首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A comparative study of organic, low input, conventional vegetable greenhouse systems was conducted to assess the effect of management practices on the soil nematode community. Bacterivores were the most dominant trophic group in all three systems with a mean proportion of over 80%, followed by omnivore-carnivores. In general, organic management practices increased the abundance of total nematodes, bacterivores, fungivores, and omnivore-carnivores in comparison with low input and conventional management practices. Though inhibitory effects of plant feeders were found in organic and low input systems, these effects were more evident in organic systems. However, small differences were observed in the composition of trophic groups and fauna analysis. All three systems displayed enriched soil conditions and structured food webs. We inferred that the bottom-up effect resulting from organic input in the soil food web may play a more important role than the disruption effects under our high input greenhouse conditions. The Shannon index (H′) and genus dominance (λ) suggested that in greenhouse conditions, excessive manure input would cause a decrease in nematode diversity but increase the dominance, particularly for enrichment opportunists. We concluded that management practices under greenhouse conditions were more influential on nematode biomass (including trophic groups) than community structure.  相似文献   

2.
Soil nematode communities can provide important information about soil food web structure and function. However, how soil nematode communities and their metabolic footprints change over time in temperate forests is not well known. We examined the changes in the composition, diversity and metabolic footprints of soil nematode communities in three differently-aged (young, mid and old) forests of the Changbai Mountains, China. Carbon flows through different nematode trophic groups were also quantified based on nematode biomasses. The results showed that the highest abundance and diversity of total nematodes was found in the mid forest. Nematode communities were characterized by the replenishment in abundance but not the replacement of dominant genera. A low enrichment footprint in the young forest suggests a decline in available prey, while a high enrichment footprint in the mid forest indicates an increase in resource entry into soil food web. The relationship between the carbon flows of omnivores-predators and fungivores was stronger than that among other trophic groups. Our study shows that bottom-up effects of the vegetation, the soil environment and the connectedness of nematode trophic groups are all important driving forces for nematode community structure in temperate forests.  相似文献   

3.
The effects of clearcut harvesting and fertilization of clearcuts on the structure of nematode communities were assessed at three sites in the southern interior of British Columbia. The Shannon-Weaver and Simpson indices of diversity were greater in clearcuts than in forests. The diversity of the bacterivorous and fungivorous trophic groups were not significantly different between clearcuts and forests, whereas the diversity of omnivorous and predacious nematodes was lower in clearcuts than in forests. The nematode maturity index (MI) was lower in clearcuts than in forests. Several ratios describing the prevalence of enrichment opportunists (the absolute abundance of Rhabditida, the relative abundance of Rhabditida, and the ratio of Aphelenchida/fungivorous nematodes) were greater in clearcuts than in forests. Nematode diversity tended to be lower in fertilizer treatments than in controls within clearcuts, but the effects were not consistent across sample dates. The MI was lower in fertilizer treatments than in controls. All ratios representing the relative abundance of enrichment opportunists were greater in fertilizer treatments than in controls. The MI was negatively correlated with N mineralization in data sets representing forests and fertilized and non-fertilized plots within clearcuts. None of the diversity indices were correlated with N mineralization. The absolute abundance of Rhabditida and the relative abundance of Rhabditida were both consistently positively correlated with N mineralization in the data set representing fertilized and non-fertilized plots within clearcuts, and the absolute abundance of Rhabditida was positively correlated with N mineralization in forests.  相似文献   

4.
Nematode colonization and succession were studied over 60 weeks in field plots which had been disturbed by combinations of fumigation and manuring. It was expected that the Maturity Index, which is based on the composition of the nematode fauna, would decrease after disturbance, and subsequently increase with recovery and succession. The results showed that in all treatments, the initial colonization and growth were due to taxa scaled in colonizer-persister (c-p) group 1, resulting in a low Maturity Index. An increase in this index followed when these taxa were gradually replaced by c-p group 2 which thereafter remained the dominant group. C-p groups 3–5 developed only in the non-fumigated treatment. Manuring caused characteristic changes in the nematode fauna which could be described as a cycle, starting with an increase in enrichment opportunists (c-p 1), which were succeeded by general opportunists (c-p 2) which, in turn, were supplemented with persisters (c-p 3–5). It is expected that the same cycle will be observed as a result of other disturbances that cause temporary increase in food supply.  相似文献   

