首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
Abstract

The heartwood and sapwood from Scots pine (PS), Norway spruce (PA), and Oriental spruce (PO) were tested for susceptibility to discoloring fungi and water uptake. In addition, annual ring width and density were measured. The methods used were Mycologg for testing growth of fungi and a modified version of EN 927-5 to investigate water uptake. For pine, the heartwood showed a lower water uptake and no discoloring fungi growing in the tests. The heartwood had a significantly higher density and smaller annual ring width than the sapwood. In PA the heartwood had significantly lower discoloration than sapwood. The total water uptake in g/m2 was significantly higher in sapwood, but not the calculated moisture content. As for wood properties, the density was significantly higher in sapwood compared to heartwood, although there were no differences in annual ring width. Regarding PO, differences in water uptake could be seen between sapwood and heartwood although the densities were similar. These results show that susceptibility to discoloring fungi and water uptake is hard to correlate to a single inherent property when looking at different wood species.  相似文献   

2.
Abstract

Wood is susceptible to decay by rot fungi if it is exposed to high-moisture contents during long periods of time and it is therefore important to limit the duration of such periods. Critical points in outdoor wood structures are, for example, end grain surfaces in joints where water can get trapped after a rain. It is therefore of interest to study both absorption and redistribution of moisture in wood. This paper presents moisture content profiles during end grain water absorption and redistribution in Norway spruce (Picea abies (L.) Karst.) measured by computed tomography with the specimens in individual climate boxes. Heartwood and sapwood of two provenances (slow-grown and fast-grown wood) were included. No major differences were seen between the water uptake of the slow-grown and the fast-grown wood since the densities were similar despite of the large difference in growth ring width. However, for the sapwood specimens, the moisture content was higher further into the specimens than for the heartwood specimens in agreement with previous studies. For the slow-grown wood, the redistribution was also generally more rapid for the sapwood specimens than for the heartwood specimens.  相似文献   

3.
In the present study, durability of untreated and thermally modified sapwood and heartwood of Scots pine and Norway spruce was examined using a modified double layer test. Base layer samples were partly on contact with ground where exposure conditions were harder than that in a double layer test above the ground. The base layer on ground contact gave results already after one year of exposure in Finnish climate, but the top layer of a double layer test element simulated more the situation of decking exposure.

Significant differences in durability and moisture content (MC) between the wood materials were detected after six years of exposure in the field. Thermally modified pine heartwood performed very well in all layers of the test element and only minor signs of decay were found in some of the base samples. Both sapwood and heartwood of thermally modified spruce were suffering only slight amounts of decay while thermally modified pine sapwood was slightly or moderately decayed. Untreated sapwood samples of pine and spruce were severely decayed or reached failure rating after six years in the field. Untreated heartwood samples performed clearly better. The highest MCs were measured from untreated and thermally modified pine samples. Thermal modification increased significantly the durability and decreased the MC values of all wood materials.  相似文献   

4.
Abstract

After the severe storm Gudrun in southern Sweden in 2005, a quantitative study was done in order to investigate the presence of lengthwise crack on planks taken from storm-felled trees in southern Sweden, compared to planks from standing trees not subjected to this storm (central Sweden). The main yield from each log was examined. In total, 1087 pine (Pinus sylvestris) planks and 3626 spruce (Picea abies) planks from the storm-struck area were investigated and compared to 1953 spruce and 2000 pine planks from trees outside the storm-struck area. The examination of cracks was done visually on dried planks. For pine, 51.7% of the planks from storm-felled trees had a total length longer than 0.5 m, compared to 7.3% for the reference material. As for spruce, 11.0% of the planks from storm-felled trees had a total crack length of more than 0.5 m, compared to the reference material where 2.2% had cracks longer than 0.5 m. The results show that the storm-felled trees had more longitudinal cracks than the reference material and that pine was more likely to develop storm-related cracks than spruce.  相似文献   

