首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The aim of the current study is to improve the thermal stability of one-component moisture-curing polyurethane adhesives. The approach here tends to add suitable filler materials to the adhesive and to study the resulting effects. The investigation covers mechanical tests to determine the shear strength of the glued wood joints according to EN 302-1 (2004). Furthermore, the distribution of the filler material within the adhesive is shown by means of environmental scanning electron microscopy combined with energy-dispersive X-ray spectroscopy analysis. The thermal stability of the glued wood joints could be significantly improved by adding chalk with a volume fraction of 30% to the adhesive.  相似文献   

2.
Abstract

The shear fracture properties of green-glued one-component polyurethane (PUR) wood adhesive bonds subjected to kiln drying were investigated. The local shear strength and fracture energy of the wood adhesive bonds were determined from experimentally recorded complete shear stress versus deformation curves of the bond line. A stable test set-up and small specimens that were anti-symmetrically loaded were used in order to get a uniform and pure state of shear stress. Different moisture contents (MCs) and pressing times were investigated. The fracture properties of conventionally dry-glued wood adhesive bonds and of solid wood were used as reference. The results show that the fracture energy of green-glued bonds with PUR adhesive is dependent on the MC of wood and on the pressing time. The same fracture energy and strength can be obtained by green gluing as by dry gluing, but there seems to exist a maximum MC of sapwood, in the range between 78% and 160%, and a minimum pressing time, in the range between 3 h and 48 h, for which it can be achieved. Both dry- and green-glued polyurethane adhesive bonds were more ductile than solid wood.  相似文献   

3.
Abstract

To study the effect of grain angle on the adhesive bond strength in wood, three-part Norway spruce wood specimens were bonded and tested in tension. The two axially orientated outer parts of the specimens were joined with the middle part by means of three adhesives typically used for load-bearing constructions, i.e. one-component polyurethane (PUR), melamine–urea–formaldehyde (MUF) and phenol–resorcinol–formaldehyde (PRF). The grain angle of the middle part was varied from 0° (end grain to end grain) to 90° (flat grain to end grain) in incremental steps of 10°. In general, PRF- and MUF-bonded samples exhibited highest tensile strength at end grain to end grain orientation of the three parts, while specimens bonded with PUR showed only 25% of the strength measured for PRF and MUF, respectively. At high grain angles (90°) all specimens showed similar strength values in the range of 30% of maximum strength of MUF- and PRF-bonded specimens. To explain the changing strength levels at different grain angle a composite failure criterion was applied.  相似文献   

4.
INTR0DUCTI0NChinaisacountrywhichhasnotade-quateforestresources.Itsforestcoverson-lyaboutl3%ofthewh01ecountry.Inor-dertomeetthedevelopmentofnationaleconomy,wemustmakegreateffortstodevelopman-madepanelindustryandmoreefficientlyusetheforestresources.Inthepresent,becauseoftheshortsupplyofchemicalmaterials,thepriceofphenolinthemarketcontinuestogoupwhichledtheincreaseofadhesivemanufacturecost.Findingnewphenolicmateria1sinplaceofphenolisaneffectivemethodtoreducetheadhesivecost.Vegetab1etanninsar…  相似文献   

5.
This investigation was conducted to determine the feasibility of using a two-component polyurethane (PUR) adhesive, with special waterproof properties, in constructing wooden structures. We designed and conducted tests to compare the shear strength and adhesion performance of PUR with polyvinyl acetate (PVAc) adhesive on block-shear specimens constructed of oriental beech (Fagus orientalis L.), fir (Abies alba Mill.), poplar (Populus deltoides Bartr.), white oak (Quercus alba L.), sycamore (Platanus orientalis L.) and white walnut (Juglans cinerea L.). The values of the percentage of wood failure were also determined in specimens constructed with each adhesive. The highest shear strength values of both adhesives were obtained in specimens constructed of beech, while the lowest shear strength values were obtained in fir and poplar specimens. Average shear strength of the PUR adhesive was 16.5% higher than that of the PVAc adhesive. Specimens constructed of fir, poplar and sycamore were characterised by the highest percentages of wood failure, whereas the lowest average percentages of wood failure were obtained in beech and oak specimens. With the exception of oak specimens, there was no statistically significant difference between percentage of wood failure among the PUR and PVAc adhesives. Generally, the PUR adhesive showed an acceptable adhesion performance on wood materials used in our study.  相似文献   

