首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
A flow cytometric virus-binding assay that directly visualizes the binding and entry of infectious pancreatic necrosis virus (IPNV), infectious haematopoietic necrosis virus (IHNV) and virus haemorrhagic septicaemia virus (VHSV) to several cell lines was established. The highest efficiency of binding was shown by the BF-2 cell line and this was used to study, at the attachment level, the interactions of these cells with salmonid fish viruses in coinfections, and to further determine if the earliest stage of the viral growth cycle could explain the previously described loss of infectivity of IHNV when IPNV is present. Our results demonstrated that IPNV binds to around 88% of cells either in single or dual infections, whereas IHNV attachment always decreased in the presence of any of the other viruses. VHSV binding was not affected by IPNV, but coinfection with IHNV reduced the percentage of virus-binding cells, which suggests competition for viral receptors or co-receptors. Internalization of the adsorbed IHNV was not decreased by coinfection with IPNV, so the hypothetical competence could be restricted to the binding step. Treatment of the cells with antiviral agents, such as amantadine or chloroquine, did not affect the binding of IPNV and VHSV, but reduced IHNV binding by more than 30%. Tributylamine affected viral binding of the three viruses to different degrees and inhibited IPNV or IHNV entry in a large percentage of cells treated for 30 min. Tributylamine also inhibited IHNV cytopathic effects in a dose-dependent manner, decreasing the virus yield by 4 log of the 50% endpoint titre, at 10 mm concentration. IPNV was also inhibited, but at a lower level. The results of this study support the hypothesis that IHNV, in contrast to VHSV or IPNV, is less efficient at completing its growth cycle in cells with a simultaneous infection with IPNV. It can be affected at several stages of viral infection and is more sensitive to the action of antiviral compounds.  相似文献   

2.
3.
4.
Infectious pancreatic necrosis (IPN) is a very serious viral disease in terms of its impact on production of Atlantic salmon, Salmo salar L., fry and post‐smolts. Post‐smolts of Atlantic salmon were injected with infectious pancreatic necrosis virus (IPNV) and cohabited with naive fish to produce natural infection. Cohabitant fish were sampled every 2 days, up to day 36 post‐infection (p.i.). From 90 cohabitant fish, 11 (12.2%) were positive by immunohistochemistry (IHC). The first detection of IPNV by IHC occurred on day 16 p.i. which coincided with the onset of mortality in this group. Besides the pancreas, the liver was found to be a key target organ for IPNV. For the first time, the virus was observed in the islets of Langerhans and in the kidney corpuscles of Stannius which suggests that the virus could affect the fish’s metabolism. The liver of two fish, which showed the most widespread presence of IPNV by IHC, had a pathology including focal necrosis and widespread presence of apoptotic hepatocytes, many of which did not stain for virus by IHC. Up‐regulation of cytokine gene expression was found only in the IHC‐positive (IHC+ve) fish and reflected the level of infection as determined by IHC positivity of the liver. In most fish, interferon (IFN), Mx, γIFN and γIP were up‐regulated in liver and kidney, while only IFN and Mx were up‐regulated in gill. IL1β and TNFα were not induced in any tissue. The gill showed variable levels of constitutive expression of IL1β and γIFN. The two fish with liver pathology had the highest level of IFN expression, especially relative to the level of Mx expression, in the liver compared with the other IHC+ve fish which did not have a liver pathology. The results suggest that following widespread infection of hepatocytes, the cells may over‐produce IFN, resulting in apoptosis of neighbouring cells with subsequent death from liver failure.  相似文献   

5.
Fish rhabdoviruses are a family of viruses responsible for large‐scale fish die‐offs worldwide. Here, we reported the isolation and identification of a member of rhabdoviruses from wild largemouth bass (Micropterus salmoides) in the coastal area of the Pearl River Estuary, China. This virus isolate was identified as viral haemorrhagic septicaemia virus (VHSV) by specific RT‐PCR. Furthermore, the virus (VHSVLB2018) was isolated by cell culture using fathead minnow cells and confirmed by RT‐PCR. Electron microscopy showed the presence of bullet‐shaped viral particles in the cytoplasm of infected cells. The complete sequencing of VHSVLB2018 confirmed that it was genome configuration typical of rhabdoviruses. Phylogenetic analysis based on whole‐genome sequences and G gene nucleotides sequences revealed that VHSVLB2018 was assigned to VHSV genogroup Ⅳa. The pathogenicity of VHSVLB2018 was determined in infection experiments using specific pathogen‐free largemouth bass juveniles. VHSVLB2018‐infected fish showed typical clinical signs of VHSV disease, including darkened skin, petechial haemorrhages and pale enlarged livers, with the cumulative mortalities reached 63.3%–93.3% by 7 days post‐infection. VHSVLB2018 was re‐isolated from dead fish and confirmed by RT‐PCR. Together, this is the first report of isolation and identification of a VHSV isolate from wild largemouth bass in China.  相似文献   