5.
Two greenhouse experiments were conducted to study intraspecific variation in growth of the root rot fungus Heterobasidion annosum in living host sapwood. In experiment 1, Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) seedlings were inoculated with H. annosum isolates, 14 each of the S-and P-intersterility groups, collected from various parts of Sweden. In pine, the P-group isolates were more virulent than the S-group isolates both in terms of infection frequency, induced mortality rate (p < 0.05), and fungal growth in sapwood (p < 0.05). In spruce, the P-group isolates were also more virulent on average, but the difference was not statistically significant. Both S and P isolates had a higher infection frequency and a significantly longer sapwood growth on spruce than on pine. The P-group caused higher mortality on pine than on spruce. The length of the lesion in the inner bark was strongly correlated with fungal growth in spruce, but not in pine where the lesions were short or absent. In experiment 2, ten Norway spruce clones were inoculated with 18 S-isolates, originating from nine live-decayed trees and from nine spore-infected stumps in a single Norway spruce stand. The objective was to test whether any selection for growth rate in sapwood was detectable among individuals of H. annosum originating either from stumps or trees. The results gave no support for such selection since no difference in sapwood growth between the two groups of isolates was found.  相似文献   

6.
There are indications that the drying process may have negative effects on the natural durability of wood. The impact of various drying processes on the durability of Scots pine lumber has been evaluated with mass loss in a decay test with brown rot fungus, Coniophora puteana, as measure of the decay resistance of sapwood and inner and outer heartwood. Drying with or without steam conditioning was performed in six different series: air drying, kiln drying at temperature ranges commonly used in Swedish sawmills at 70°C and 90°C with two different regulation principles, and one high-temperature drying at 110°C. Durability varied considerably both between and within boards. Sapwood showed considerable less durability than heartwood. No difference in durability was found between inner heartwood and outer heartwood. Air-dried heartwood showed the highest durability compared to other drying series. The lowest durability in sapwood and heartwood was found for series dried at the 90°C temperature level with high material temperature early in drying. The interpretation is that the duration of high material temperature at high moisture content (MC) is the critical combination for decay resistance in heartwood. Steam conditioning after drying decreased durability in sapwood.  相似文献   

7.
ABSTRACT

Effects of climatic factors and material properties on the development of surface mould growth on wooden claddings were investigated in a laboratory experiment. Specimens of aspen (Populus tremula), Siberian larch (Larix Sibirica), American white oak (Querqus alba), Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and thermally modified pine were incubated in eight climatic chambers at specified wetting periods (2 or 4?h per day), relative humidity (58–86%) and temperature conditions (10–27°C). Surface mould growth was assessed weekly for 13 weeks, and the results were evaluated statistically using Generalized Estimating Equations logistic regression models. All tested climatic factors had significant effects on the mould growth, and there were significant differences between the materials. The ranking of the materials varied with temperature and over time. Aspen, pine sapwood and oak were overall most susceptible to mould growth, and thermally modified pine least susceptible. There were significant differences between sapwood and heartwood for pine and spruce. The effect of density was tested on the spruce heartwood material, but was not found to be significant. The results can be used to further develop prediction models for mould growth on wooden claddings.  相似文献   

8.
Peroxidase activity and isoenzymes of fresh wood samples of the third shoot of 12-year old trees and from the sapwood, transition zone and heartwood of c. 60-year old stems of Scots pine (Pinus sylvestris L.) were investigated. Wood samples were ground at −30°C, extracted, and the extracts concentrated c. 20-fold for peroxidase activity assays (guaiacol method) and for IEF-PAGE. At least 11 major isoenzymes could be found in the gels. Even the heartwood contained some peroxidase isoenzymes. Isoenzyme patterns of the juvenile wood did not change with the season. However, juvenile wood showed the highest peroxidase activity at the end of the growing season. Peroxidase activity decreased from the outer sapwood towards the heartwood. Thin sections of different wood zones stained for peroxidase revealed activity in ray parenchyma and resin canal epithelial cells. Intensive staining was localised in the bordered pits of vertical and ray tracheids, and in the end walls of ray parenchyma cells.  相似文献   