6.
Abstract

Existing European standards for finger-jointing of load-bearing lumber require the wood to be dried before gluing. This article presents a study on the properties of green-glued finger joints, wet wood being bonded prior to drying. Issues to consider, in comparison to finger-jointing of dry wood, are mechanical performance of the joint, absorption of the polymer by the wood in its natural/wet state, and the chemical reactions of the adhesive on contact with water. Finger-jointed samples were tested in bending, and the glue joints analysed by optical microscopy, scanning electron microscopy and microdensitometry. A patented one-component polyurethane adhesive developed for gluing-green wood which has a moisture content usually higher than 70% was used in the study. The resulting green-glued joints showed improved strength properties in comparison to dry-jointed joints. The results confirm that green-glued joints provide a wide, continuous wood/adhesive interface from one substrate to the other. The adhesive penetrates several cells deep and the density of the wood adjacent to the joint surfaces is increased. The results also indicate that the patented adhesive forms covalent bonds to the wood substrate.  相似文献   

7.
Abstract

The natural durability of timber is an important property in order to assess its performance in service. For numerous species grown in primary forests, this property has already been determined. As plantation-grown timber becomes more and more important, detailed information on its properties is needed, because increasing amounts of this material are coming to the market. The majority of planted Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) in Germany is around 40 years old. In the present study, representative material of totally ten trees from two different sites in the south of Germany was investigated with regard to natural durability. In laboratory tests based on European standard DIN EN 350-1, inner and outer heartwood zones were exposed to basidiomycetes. Density measurements were additionally used for further characterisation of this material. Results showed a lower durability of the plantation-grown Douglas fir wood as compared with wood from natural sites. Significant differences for both durability and density were found between inner and outer heartwood, even though no correlation between the parameters was recognised. Data illustrate that for a better understanding of durability variations, chemical, topochemical and electron microscopic studies are needed.  相似文献   

8.
不同红松种源材质性状和生长性状的遗传变异   总被引:1,自引:0,他引:1  
在东北林业大学帽儿山实验林场,选择了26个17年生红松种源实验林作为研究对象,进行了木材材质性状和生长性状的调查。材质性状包括解剖学性状和物理学性状。解剖学性状测试指标包括,管胞长度、管胞直径和管胞壁腔比。物理学性状指标测定了:生长轮宽度、晚材率和生长轮密度。生长性状方面调查了树高和胸径。统计分析结果表明:各项材质性状和生长性状指标在种源间均存在着显著差异,同时证明各项材质性状均受一定的遗传效应控制;红松的生长性状指标在不同种源间也存在着较大的变异,红松的树高和胸径也受遗传效应的控制;但是,多数材质指标表现为一定的以经向为主的地理变异规律,而红松的生长性状指标如树高和胸径均呈现出一定的纬向变异规律,无经向变异规律。图2表5参6。  相似文献   

9.
Abstract

The heartwood and sapwood from Scots pine (PS), Norway spruce (PA), and Oriental spruce (PO) were tested for susceptibility to discoloring fungi and water uptake. In addition, annual ring width and density were measured. The methods used were Mycologg for testing growth of fungi and a modified version of EN 927-5 to investigate water uptake. For pine, the heartwood showed a lower water uptake and no discoloring fungi growing in the tests. The heartwood had a significantly higher density and smaller annual ring width than the sapwood. In PA the heartwood had significantly lower discoloration than sapwood. The total water uptake in g/m2 was significantly higher in sapwood, but not the calculated moisture content. As for wood properties, the density was significantly higher in sapwood compared to heartwood, although there were no differences in annual ring width. Regarding PO, differences in water uptake could be seen between sapwood and heartwood although the densities were similar. These results show that susceptibility to discoloring fungi and water uptake is hard to correlate to a single inherent property when looking at different wood species.  相似文献   