5.
《Applied soil ecology》2009,42(3):329-335
Spatio-temporal variability is a key factor in conservation, management and restoration of ecosystems. Spatial heterogeneity is caused in many cases by organisms that are able to modify their environments. This is especially relevant in arid systems, where organisms such as shrubs and ants create patches of high nutrient availability (fertile islands) surrounded by a low-nutrient matrix. Although variations in structure and physiology among shrubs provoke differences in their effects as fertile islands, whether different microhabitats vary in their influence on animal communities is poorly known. The principal aim of our study is to analyse the effects of different shrub species and Messor harvester ant-nest mounds on the structure of soil macroarthropod assemblages in a strongly seasonal desert location of SE Spain. Shrub microhabitats and ant-nest mounds maintained higher species density, abundance and biomass of soil macroinvertebrates than the surrounding soil matrix. The different microhabitats differed in taxonomic and trophic composition, abundance, and biomass of soil macroinvertebrates, at both litter and belowground levels. Also, variations of invertebrate abundance among microhabitats changed throughout sampling periods. Thus the spatio-temporal heterogeneity of the study site affected the distribution and dynamics of the macroinvertebrate community. The above results indicate that the spatio-temporal mosaic created by microhabitat and seasonal variations on macroinvertebrate assemblages is a relevant issue to be considered in conservation, sustainable management and environmental restoration in heterogeneous arid systems to preserve their biodiversity and ecosystem functioning.  相似文献   

6.
The carrying capacity for microflora and nematofauna was manipulated (using a bactericide, a fungicide, manure or a growing millet plant) in a poor tropical soil, in order to identify relationships between the soil microbes and nematodes and to assess the influences of these organisms on nitrogen flux. The experiment was conducted for 4 months in containers under greenhouse conditions, with analyses of soil, nematofauna and microbial characteristics at regular intervals. Manure input and initial bactericide application led to a significant increase in bacterial-feeding and fungal-feeding nematodes of coloniser-persister classes 1 and 2, respectively, whereas high manure input stimulated omnivorous nematodes (i.e. Microdorylaimus rapsus) which became the dominant trophic group. Changes in abundance of the different bacterial-feeding nematode taxa between treatments seemed to be more related to changes in the structure of the microbial communities than to the total amount of micro-organisms, as suggested by the RISA fingerprint analysis of the bacterial communities. Canonical analysis of nematode feeding guilds, combined with soil microbial and mineral nitrogen parameters as well as multiple regression showed that the bacterial-feeding nematodes influenced the inorganic N content in the soil whereas microbial biomass was determined by total nematode abundance and not by any specific trophic group.  相似文献   

7.
The effects of microhabitat diversity and geographical isolation on the structure of oribatid communities were studied in mangrove forests on the Ryukyu Islands of Japan. The study took place at three sites on two islands 470 km apart. Oribatid mites (Oribatida) were extracted from leaves, branches, bark of trunks (0-50, 50-100, and 100-150 cm high) and of knee roots, and from forest-floor soil and littoral algae, each defined as a microhabitat of oribatid mites. At the 0-50 cm height, the species composition of the oribatid communities on the knee-root bark and the bark of trunks of Bruguiera gymnorrhiza differed significantly from that on the other microhabitats. This difference was attributed to tidal flooding of the mangrove forests. Cluster analysis showed that oribatid communities in the same microhabitat at different sites tended to be more similar than those on different microhabitats at the same site. This implies that the species composition of oribatid communities in mangrove forests is more likely to be affected by factors responsible for microhabitat diversity (characterized specifically by the flooded trunks) than by geographical distance between the islands.  相似文献   