9.
Optimisation of a two-stage heat treatment process: durability aspects   总被引:1,自引:1,他引:1  
Heat treatment of wood at relatively high temperatures (in the range of 150–280°C) is an effective method to improve biological durability of wood. This study was performed to investigate the effect of heat treatment process optimisation on the resistance against fungal attack, including basidiomycetes, molds and blue stain fungi. An industrially used two-stage heat treatment method under relatively mild conditions (<200°C) was used to treat the boards. Heat treatment of radiata pine sapwood revealed a clear improvement of the resistance against the brown rot fungi Coniophora puteana and Poria placenta. Increasing process temperature and/or effective process time during the first process stage, the hydro thermolysis, appeared to affect the resistance against C. puteana attack, but the effect on the resistance against P. placenta was rather limited. Heat treated radiata pine showed a limited resistance against the white rot fungus Coriolus versicolor and process variations during the hydro thermolysis stage appeared not to affect this resistance. A clear difference between the resistance of heat treated Scots pine sapwood and heartwood against fungal attack is observed. Scots pine heartwood showed a higher resistance against C. puteana and P. placenta but also against the white rot fungus C. versicolor. Similar results were obtained when heat treated birch was exposed to brown and white rot fungi. Heat treatment showed an improved resistance against C. puteana attack, especially at higher temperatures during the hydro thermolysis stage. A clear improvement of the durability was also observed after exposure to the white rot fungus C. versicolor and especially Stereum hirsutum. Increasing the process temperature or process time during the hydro thermolysis stage appeared to have a limited effect on the resistance against C. versicolor attack. Heat treated radiata pine and Norway spruce were still susceptible to mold growth on the wood surface, probably due to the formation of hemicelluloses degradation products (e.g. sugars) during heat treatment. Remarkable is the absence of blue stain fungi on heat treated wood specimen, also because the abandant blue stain fungi were observed on untreated specimen. Molecular reasons for the resistance of heat treated wood against fungal attack are discussed in detail contributing to a better understanding of heat treatment methods.  相似文献   

10.
In this study, a comprehensive spectral image database of Nordic sawn timbers for public use was measured. Economically significant Finnish wood species birch (Betula sp.), Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) were chosen for inclusion in the database. The total of samples was 107 containing heartwood, sapwood, decayed wood, blue stain, mold, resin, early wood, late wood, knots, cracks, pith, reaction wood and bark. Board and crosscut samples were measured in frozen, melted and room-dried conditions. The reflectance of samples was measured over a 300- to 2,500-nm wavelength range. Additionally, the photoluminescence of samples excited by an ultraviolet B light source was measured. The spot size used was 250 μm with an 80 mm \(\times \) 200 mm imaging area, and produced all in all 44 million spectra. In this paper, examples of the possibilities of this spectral image database as a means of detection of the spatial distribution of aromatic lignin and the moisture content (MC) of nonfrozen timber were introduced and provided. From the results, it was found that it was possible to detect the lignin distribution from spectral images, and simple and robust methods for wood MC estimations were also introduced.  相似文献   

11.
Abstract

Differences in durability between heartwood and sapwood of Norway spruce [Picea abies (L.) Karst.] were investigated to determine wood qualities most favourable for use in outdoor constructions above ground. Trees grown on sites with either good or poor access to water were used. Seventy-eight specimens measuring 20 × 50 × 300?mm3 separated into heartwood and sapwood, half untreated, half painted, were exposed horizontally outdoors above ground for 5.5?years with the pith side up and the bark side down. Crack length and crack number were measured. Fungus growth and surface changes were visually estimated. Fungus type was determined by microscopic analysis. The main finding was that spruce heartwood had fewer and shorter cracks and less surface-discolouring fungus growth than sapwood. This was valid for both painted and untreated wood. After 2?years’ exposure, the cracks in sapwood (upper surface) were more than three times longer and about five times more numerous than in heartwood for both painted and untreated boards. Microscopic study showed that surface discoloration was due mainly to Aureobasidium pullulans, together with a few other discolouring fungi. After 5.5?years, initial decay was established on the surface and in the end grain of four untreated test objects.  相似文献   

12.
When disjoining a log, several factors affect the value of the sawn timber. There are log features, such as outer shape, knots, rot, and so on. There are also sawing parameters, such as sawing pattern, log position, and so on. If full information about log features is available, sawing parameters can be adapted in order to maximize product value in sawmills. This is soon possible, since computed tomography (CT) scanners for the sawmill industry are being realized. This study aimed at investigating how CT data can be used to choose rotational position, parallel displacement, and skew of sawlogs, to maximize the value of the sawn products. The study was made by sawing simulation of 269 CT scanned logs of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies [L.] H. Karst.). The results showed that value recovery could be improved by 13% in average, compared to a sawing position based on log outer shape, and 21% compared to sawing logs centered and horns down. It can be concluded that a CT scanner, used in a sawline to optimize sawing parameters, has a large potential for increasing value recovery and thus profit.  相似文献   