10.
Urea formaldehyde (UF) resins are important for wood industry due to their attractive properties at reasonable price. Particulate fillers added to UF are of interest with regard to improving the functionality of UF and also in terms of reduced UF consumption. To study their potential as filler, solid UF microspheres were synthesized and characterised respecting its morphology, chemical curing and thermal stability. Marigold flower structured spheres with diameters between 5 and 20 µm are presented and application trials demonstrated that high amounts of UF may be replaced by solid microspheres without impairing adhesive bond strength of solid wood bond lines. Fluorescence microscopy showed that microspheres greatly reduce adhesive penetration into the wood substrate, retaining the modified adhesive in the bondline. UF microspheres may thus be considered as viable filler for UF adhesives, particularly with regard to the possibility of endowing them with added functionality like self-healing properties.  相似文献   

11.
 Gluing of wood is among the most effective methods for the permanent joining of furniture elements or building woodwork manufactured from wood. Technological errors occurring during the preparation process of the glue material may lead to variations in the strength of adhesive/wood joints. The purpose of the described research project was to investigate the effect of the heterogeneity of the glue bond on the distribution of tangential stresses in furniture joints, especially the effect of gas cavities, faulty glue bonds and glue outflows on the distribution of tangential stresses in adhesive bonded overlap, cross and angle wood joints. Using developed numerical models, it was shown that shear stresses in bonds of cross and angle joints reach their maximum values in corners of joints. The torsion center of cross joints is situated in the geometrical center of the bond, while in angle joints – it is found half-way through the length of one of the perpendicular edges of the joint. It was also proven that gas cavities present in the glue bond contribute to increased stresses in the neighbourhood of the source of heterogeneity. This phenomenon initiates a process of de-cohesion and, hence, reduces the overall strength of the joint. Faulty gluing, similar to gas cavities, constitutes a potential source of stress-breaking processes and reduces the strength of joints. On the other hand, glue outflows present in wood bonds increase their strength by expanding the initiation threshold of fractures even in situations where technological heterogeneity of the glue bond occurs. In furniture constructions as well as in large-size building woodwork constructions or, wherever grace and elegance of the finished product is of lesser importance, glue outflows can be treated as a positive and desirable phenomenon. Received 13 March 1999  相似文献   

12.
In this paper, the variation pattern of wood properties was studied for naturalCunninghamia lanceolata. The mathematical models of property parameters were obtained on tracheid length, microfibril angle, late wood percentage, growth ring width and growth ring density in the radial direction. The interrelation were analyzed between tracheid length and microfibril angle. The result can provide scientific theory basis for wood utilization and early prediction of wood properties.  相似文献   

13.
Abstract

This research work presents a study on the properties of finger jointing green oak wood (Quercus conferta L.) using a one-component polyurethane adhesive. The effect of finger-joint orientation (vertical or horizontal fingers) was also examined. In general, the results from the measurements of modulus of rupture and modulus of elasticity of green-glued finger-jointed specimens indicated that the green gluing of a high-density species such as oak wood is feasible.  相似文献   

14.
Abstract

Development in surface mould growth on painted/unpainted wooden claddings and acting climatic factors were investigated over a period of 3 years. Eight wood substrates, including modified, preservative-treated and untreated wood, were tested in combination with three types of paint: (1) water-borne alkyd modified acrylic paint without fungicide; (2) solvent-borne alkyd paint without fungicide; and (3) ICP (internal comparison product). One set of samples was exposed unpainted. The samples were tested according to a modified version of EN 927-3. A logistic regression model was fitted to the data. The degree of mould growth varied with exposure time, coating typology, wood substrate, temperature and relative humidity. Exposure time and coating typology contributed most to the model. After 3 years of outdoor exposure unpainted panels and panels coated with solvent-borne paint without fungicide had more mould growth than panels coated with ICP and water-borne paint without fungicide. Unpainted oil/copper–organic preservative-treated claddings had higher resistance to mould growth than other unpainted wood substrates. Coated untreated pine and coated acetylated pine were more susceptible to mould growth than other coated wooden substrates.  相似文献   

15.
A study with synchrotron radiation X-ray tomographic microscopy (SRXTM) of PUR, PVAc, and UF adhesive bond lines in beech wood, bonded under various growth ring angles, is presented. The bond line morphologies and the adhesive penetration into the wood structure were evaluated after determining the hardening characteristics of the adhesives. Distinct bond line imperfections were found for the different adhesive systems. To describe the adhesive distribution inside the bond line, the saturation of the pore space instead of the commonly used maximum penetration depth seems to be adequate.  相似文献   

16.

