobial strains in rainforest soils of Nigeria. Soils were collected from three sites – Idi-Ayunre, Orile-Ilugun (OI) and the University of Ibadan Teaching and Research Farm (UITRF) – and analysed for physico-chemical properties and rhizobial population. Soybean varieties TGx1448-2E and TGx1456-2E and a cowpea variety IT89KD-288 were planted as trap crops on each of the soils, and rhizobia were isolated from their nodules. Infectivity assay was conducted using eight varieties of soybean and a cowpea variety. Most probable number estimate of the rhizobial population showed that the UITRF had significantly higher rhizobial population than the other two locations. OI and the UITRF soils planted with TGx1448-2E had significantly higher nodules and number of strains than other treatments. Among the 70 slow-grower strains isolated, only nine were infective. Three of the nine strains – IDC8, TRC2 and OISa-6e – nodulated at least seven of the eight soybean varieties used for infectivity test. Indigenous rhizobial infectivity of the studied locations was low, and cultivation of grain legume may require rhizobial inoculation for high productivity.  相似文献   

11.
《Applied soil ecology》2003,22(3):211-223
A legume introduced into a new area will only form nodules and fix nitrogen if compatible rhizobia are present in the soil. Using 25 (60 in the case of Sesbania sesban) soils sampled from tropical areas of Africa, Asia and Latin America, we examined the nodulation of four agroforestry tree species (Calliandra calothyrsus, Gliricidia sepium, Leucaena leucocephala and S. sesban), their symbiotic interactions with the native rhizobial populations, and some of the ecological indicators of rhizobial population dynamics. Rhizobial population sizes estimated by the legume species ranged from undetectable numbers to 3.16×104 cells per g of soil depending on the trap host species. Although C. calothyrsus had the highest nodulation rate in the soils used, inoculation tests showed L. leucocephala to be the most promiscuous species while G. sepium had the most effective symbiosis. S. sesban was the most specific for both nodulation and symbiotic effectiveness. Symbiotic effectiveness did not bear any close relationship with specific soil parameters, but rhizobial numbers were highly correlated with soil acidity, particle size and exchangeable bases. Soil acidity was also the main factor that was highly correlated with genetic diversity among the rhizobial populations.  相似文献   

12.
Sudan is the fourth largest exporter of groundnuts in the world, yet little is known concerning the plant-rhizobial symbiosis. A study was made on the abundance of groundnut-nodulating rhizobia in the soils of Sudan as related to soil properties and the duration since groundnuts were last planted. Also, physiological, serological and nitrogen-fixing characteristics of Sudanese rhizobia are reported. All but one of 32 sites contained more than 300 rhizobia g?1 soil capable of forming nodules on siratro (Macroptilium atropurpureum). Several of these soils had never been planted to groundnut. A correlation matrix indicated no relationship was present between soil rhizobial populations and any of the measured soil properties, or between soil rhizobial populations and the time since groundnuts were last planted in the rotation. Individual isolates of Rhizobium from six legumes: groundnut (Arachis hypogaea), mung bean (Vigna radiata), lubia (Dolichos lablab), cowpea (Vigna unguiculata), pigeonpea (Cajanus cajan) and bambara groundnut (Voandzeia subterranea) were obtained from four locations in Sudan. All isolates were able to nodulate each of the six legumes when grown in sterile vermiculite. The isolates grew in 0.1% NaCl-amended media, but growth was variable in 2.0% amended media. Most isolates grew after exposure to moist heat for 15 min at 50°C. Optimum pH for growth was, in general, between pH 6 and 8. Agglutination reactions indicated isolates from groundnuts, as well as isolates from other legumes, belonged to several serological groupings. Some isolates formed a large number of nodules on a Sudanese groundnut cultivar, whereas other isolates formed only few nodules.  相似文献   