8.
Shifting sand dunes threatened the Baotou-Lanzhou railway being kept on operation smoothly seriously crossing Shapotou on the southeastern edge of the Tengger Desert (China). Artificial vegetation input was employed in Shapotou and a vegetated belt was established for stabilizing the shifting sand dunes. Nematode communities from bare soil between vegetation (ST, STI) and soil under the vegetation (ST-V, STI-V) in the vegetation belt, were investigated. All sites received natural rainfall, of which STI and STI-V received irrigation supplements. Total 43 genera were found in four types of soil samples, and Acrobeles, Acrobeloides, Chiloplacus, Panagrolaimus, Aphelenchoides and Ditylenchus were dominant genera in our study. Nematode abundance per 100 g fresh soil (47–552), the number of taxa identified (8–20), species richness (1.51–3.41), the proportion of plant feeders (0.3%–4.2%) and abundance of all cp groups responded to vegetation. The proportion of omnivores (0.5%–7%), the number of taxa identified, Shannon index (1.26–2.12), species richness, genus dominance (0.18–0.40) and abundance of cp3–5 responded to irrigation supplements. The application of PCA helped to reveal that almost all nematode taxa exhibited a positive loading on the horizontal axis, it implied that nematode abundance was generally higher on sites with planted input. Besides, it showed a vegetation gradient from bare soil between vegetation to soil under vegetation along the first axis, while an irrigation gradient along the second axis. Similarly, classification analysis based on all cased involved indicated that two-main group of nematodes was distinguished by their habitats under vegetation from bare soil. Those results suggested that vegetation input might play a more important role on nematode community composition than irrigation supplements for stabilization of shifting sand dunes. Therefore, nematode community composition could be as an indicator of stabilization of sand dune approaches of plant input with only natural rainfall versus with natural rainfall in combination with irrigation supplements in our system. However, the apparent anhydrobiotic state of the nematode fauna required special consideration in desert system, thus the utilization of the nematodes as an indicator of stabilization of sand dune regimes should be further explored on anhydrobiotic nematodes.  相似文献   

9.
We hypothesized that nematode and microbial communities vary between soil aggregate fractions due to variations in physical and/or resource constraints associated with each fraction and that this, in turn, contributes to management impacts on whole soil food webs. Nematode and microbial communities were examined within three soil fractions: large macroaggregates (LM; >1000 μm), small macroaggregates (SM; 250-1000 μm) and inter-aggregate soil and space (IS; <250 μm) isolated from soils of four agricultural management systems: conventional tomato (CON), organic tomato (ORG), a minimum till grain-legume intercrop with continuous cover (CC) and an unmanaged riparian corridor (RC). Aggregate fractions appeared to influence nematode assemblages more than did management system. In general the IS and LM fractions contained higher densities of all nematode trophic groups than did SM. Management × fraction interactions for bacterivores and fungivores, however; suggested a non uniform trend across management systems. The IS fraction exhibited stronger trophic links, per the nematode structure index (SI), while the LM and SM fractions had more active fungal decomposition channels as indicated by the channel index (CI). Higher adult to juvenile ratios in the LM and IS than the SM fraction, and a positive correlation between nematode density in the IS fraction and the proportion of macroaggregates in the soil, indicated an association between soil structure and nematode distribution. Microbial communities varied across both aggregate fractions and management systems. Phospholipid fatty acid (PLFA) analysis suggested that the LM fraction contained greater microbial biomass, gram positive bacteria, and eukaryotes than the IS fraction, while SM contained intermediate PLFA associated with these groups. Total PLFA was greater under RC and ORG than under CC or CON. Total PLFA was positively correlated with % C in soil fractions while nematode abundance exhibited no such relationship. Our findings suggest that microbial communities are more limited by resource availability than by habitable pore space or predation, while nematode communities, although clearly resource-dependent, are better associated with habitable pore space for the soil fractions studied here.  相似文献   