13.
Abstract

Thermal modification has been developed for an industrial method to increase the biological durability and dimensional stability of wood. In this study the effects of thermal modification on resistance against soft- and brown-rot fungi of sapwood and heartwood of Scots pine and Norway spruce were investigated using laboratory test methods. Natural durability against soft-rot microfungi was determined according to CEN/TS 15083-2 (2005) by measuring the mass loss and modulus of elasticity (MOE) loss after an incubation period of 32 weeks. An agar block test was used to determine the resistance to two brown-rot fungi using two exposure periods. In particular, the effect of the temperature of the thermal modification was studied, and the results were compared with results from untreated pine and spruce samples. The decay resistance of reference untreated wood species (Siberian larch, bangkirai, merbau and western red cedar) was also studied in the soft-rot test. On average, the soft-rot and brown-rot tests gave quite similar results. In general, the untreated heartwood of pine was more resistant to decay than the sapwood of pine and the sapwood and heartwood of spruce. Thermal modification increased the biological durability of all samples. The effect of thermal modification seemed to be most effective within pine heartwood. However, very high thermal modification temperature over 230°C was needed to reach resistance against decay comparable with the durability classes of “durable” or “very durable” in the soft-rot test. The brown-rot test gave slightly better durability classes than the soft-rot test. The most durable untreated wood species was merbau, the durability of which could be evaluated as equal to the durability class “moderately durable”.  相似文献   

14.
Summary Nitrogen contents have been determined at different depths from the surface of dried pine (Pinus sylvestris) and spruce (Picea abies) lumber. The effects of factors such as time of felling, storage of the timber, and drying process for the lumber, have been studied. Part of the selected lumber was characterized by surfaces which were yellowish after drying. At such surfaces, to a depth of about 2 mm, a high accumulation of nitrogen was always found. Yellowing is enhanced in lumber from wet-stored timber but also occurs in other lumber. Some possible contributive factors are suggested. More research in this field is proposed. The nitrogen gradients in outer sapwood without a yellow surface and in inner sapwood and in heartwood were much weaker. The effect which enrichment of nitrogenous compounds at surfaces may have on timber with regard to its disposition towards moulding is discussed. Although attention is drawn to the fact that strong nutrient gradients may occur, it must be emphasised that in most lumber nutrient gradients are weak and probably without practical consequence for its susceptibility towards fungal attack.  相似文献   

15.
Summary Use of UV-laser excitation to produce fluorescence spectra for heartwood and sapwood from jack pine (Pinus banksiana), white spruce (Picea glauca) and balsam fir (Abies balsamea) was examined. Spectra were fairly broad without sharp spectral features and overlap of spectra between species was common. Sample to sample and in-sample variation of the recorded fluorescence spectra was observed. The fluorescence spectra obtained from heartwood samples of jack pine showed evidence of photochemical bleaching as a result of the multiple laser pulses needed to produce a complete spectrum. Bleaching may have obscured differences between species. For the mix of species examined no sapwood nor heartwood samples were distinguishable by this technique with the detector used. Use of an optical multichannel analyzer (OMA) could reduce the number of laser pulses needed to obtain an entire spectrum. Under these conditions it would be possible to determine whether the minor differences in spectral features observed for the different species are more pronounced in the first few laser pulses and if they are characteristic of species. Certain aspects of the data suggest that with improved analytical equipment UV-fluorescence might prove to be a useful technique for the identification of certain species.  相似文献   

16.
The development of heartwood and sapwood in maritime pine (Pinus pinaster Ait.) in relation with tree and cambial age and growth rate was studied in ten trees randomly sampled at harvest (54–85-year-old) in a commercial stand in central Portugal. Average ring width at stem base was 1.84 ± 0.34 mm for 50 years of age. Growth rate decreased with cambial age and for the same cambial age increased along the stem with tree height.