13.
Soil populations of Rhizobium leguminosarum bv. viciae (Rlv) that are infective and symbiotically effective on pea (Pisum sativum L.) have recently been shown to be quite widespread in agricultural soils of the eastern Canadian prairie. Here we report on studies carried out to assess the genetic diversity amongst these endemic Rlv strains and to attempt to determine if the endemic strains arose from previously used commercial rhizobial inoculants. Isolates of Rlv were collected from nodules of uninoculated pea plants from 20 sites across southern Manitoba and analyzed by plasmid profiling and PCR-RFLP of the 16S-23S rDNA internally transcribed spacer (ITS) region. Of 214 field isolates analyzed, 67 different plasmid profiles were identified, indicating a relatively high degree of variability among the isolates. Plasmid profiling of isolates from proximal nodules (near the base of the stem) and distal nodules (on lateral roots further from the root crown) from individual plants from one site suggested that the endemic strains were quite competitive relative to a commercial inoculant, occupying 78% of the proximal nodules and 96% of the distal nodules. PCR-RFLP of the 16S-23S rDNA ITS also suggested a relatively high degree of genetic variability among the field isolates. Analysis of the PCR-RFLP patterns of 15 selected isolates by UPGMA indicated two clusters of three field isolates each, with simple matching coefficients (SMCs) ≥0.95. However, to group all field isolates together, the SMC has to be reduced to 0.70. Regarding the origin of the endemic Rlv strains, there were few occurrences of the plasmid profiles of field isolates being identical to the profiles of inoculant Rlv strains commonly used in the region. Likewise, the plasmid profiles of isolates from nodules of wild Lathyrus plants located near some of the sites were all different from those of the field isolates. However, comparison of PCR-RFLP patterns suggested an influence of some inoculant strains on the chromosomal composition of some of the field isolates with SMCs of ≥0.92. Overall, plasmid profiles and PCR-RFLP patterns of the isolates from endemic Rlv populations from across southern Manitoba indicate a relatively high degree of genetic diversity among both plasmid and chromosomal components of endemic strains, but also suggest some influence of chromosomal information from previously used inoculant strains on the endemic soil strains.  相似文献   

14.
In the managed agricultural ecosystems of southern Australia, if an edaphic environment is not stressful to root-nodule bacteria (hereafter rhizobia), it is likely to become a competitive environment for nodulation (although not always detrimentally so) soon after the introduction of an inoculated legume. We suggest that stressful environments limit rhizobial communities to less than 100 cells g−1 soil at some time during the season. This overview puts forward the hypothesis that in perturbed ecosystems (i.e. those that are intensively managed) such as in the 25 million ha of the southern Australian grain and grazing belts, the rhizobial community is still substantially immature in an evolutionary sense. The rhizobial community is representative of only a few species, primarily those of Mediterranean origin that were accidentally introduced, or have been fostered by legume development programs, or remnants of the populations associated with native legumes. We consider there is little inter-specific competition for substrates because of this relative immaturity, but suggest that intra-specific competition for nodulation is commonplace wherever abiotic stress is absent. We nominate two primary abiotic stresses that are permanently present that have limited rhizobial colonization or legume nodulation for some species in southern Australia and four secondary (temporary) abiotic stresses. We believe that selection of adapted symbioses, or where warranted adapted elite rhizobial strains or legume host genotypes, can overcome these stress factors. We emphasise that where several abiotic stress factors are present they may act synergistically, but that this net effect is still likely to be symbiosis-specific. We acknowledge that genetic transformation in situ is providing new strain variability with which we must contend. We also put forward the suggestion that opportunities exist for the managed introduction of selected genotypes of agricultural legumes that effectively interact with rhizobial communities to achieve optimal N-fixation. In doing so, we give more precise definition to the widely used terms ‘exclusive’, ‘selective’ and ‘promiscuous’ nodulation.  相似文献   