10.
Nutrient source limitation in desert ecosystems enhances competition among plant communities, leading to creation of microhabitats beneath the shrubs that can determine composition and abundance of soil organisms. The aim of the study was to determine the effect of plant ecophysiological adaptation on soil nematode communities in the rhizosphere of tightly interweaving shrubby communities. Soil samples were collected monthly under the canopies of three perennial desert shrubs: Artemesia herba-alba, possessing the allelopathic ability to dominate in relationships with other plants; Reaumuria negevensis, a salt-resistant plant; and Noea mucronata, a typical dry desert shrub. An inter-plant area was used as a control. The results demonstrated that soil water content (SWC) and total organic carbon (Corg) were significantly different under different plants and inter-plant areas, with the highest values found under R. negevensis (SWC) and N. mucronata and R. negevensis (Corg). Plant parasite and omnivore-predator nematodes were more sensitive to the ecophysiological individual features of observed plants versus the total number of nematodes and bacteria- and fungi-feeding nematodes. Generally accepted ecological indices such as Wasilewska (WI), trophic diversity (T), maturity (MI, MMI), basal (BI), enrichment (EI), structure (SI), and channel (CI), pointed to specific ecological conditions under canopies of the observed plants.  相似文献   

11.
Soil nematodes were used as bioindicators to compare possible differences in soil ecological conditions in Douglas-fir forests harvested by clearcutting and by two partialharvesting systems, namely shelterwood and extended rotation. An unlogged forest block was used as a control treatment. The pre- and post-harvest comparisons were based on total abundance of the nematodes, their trophic structure, and relative abundance of the nematode taxa found in the four blocks. The nematode and soil data were obtained bimonthly over a year. Pre-harvest nematode abundance and taxonomic composition were similar at the four blocks. Post-harvest data were obtained 6-7 months after the harvesting treatments were instituted. The post-harvest abundance at the three logged blocks was reduced to varying levels as compared to the control block, and analysis of variance showed that the severity of impact of the harvesting treatments on nematode abundance ranked as: clearcut shelterwood > extended rotation unlogged control. However, the taxonomic and trophic structures of the nematode community, which consisted of 48 taxa in these forests, were only slightly altered by any of the harvesting treatments as shown by maturity and diversity indices and by multivariate analysis.  相似文献   

12.
To determine whether successional changes in plant communities may influence belowground community structure, we quantified nematode abundance, trophic structure and diversity along two separate chronosequences from heather moorland to birch woodland in the Scottish uplands. Tree invasion markedly altered plant community composition, and hence litter inputs, both directly, and indirectly through changes in understorey species. In turn, these changes in detrital inputs were reflected in consistent changes in nematode community structure. Nematode abundance increased from moorland to birch woodland, with moorland soils being dominated by a few taxa, notably root-hair and fungal feeders, compared to the more diverse composition of the birch woodland soils. Trophic structure was altered through an increase in the abundance of bacterial feeding relative to fungal-feeding nematodes, and an increase in the abundance of predatory nematodes. The increase in predators during the succession from moorland to woodland was associated with an increase in soil pH, highlighting that not only changes in the plant community, but also changes in soil properties associated with tree invasion may influence soil nematodes. Nematode diversity increased from moorland to birch woodland, with nematode richness being positively related to both plant species richness and soil pH. These results suggest that trees may control soil community structure through the manipulation of resources and the soil physico-chemical environment, promoting greater nematode diversity and trophic complexity.  相似文献   