The number of heartwood rings was strongly correlated with cambial age. Heartwood formation was estimated to start at approximately 21 years of age and to proceed at a constant annual rate that increased with age (0.5 and 0.7 rings year−1 below and above 50 years of age). Within the tree, heartwood decreased with stem height, but in the lower part of the stem two patterns of variation were shown: a continuous decrease or an increase from stem base to a maximum at 2–3 m and a decrease afterwards. Sapwood radial width remained approximately constant within the tree and correlated positively with tree growth.  相似文献   


17.
Water soluble polysaccharides from Norway spruce, Scots pine, and Siberian larch were compared. For all species the total amount of polysaccharides isolated from the heartwood was higher than that from the sapwood. The heartwood polysaccharides had a high content of galactose and arabinose units, and some glucuronic acid units, suggesting the presence of acidic arabinogalactans. The total amounts of recovered water-soluble arabinogalactans were 1.9 mg/g for spruce heartwood, 5.3 mg/g for pine heartwood, and as much as 106 mg/g for larch heartwood. The other water-soluble polysaccharides were mainly glucomannans. The average ratio of Gal:Ara:GlcA in the water-soluble arabinogalactans of spruce heartwood was about 4.3:1:1, pine heartwood about 4.5:1:0.2, and larch heartwood about 6.7:1:0.1. The corresponding molar ratios then being about 3.6:1:0.8 for spruce, 3.8:1:0.2 for pine, and 5.6:1:0.08 for larch. Thus, the content of glucuronic acid units was especially high in the spruce heartwood arabinogalactans. The content of arabinose was slightly higher in spruce and pine than in larch heartwood arabinogalactans.  相似文献   

18.
Serpula himantioides was found to be a causal agent of butt rot in Douglas fir and Japanese larch in northern Germany. The decay started predominantly from tap roots and main side roots and extended few meters into the stem. In final stages of rot the basal heartwood was completely destroyed and the residual width of healthy sapwood was reduced. Laboratory tests revealed a tolerance by the fungus to extremely acid substrates.  相似文献   

19.
Abstract

Eighteen sapwood and 18 heartwood samples from three Scots pine (Pinus sylvestris L.) trees were used to identify correlations between the features of their near-infrared spectra (400–2500 nm) measured before and after impregnation with linseed oil (Linogard®) and (1) the amount of oil taken up by the samples at three different longitudinal positions; and (2) the tissue type of sample. Calibration models were cross-validated and oil uptake models were also validated on separate test sets. Partial least squares regression models for the prediction of uptake and tissue type in non-impregnated wood were promisingly accurate, having coefficients of multiple determination (Q 2) values of > 0.8, 0.8 and 0.75 for predictions of tissue type, oil taken up as a percentage of sample mass and total mass of oil taken up, respectively. The models developed for linseed oil-impregnated samples were better still, generating Q 2 values of > 0.9, > 0.8 and 0.8 for the three key properties. In general, models based on spectra acquired along two directions of measurement (longitudinal and tangential) were more accurate than models based on only one. Tandem models consisting of two submodels, one for sapwood and one for heartwood, were more successful than single models applicable to both tissue types.  相似文献   

20.
Abstract

Heterobasidion parviporum (Fr.) Niemelä & Korhonen and Heterobasidion annosum (Fr.) Bref. sensu lato are some of the major forest pathogens in the northern hemisphere causing root and butt rot to conifers. The relative susceptibility to H. parviporum was investigated in a full-sib family of Norway spruce [Picea abies (L.) Karst.] by inoculating a set of 252 cloned progenies from a controlled cross. Four ramets of each progeny were used and the 2-year-old rooted cuttings were incubated for 6 weeks under greenhouse conditions. The condition of the cuttings was assessed visually and all the plants were in excellent vigour with no mortality recorded during the experiment. To score the relative susceptibility, lesion length in the inner bark and fungal growth in the sapwood were measured. Among the progenies, significant differences were found for fungal growth in the sapwood (p<0.0005). There was no significant difference for lesion length; however, there was a significant positive correlation between fungal growth and lesion length. The broad-sense heritability was 0.11 for fungal growth. This shows that the genetic component for susceptibility to H. parviporum can be detected even within a full-sib family of Norway spruce and that there is a potential for mapping quantitative trait loci for this trait in Norway spruce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号