15.
Chickpea (Cicer arietinum L.) nodulation variants of two cultivars ICC 4948 and ICC 5003 were used as trap plants to isolate 385 native rhizobia from CCS Haryana Agricultural University, Hisar farm soil. After authentication and considering growth characteristics, selected 110 rhizobia revealed immense molecular diversity using the profiles of DNA fragments generated by Polymerase chain reaction (PCR) with enterobacterial repetitive intergeneric consensus (ERIC) sequences. Low nodulating variants of cvs ICC 4948 and ICC 5003 were able to trap more numbers of rhizobial genotypes, namely seven as compared four to five by high nodulating variants of these cultivars. Overall eight rhizobial genotypes were trapped by the chickpea cultivars. Rhizobial isolates from same nodule or same plants were present in the same or different clusters and few isolates showed 100% similarity also. Based on nodules from a plant, nodulation variant or cultivar, rhizobia could not be differentiated and no exclusive cluster was formed by either rhizobial isolates from low or high nodulating variants of both the cultivars. Two most efficient rhizobial isolates LN 707b and LN 7007 were characterized by amplification and sequencing of 16S rRNA gene. Rhizobial isolate LN 707b showed more than 98% similarity with Mesorhizobium sp SH 2851 and Mesorhizobium mediterraneum. Another isolate LN 7007 showed more than 99% similarity with the sequence of 16S r RNA gene of Mesorhizobium sp STM 398, and M. mediterraneum. So the chickpea rhizobia from Northern Indian subcontinent are proposed to be kept under M. mediterraneum strain LN707b and LN 7007.  相似文献   

16.
Symbiotic efficiency and compatibility of 81 isolates of native bradyrhizobia from irrigated areas in northern Thailand with four soybean cultivars and one cowpea cultivar were evaluated under laboratory conditions. Effectiveness and / or compatibility of the tested isolates were compared with those of a standard strain (Bradyrhizobium japonicum CB 1809) by using plants grown on plastic seed bags. Effectiveness of the isolates was also estimated using uninoculated control plants grown in a nitrogen-free solution. Nodulation of a wide range of host plants by the majority of the tested isolates was observed, which agreed well with the results of our previous field experiment (Shutsrirung et al. 2002: Soil Sci. Plant Nutr., 48, 491–499). Up to 75% of the tested isolates induced a higher growth efficiency than that of the uninoculated control in association with one of the tested cultivars, Black soybean. Comparision with uninoculated control plants, enable to estimate the proportion of the tested isolates leading to effective growth promotion (E + e) of each cultivar, namely, Black soybean (local Thai cultivar), 75%; Cowpea, 82%; SJ5 (commercial Thai cultivar), 33%; Bragg (US cultivar), 33%; and Improved Pelican (US cultivar), 9%. These results indicated that although isolates with a high infectiveness with both “Asian-type” and “US-type” soybeans could be found, a high frequency of isolates leading to inefficient nodules was observed in the US cultivar, suggesting the presence of genetic differences in the soybean cultivars that express high-preference (efficient nodules) or low-preference (inefficient nodules) for a certain group of tested isolates. Based on the results of this laboratory experiment together with our previous field experiment, native rhizobial populations in the irrigated area of northern Thailand could be separated into three groups; Group 1: rhizobium strains showing a high effectiveness with only Asian cultivars, Group 2: strains showing a high effectiveness with only US origin cultivars, and Group 3: strains showing a high effectiveness with both Asian and US origin cultivars. The majority of the native rhizobial populations belonged to Group 1. The isolates in Group 3 may display a high potential for manipulating useful rhizobial inoculant.  相似文献   