13.
Collembolan communities were studied in 41 microhabitats in beech and spruce forests of south ( ofín and umava) and central (Jevany) Bohemia. The communities of Collembola were analysed using TWINSPAN and CANOCO programs. The aim of this study was to establish differences between patch (microhatitat) communities and the main forest community in spruce and beech forests, the differences between both types of forests and among different regions of Bohemia. Further questions were: is there a difference in microhabitat communities during secondary forest succession? do some species live exclusively in one or few microhabitats? and does microhabitat diversity influence the biodiversity in forest soils? Material comprising  25 590 specimens of Collembola belonging to 142 species was analysed. Highly significant differences were determined between microhabitat communities in beech and spruce forests, as well as among forests in different regions of Bohemia. Significant differences were also found among microhabitats in forests of different ages. Also, some microhabitat communities of Collembola, e.g. moss on boulders, were significantly different from their main forest community. Certain collembolan species existed exclusively in one or two microhabitats. Patches therefore influenced substantially biodiversity in these forest soils.  相似文献   

14.
Changes in soil nematode communities under the impact of fertilizers   总被引:1,自引:0,他引:1  
Changes taking place in the communities of soil nematodes of an artificially sown meadow under the impact of annually applied mineral fertilizers have been studied in a field experiment for nine years. It is shown that changes in the species composition, trophic structure, and numbers of nematodes from different genera depend on the fertilizer applied and on the competitiveness of the plant species grown. The spectra of nematode genera sensitive to the complete mineral fertilizer (NPK) and to the particular nutrients have been identified with the use of a number of parameters, including the maturity index of nematode communities, the biotope preferences of the particular nematode genera, and the general pattern of nematode habitats. The results obtained in this study can be used to assess the effect of mineral fertilizers on the soil fauna and to suggest optimum application rates of mineral fertilizers ensuring the sustainable development of meadow herbs. The use of the data on the trophic structure of nematode communities for predicting the ways of organic matter decomposition in the soil is discussed.  相似文献   

15.
《Applied soil ecology》2003,22(1):39-54
A variety of organic materials (e.g. composts, paper recycling wastes, hay) can be used as in-row mulches in perennial horticultural cropping systems such as high density apple orchards. As organic materials with variable properties, such mulches can be expected to have variable effects on structure of the soil food web and mineralisation of N and P in the root zone. The overall objectives of this study were to: (1) assess the effects of a selection of organic mulches on the abundance of protozoa and nematode trophic groups; (2) use the model of Hunt et al. [Biol. Fertil. Soils 3 (1987) 393] to assess the implications of changes in microfaunal abundance for microbial turnover and N mineralisation; and (3) determine effects of the mulches on nematode indicators of increased microbial production/turnover and functional diversity of the soil food web. Organic mulch treatments commenced in 1994 and included shredded office paper, municipal biosolids, shredded paper applied over municipal biosolids, shredded paper applied over municipal compost, alfalfa hay, and black polyethylene fabric. The control was conventional tree-row weed management with glyphosate. Biosolids and municipal compost treatments were re-applied in 1997. Protozoan abundance was determined in 1998, 1999 and 2000. Nematode community structure was assessed in 1998, 1999, and twice in 2000. Nematode community parameters evaluated included: abundance of bacterivorous, fungivorous, omnivorous and predacious nematodes; abundance of the root-lesion nematode, Pratylenchus penetrans; absolute and relative abundances of enrichment opportunist nematodes (Rhabditidae+Diplogasteridae+Panagrolaimidae); Simpson’s diversity; evenness; and the indices of nematode community enrichment (EI) and structure (SI) described by Ferris et al. [Appl. Soil Ecol. 18 (2001) 13]. Measurements of the abundance of enrichment opportunists and the EI were evaluated as indicators of enhanced nutrient fluxes. Diversity and the SI were evaluated as indicators of changes in functional diversity of the soil food web.The abundance of protozoa and bacterivorous nematodes, and estimated fluxes of N and P through the microfauna, were greater under all combinations of biosolids or municipal compost and shredded paper than under the control and plastic mulch. The abundance of enrichment opportunist nematodes and the EI were also consistently greater under combinations of biosolids or municipal compost and shredded paper. The abundance of enrichment opportunists and EI were both also correlated with leaf P, providing additional evidence to support the use of these parameters as indicators of enhanced turnover of microbial biomass and nutrients. The SI was greatest under shredded paper and shredded paper applied over municipal compost, and least under municipal biosolids and alfalfa hay. Population densities of P. penetrans were reduced under shredded paper mulch relative to the control and biosolids alone.  相似文献   