6.
Viral nervous necrosis (VNN) affects more than 120 species mostly belonging to the order Perciformes. However, none of the brackishwater species belonging to the family Cichlidae under the order Perciformes are reported to be susceptible. Hence, the present experiment was undertaken to study the susceptibility of the brackishwater cichlid, pearlspot, Etroplus suratensis to NNV. Thirty‐day‐old pearlspot larvae were infected with NNV by immersion. Mortality was recorded till 14 days post‐infection, and the infected larvae were subjected to nested RT‐PCR and histology. The virus was isolated from infected larvae using SSN‐1 cells. To study the replication of the virus in vitro, primary cultured brain cells of E. suratensis and IEK cells were infected with NNV. No mortality was observed in any of the control or experimentally infected larvae. However, the experimentally infected larvae were positive for NNV by nested RT‐PCR and the virus was isolated using SSN‐1 cells. Further, the infected pearlspot brain cells and IEK cells showed cytopathic effect at second and third passage of the virus and they were positive for NNV by nested RT‐PCR. Pearlspot is relatively resistant to VNN although the virus could replicate in the larvae and in cell culture.  相似文献   

7.
The susceptibility of turbot, Psetta maxima, to infection with two strains of viral haemorrhagic septicaemia virus (VHSV) obtained from wild Greenland halibut, Reinhardtius hippoglossoides, and from farmed turbot was examined. A marine VHSV strain known to be highly pathogenic for turbot was also utilized for comparative purposes. Fish were infected by intra-peritoneal (i.p.), immersion or cohabitation, and maintained at two different temperatures (8 and 15 degrees C). Infection trials showed that the three VHSV isolates were pathogenic for turbot fingerlings by i.p. injection at both temperatures, with high levels of mortality. Virus was recovered from most pools of dead fish i.p. challenged, but not from surviving fish. Although clinical signs were not induced following waterborne exposure, viral growth was obtained from some pools of surviving fish challenged by immersion with strain GH40 from Greenland halibut, which indicates that the virus can survive in sea water and infect other fish via horizontal transmission. Furthermore, although low, the clinical signs and mortality observed in fish cohabitating with turbot challenged with strain GH40 confirms horizontal transmission and indicates that the passage through fish increases the virulence of this strain for turbot. These findings indicate that Greenland halibut, as other wild fish, may play an important role in the epizootiology of VHSV and suggest a potential risk for the turbot farming industry.  相似文献   

8.
9.
Infectious pancreatic necrosis virus (IPNV) is the aetiological agent of a highly contagious disease that affects farmed salmonids. IPNV isolates have been phylogenetically classified into eight genogroups, of which two are present in Chile, genogroups 1 and 5. Here, we compare the mortality rate caused by isolates from both genogroups in rainbow trout (Oncorhynchus mykiss) fry to determine if there is an association between host susceptibility and phylogenetic characterization of IPNV. Fish were challenged by immersion with one of four isolates (two for each genogroup), and mortality curves were assessed after 30 days. Viral load was measured in all mortalities and in live fish sampled at 1, 7 and 20 days post-infection. Although mortality was low throughout the challenge, differences were found between fish infected with different isolates. Both isolates from genogroup 1 caused greater cumulative mortalities than either of the isolates from genogroup 5. When combined, the overall mortality rate of fish challenged with genogroup 1 isolates was significantly higher than those infected with genogroup 5. However, viral load was lower on trout infected with genogroup 1 isolates. These results suggest that rainbow trout are more susceptible to IPNV isolates from genogroup 1 than genogroup 5.  相似文献   

10.
Viral haemorrhagic septicaemia virus, Genogroup IVa (VHSV), was highly infectious to Pacific herring, Clupea pallasii (Valenciennes), even at exposure doses occurring below the threshold of sensitivity for a standard viral plaque assay; however, further progression of the disease to a population‐level epizootic required viral amplification and effective fish‐to‐fish transmission. Among groups of herring injected with VHSV, the prevalence of infection was dose‐dependent, ranging from 100%, 75% and 38% after exposure to 19, 0.7 and 0.07 plaque‐forming units (PFU)/fish, respectively. Among Pacific herring exposed to waterborne VHSV (140 PFU mL?1), the prevalence of infection, geometric mean viral tissue titre and cumulative mortality were greater among cohabitated herring than among cohorts that were held in individual aquaria, where fish‐to‐fish transmission was prevented. Fish‐to‐fish transmission among cohabitated herring probably occurred via exposure to shed virus which peaked at 680 PFU mL?1; shed virus was not detected in the tank water from any isolated individuals. The results provide insights into mechanisms that initiate epizootic cascades in populations of wild herring and have implications for the design of VHSV surveys in wild fish populations.  相似文献   