17.
The present study was conducted to isolate and characterize rhizobial strains from root nodules of cultivated legumes, i.e. chickpea, mungbean, pea and siratro. Preliminary characterization of these isolates was done on the basis of plant infectivity test, acetylene reduction assay, C-source utilization, phosphate solubilization, phytohormones and polysaccharide production. The plant infectivity test and acetylene reduction assay showed effective root nodule formation by all the isolates on their respective hosts, except for chickpea isolate Ca-18 that failed to infect its original host. All strains showed homology to a typical Rhizobium strain on the basis of growth pattern, C-source utilization and polysaccharide production. The strain Ca-18 was characterized by its phosphate solubilization and indole acetic acid (IAA) production. The genetic relationship of the six rhizobial strains was carried out by random amplified polymorphic DNA (RAPD) including a reference strain of Bradyrhizobium japonicum TAL-102. Analysis conducted with 60 primers discriminated between the strains of Rhizobium and Bradyrhizobium in two different clusters. One of the primers, OPB-5, yielded a unique RAPD pattern for the six strains and well discriminated the non-nodulating chickpea isolate Ca-18 from all the other nodulating rhizobial strains. Isolate Ca-18 showed the least homology of 15% and 18% with Rhizobium and Bradyrhizobium, respectively, and was probably not a (Brady)rhizobium strain. Partial 16S rRNA gene sequence analysis for MN-S, TAL-102 and Ca-18 strains showed 97% homology between MN-S and TAL-102 strains, supporting the view that they were strains of B. japonicum species. The non-infective isolate Ca-18 was 67% different from the other two strains and probably was an Agrobacterium strain.  相似文献   

18.
In this study, the interrelation between nitrogen availability and prokaryotic diversity are studied using a well-characterised system from a long-term field experiment on a loamy sandy soil. The prokaryotic potential functional diversity and community composition were assessed using community-level physiological profiling (CLPP), and their phylogenetic diversity was analysed using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) in combination with sequencing analysis. Highest prokaryotic potential functional diversity was measured in the control soil receiving no N fertilisation, indicating an efficient as well as versatile utilisation of the substrates in this soil. Both substrate utilisation richness and substrate utilisation evenness, the two constituents of the functional diversity, were decreased with increasing N supply. Furthermore, distinct prokaryotic community compositions were generated in N-enriched soils compared to unfertilised control soils. These differences suggest a dominance of populations adapted to utilising readily available substrates. We demonstrated that the shift in prokaryotic functional diversity was connected to a shift in the phylogenetic structure of the bacterial and archaeal communities. Taken together, our data clearly show that, for the sandy soil system, prokaryotic diversity and N availability were interrelated.  相似文献   

19.
为探讨物种多样性与地上生物量的相关性以及物种多样性的垂直变化特征.以阿尔泰山布尔津林区5种草地类型为研究对象,通过对布尔津林区各草地类型的调查,分析了阿尔泰山布尔津林区各草地类型的物种多样性变化特征.结果 表明:(1)5个草地群落类型地上生物量差异明显,荒漠草原和山地草甸草原较低,山地草原最高,而山地草甸和高寒草甸处于...  相似文献   

20.
The aim of this work was to investigate the genetic diversity, symbiotic effectiveness, drought tolerance, and indole acetic acid production of indigenous rhizobial populations in the Parque Chaqueño of Argentina able to nodulate Prosopis alba, the dominant forest tree of this region. The populations were sampled at five locations from the Arid, Semi-arid, and Humid Chaco in the Parque Chaqueño region. A set of rhizobial strains able to nodulate P. alba was obtained and selected based on their molecular diversity. Data obtained by BOX-PCR indicated that the highest molecular variability was observed in rhizobial isolates from Semi-arid Chaco. High level of indolic compound production and tolerance to osmotic treatment were significantly (p?≤?0.05) correlated with water restrictions of the environments where the strains belonged. A small set of rhizobial strains that stimulate P. alba growth was selected from a large group of strains. The strains were identified by 16S rDNA sequencing as belonging to the genera Mesorhizobium, Bradyrhizobium, and Ensifer. To our knowledge, this is the first report of P. alba nodulation by strains other than Mesorhizobium chacoense, which was already described for the Parque Chaqueño.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号