16.
Trees have a key role in determining the composition of soil biota via both above and belowground resource-based mechanisms, and by altering abiotic conditions. We conducted an outdoor mesocosm experiment to investigate the relative impact of above and belowground tree inputs on soil nematode trophic composition, and examine whether tree-driven impacts differed between contrasting species (birch and pine). For both species, we created a factorial design of litter addition and root presence treatments. The litter addition treatment was equivalent to natural levels of litterfall; tree saplings were planted in mesocosms for the root presence treatment and an unplanted control treatment was established that had no litter or root inputs. Litter addition had a limited impact on soil nematode community composition: it primarily decreased omnivore and predatory nematode abundance in birch but had few other effects on the nematode community. By contrast, root presence markedly altered nematode community composition through changes in a range of trophic groups. For both birch and pine, there were significant increases in total, fungivore and predatory nematode abundance in root presence treatments, and furthermore, total and fungivore abundances were positively related to root biomass. Root presence of these contrasting tree species also had a distinctive impact on some specific nematode trophic groups; pine roots promoted bacterivore abundance while birch roots promoted root-hair feeding nematode abundance. These findings suggest strong bottom-up effects of belowground tree inputs, and indicate that particular components of the nematode community may be affected differently by resource quantity and quality. Consequently, we suggest that, in the short-term, belowground rather than aboveground tree inputs have a strong impact on soil food web structure and complexity.  相似文献   

17.
It is well known that Taylor's power law describes spatial aggregation, but its ecological interpretation remains elusive. Here we used data on spatial organization of soil nematode communities in urban landscapes to test relationships between nematode life history characteristics and the power law aggregation indicator, b. Forty seven genera of soil inhabiting nematodes were identified from 360 samples taken from turfgrass lawns at three public schools located in each of three northeast Ohio cities in July and October 2007. The nematodes were classified according to their life-styles in three life history classifications: trophic group, colonizer-persistor (cp) class, and functional guild, a combination of trophic group and cp-class. Estimates of Taylor's b for 28 more common genera ranged from 1.21 to 2.34. Estimates of b for trophic group, cp-class and functional guild ranged from 1.41 to 2.10, 1.34 to 1.97 and 1.41 to 2.39, respectively. Segregating genera by their trophic group, cp-class and functional guild each accounted for as much inter-genus variation in Taylor's power law as fitting 28 separate regressions. The improvements of fit in parallel line analyses for the three life-style categories over 28 lines for individual genera were highly significant. Bacterial- and plant-feeding groups were more highly aggregated than omnivorous and predatory nematodes. Nematodes in cp-classes 1 and 2 tended to be more aggregated than those in higher cp-classes. The functional guilds were generally more highly aggregated than individual genera, suggesting a higher degree of aggregation at the functional guild level. We conclude that nematode genera vary in their spatial organizations, but membership in a cp-class and functional guild accounts for much of this variability. Thus, Taylor's power law aggregation indicator, b, is sensitive to nematode feeding habits and life strategy traits as they influence a population's pattern of spatial organization.  相似文献   