11.
The Great Lakes strain of viral haemorrhagic septicaemia virus IVb (VHSV‐IVb) is capable of infecting a wide number of naive species and has been associated with large fish kills in the Midwestern United States since its discovery in 2005. The yellow perch, Perca flavescens (Mitchill), a freshwater species commonly found throughout inland waters of the United States and prized for its high value in sport and commercial fisheries, is a species documented in several fish kills affiliated with VHS. In the present study, differences in survival after infection with VHSV IVb were observed among juvenile fish from three yellow perch broodstocks that were originally derived from distinct wild populations, suggesting innate differences in susceptibility due to genetic variance. While all three stocks were susceptible upon waterborne exposure to VHS virus infection, fish derived from the Midwest (Lake Winnebago, WI) showed significantly lower cumulative % survival compared with two perch stocks derived from the East Coast (Perquimans River, NC and Choptank River, MD) of the United States. However, despite differences in apparent susceptibility, clinical signs did not vary between stocks and included moderate‐to‐severe haemorrhages at the pelvic and pectoral fin bases and exophthalmia. After the 28‐day challenge was complete, VHS virus was analysed in subsets of whole fish that had either survived or succumbed to the infection using both plaque assay and quantitative PCR methodologies. A direct correlation was identified between the two methods, suggesting the potential for both methods to be used to detect virus in a research setting.  相似文献   

12.
White spot syndrome virus (WSSV) has caused substantial global economic impact on aquaculture, and it has been determined that strains can vary in virulence. In this study, the effect of viral load was evaluated by infecting Litopenaeus vannamei with 10‐fold serial dilution of tissue infected with strain WSSV Mx‐H, and the virulence of four WSSV strains from north‐western Mexico was assessed along with their variable number of tandem repeat (VNTR) genotypes in ORF75, ORF94 and ORF125. The LD50 of the Mx‐H strain was a dilution dose of 10?7.5; the mortality titre was 109.2 LD50 per gram. In shrimp injected with 102.5 to 106.5 LD50, no significant virulence differences were evident. Using mortality data, the four WSSV strains grouped into three virulence levels. The Mx‐F strain (intermediate virulence) and the Mx‐C strain (high virulence) showed more genetic differences than those observed between the Mx‐G (low‐virulence) and Mx‐H (high‐virulence) strains, in ORF94 and ORF125. The application of high‐viral‐load inocula proved useful in determining the different virulence phenotypes of the WSSV strains from the Eastern Pacific.  相似文献   

13.
In order to study the variety of infectious pancreatic necrosis virus (IPNV) strains involved in outbreaks of infectious pancreatic necrosis (IPN) in Atlantic salmon fish farms, samples were collected from 19 different outbreaks of IPN in the northern part of Norway. The main objective of this study was to examine whether IPNV isolates of different virulence were involved in the outbreaks and could explain the variable IPN protection observed in vaccinated post‐smolts in the field. Both the molecular basis of virulence of all field isolates and virulence expressed by mortality after bath challenge of unvaccinated post‐smolts with eight of the isolates were studied. Very little variation among the field isolates was detected when the 578‐bp variable region encoding the VP2 protein known to be involved in virulence was sequenced. The cumulative mortality after experimental challenge with field isolates genetically characterized as highly virulent was always high (40–56%), while the cumulative mortality of the same strains in vaccinated post‐smolts during the field outbreaks varied from 1 to 50%. Although the tested samples came from fish vaccinated with the same vaccine product, the protection against IPN varied. These results demonstrate that differences in virulence of the isolates were not the main reason for the variation in mortality in the field outbreaks. Most of the field isolates were of high virulence, which is shown in experimental challenges to be important for mortality, but clearly other factors that might affect the susceptibility of IPN also play an important role in the outcome of an IPNV infection.  相似文献   