Different classification systems for Norway spruce (Picea abies (L.) Karst.) pulpwood were compared. The classification systems were applied on truckloads or single logs in southern Sweden. Truckload classification according to mean annual growth ring width gave better separation of the wood properties basic density, juvenile wood and dry matter content, than classification according to harvest type (first thinning, later thinning or final felling). The assortments did not have significantly different wood brightness. Sorting at log level according to diameter, mean annual growth ring width or number of annual growth rings, which could be done at harvesting, did not drastically improve differentiation of the mean values of the wood properties or reduce variance compared to truckload classification. The variation in wood properties within assortments remained large owing to the large variation in wood properties between and within logs. Substantial reduction in dry matter variation could be achieved by truckload classification during the summer.  相似文献   

17.
Adhesive bond line stiffness is an important property that plays a significant role in the properties of wood composites, but is typically ignored by methods used for characterizing adhesive quality. This paper proposes a new test method that can measure effective bond line stiffness. The experiments measured the global stiffness of double-lap shear specimens and then calculated an adhesive stiffness property using shear-lag analysis of each specimen’s specific geometry and layer properties. Experiments were done for phenol formaldehyde (PF) and polyvinyl acetate (PVA) bonding wood strands of hybrid poplar and densified hybrid poplar. The stiffness of PF bond lines was an order of magnitude higher than PVA bond lines, and both were affected by the amount of adhesive coverage. The bond line stiffness with densified wood was similar to, or higher than undensified wood despite the lack of penetration of resin into the densified strands.  相似文献   

18.
Abstract

End-grain surfaces of spruce wood specimens that were planed with a microtome knife were chemically modified by treatment with bleaching reagents, namely sodium hypochlorite and peracetic acid, and the effect of the surface modification on bond strength of end-grain joints was studied. The chemically treated samples were compared with sawn surfaces, microtome-planed specimens that were additionally irradiated by light, and surfaces that were solely planed with a microtome knife. Significantly higher bond strength compared with the microtome-planed specimens was observed for the sawn specimens and for hypochlorite-modified samples. These findings were ascribed on the one hand to an increased surface roughness resulting from the mechanical process of sawing leading to an enlargement of the bonding area. On the other hand, during the etching process with sodium hypochlorite a pulp of cell walls and cell wall fragments was formed, leading to a partially closed surface which prevented overpenetration of adhesive into the opened cells.  相似文献   

19.
ABSTRACT

In forestry, thinning operations result in the extraction of young trees with small dimensions. The evaluation of the potential end use of these small-diameter logs (currently mainly used as poles or fence posts) for added-value products such as structural timber is of considerable economic and industrial interests. In the present work, 216 pieces of small-diameter logs of chestnut timber obtained from thinning operations were evaluated in order to determine their mechanical properties and assess various visual or non-destructive grading systems. The two visual standards evaluated (EN 1927 and DIN 4074) were ineffective in grading according to mechanical properties. On the other hand, a grading system based on a non-destructive measurement (acoustic wave velocity) resulted in better classification by structural quality. The characteristic values of the small-diameter round chestnut timber, determined according to the standards EN 384 and EN 338, achieved similar values as standard rectangular sawn timber with respect to modulus of elasticity and density, and higher values for bending strength.  相似文献   

20.
To study the effect of grain angle on the adhesive bond strength in wood, three-part Norway spruce wood specimens were bonded and tested in tension. The two axially orientated outer parts of the specimens were joined with the middle part by means of three adhesives typically used for load-bearing constructions, i.e. one-component polyurethane (PUR), melamine-urea-formaldehyde (MUF) and phenol-resorcinol-formaldehyde (PRF). The grain angle of the middle part was varied from 0° (end grain to end grain) to 90° (flat grain to end grain) in incremental steps of 10°. In general, PRF- and MUF-bonded samples exhibited highest tensile strength at end grain to end grain orientation of the three parts, while specimens bonded with PUR showed only 25% of the strength measured for PRF and MUF, respectively. At high grain angles (90°) all specimens showed similar strength values in the range of 30% of maximum strength of MUF- and PRF-bonded specimens. To explain the changing strength levels at different grain angle a composite failure criterion was applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号