18.
We report here on an 8-year study examining links between plant and nematode communities in a grassland plant diversity experiment, located in the north of Sweden on previous agricultural soil. The examined plots contained 1, 4 and 12 common grassland plant species from three functional groups; grasses, legumes and forbs. The same plant species composition was maintained in the plots through weeding and resowing during the experimental period. The hypotheses were (i) that the nematode community would shift towards a more diverse and mature fauna over time and (ii) that the effects of both plant species identity and plant species richness would increase over time. As hypothesized, the Bongers’ Maturity Index (a measure of nematode responses to disturbance) increased over time, but not nematode diversity. Instead, the nematode community development in the present grassland experiment seemed to be more characterized by shifts in dominance patterns than by colonization of new taxa. Clear temporal trends were found for plant-feeders and Adenophorea bacterial-feeders which increased in abundance over time in almost all plant treatments. Rhabditidae bacterial-feeders decreased in abundance over time, in particular in plots with legumes. Fungal-feeders, omnivores/predators and the two nematode indices PPI (Bongers’ Plant Parasitic Index) and NCR (Nematode Channel Ratio) had significant interactions between plant composition and time giving some support to our second hypothesis. Our results highlight the need for long-term experiments to examine plant species effects on soil fauna, especially on taxa belonging to higher trophic levels. The results also stress the importance of plant composition for belowground soil faunal communities.  相似文献   

19.
Soil nematode communities were investigated at eight semi-natural steppe grasslands in the National Park Seewinkel, eastern Austria. Four sites were moderately grazed by horses, cattle and donkeys, four were ungrazed. Nematodes were sampled on four occasions from mineral soil, and their total abundance, diversity of genera, trophic structure and functional guilds were determined. Altogether 58 nematode genera inhabited the grasslands, with Acrobeloides, Anaplectus, Heterocephalobus, Prismatolaimus, Aphelenchoides, Aphelenchus, Tylenchus and Pratylenchus dominating. Mean total abundance at sites was 185–590 individuals per 100 g soil. Diversity indices did not separate communities well, but cluster analysis showed distinct site effects on nematode generic structure. Within feeding groups the relative proportion of bacterial-feeding nematodes was the highest, followed by the fungal- and plant-feeding group. Omnivores and predators occurred in low abundance. The maturity indices and plant parasite indices were characteristic for temperate grasslands, but the abundance of early colonizers (c-p 1 nematodes) was low. A high density of fungal-feeding c-p 2 families (Aphelenchoidae, Aphelenchoididae) resulted in remarkably high channel index values, suggesting that decomposition pathways are driven by fungi. Nematode community indices of all sites pointed towards a structured, non-enriched soil food web. At most sites, grazing showed little or no effect on nematode community parameters, but total abundance was higher at ungrazed areas. Significant differences in the percentage of omnivorous nematodes, the sum of the maturity index, the number of genera and Simpson's index of diversity were found at one long-term grazed pasture, and this site was also separated by multi-dimensional scaling (MDS).  相似文献   

20.
Factors determining the distribution and structure of soil and litter macrofaunal assemblages remain still poorly understood, despite the overriding importance of the spatio-temporal mosaic of biotic and abiotic conditions as main drivers of soil biota and processes. Analysis of the effects of different factors on soil communities have been usually restricted to responses to litter, despite the fact that litter and mineral soil layers are connected. Therefore, whether organisms using the litter layer respond to the same biotic and abiotic factors as organisms using the mineral soil still remains poorly known. We hypothesize that the role of biotic and abiotic factors as determinants of the distribution of faunal components of soil communities differ between litter and mineral soil assemblages in arid systems and that both levels are connected by animals moving across both levels. During two years, macroinvertebrates were sampled in litter and soil at an arid region of SE Spain, and different biotic and abiotic factors were measured. We performed structural equation model analysis to uncover the factors related to macrofaunal distribution. Our results show that abiotic factors, litter production and litter and root quality, as well as relationships among different trophic groups were key factors affecting faunal densities in our system. While abundance variations in litter assemblages were principally related to temperature and moisture, belowground faunal densities responded to resource factors. Despite differences in structuring factors at both levels, faunal interactions link both assemblages across the litter-belowground interface. The results highlight three important issues to understand soil communities and food web structure. First, abiotic factors structure soil macrofaunal food webs directly and indirectly, because of the effect of litter as habitat, and not only as food. Second, overlooking the differences found between above and belowground regulation may cause problems in the interpretation of food web structure and dynamics. Third, our models also suggest that both litter and belowground assemblages are dynamically connected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号