14.
A novel viral haemorrhagic septicaemia virus (VHSV) of genotype IV was isolated from wild lumpfish (Cyclopterus lumpus), brought to a land‐based farm in Iceland, to serve as broodfish. Two groups of lumpfish juveniles, kept in tanks in the same facility, got infected. The virus isolated was identified as VHSV by ELISA and real‐time RT‐PCR. Phylogenetic analysis, based on the glycoprotein (G) gene sequences, may indicate a novel subgroup of VHSV genotype IV. In controlled laboratory exposure studies with this new isolate, there was 3% survival in the I.P. injection challenged group while there was 90% survival in the immersion group. VHSV was not re‐isolated from fish challenged by immersion. In a cohabitation trial, lumpfish infected I.P. (shedders) were placed in tanks with naïve lumpfish as well as naïve Atlantic salmon (Salmo salar L.). 10% of the lumpfish shedders and 43%–50% of the cohabiting lumpfish survived after 4 weeks. 80%–92% of the Atlantic salmon survived, but no viral RNA was detected by real‐time RT‐PCR nor VHSV was isolated from Atlantic salmon. This is the first isolation of a notifiable virus in Iceland and the first report of VHSV of genotype IV in European waters.  相似文献   

15.
The infectious salmon anaemia virus (ISAV) has not been observed to cause natural disease in farmed rainbow trout, Onchorhynchus mykiss (Walbaum), but may cause high mortality in farmed Atlantic salmon, Salmo salar L. In this study, ISAV was passaged 10 times in succession by intraperitoneal injections of serum from previous passage into naïve rainbow trout. The serum viraemia was monitored by real‐time qPCR. The rainbow trout in this study became infected but did not develop ISA. No clinical signs were observed in the rainbow trout in any passage, but replication of ISAV was detected from Day 4 post‐infection (p.i.). Neither increased relative virus loads nor histopathological and immunohistochemical findings consistent with ISA were observed. However, the expression of interferon type I and Mx genes were slightly up‐regulated in the hearts of some individual fish at day 17 p.i. Sequencing of all open reading frames in the ISAV genome of the 10th passage revealed two nucleotide mutations, one in segment 6 coding for the haemagglutinin–esterase (HE) and one in segment 1 coding for the basic polymerase 2 (PB2). The mutation in HE resulted in an amino acid substitution T/K312.  相似文献   

16.
17.
Rainbow trout (Oncorhynchus mykiss) cultured in cage systems in the South Eastern Black Sea were surveyed for the type, occurrence and prevalence of infectious pancreatic necrosis virus (IPNV). Two nearby farms (designated as Farm A and Farm B) were visited monthly in 2007 and 2008. At each farm, 385 fish were selected randomly from five cages. Another farm with infected trout from a hatchery also was monitored for IPNV from the transfer to harvest. IPNV was found to be prevalent in both farms surveyed. In Farm A, IPNV was present throughout the growing period, from January to May, and all five randomly sampled cages tested positive for IPNV in March and April of 2007. In Farm B, IPNV was present only in February and March in 2007, and in 2008, IPNV was observed in January (two cages) and February (one cages) at low levels. Interestingly, IPNV was absent 2 weeks after transfer to the sea at 17.5°C. The same strain of IPNV, genotype III that was isolated from the same stock of fish at the hatchery, reoccurred when water temperatures dropped to 12°C in December in the Black Sea. Transferring fish to the sea at high water temperatures could lessen the negative impacts of IPNV on growth of rainbow trout in brackish water.  相似文献   

18.
The emergence of a new sublineage of viral hemorrhagic septicemia virus (VHSV) within the Laurentian Great Lakes has caused concern for aquaculture in the United States. Because of the occurrence of VHSV in a new geographic location, new host species have been identified and the complete host range has not been determined. This study confirmed the high resistance of rainbow trout, Oncorhynchus mykiss, to VHSV type IVb infection. In addition, the experimental susceptibility of hybrid striped bass, Morone chrysops ♂ × Morone saxatilis ♀, to VHSV type IVb infection was examined but determined to be highly dependent on age of fish and exposure temperature. No mortality was observed in adult fish infected via intraperitoneal (IP) injection at 15 C, whereas yearling fish infected via IP injection under the same conditions experienced 20.8% mortality. Among yearling fish infected via IP injection, mortality increased to 100% when exposure to VHSV occurred at 10 C. An LD50 for yearling hybrid striped bass exposed to VHSV at 10 C by IP injection was determined to be 1.4 × 104 pfu (SE = 2.1). Thus, at 10 C, yearling hybrid striped bass experience a high mortality when exposed to VHSV IVb by IP injection.  相似文献   

19.
Co‐infection of rainbow trout with infections haematopoietic necrosis virus (IHNV) and Flavobacterium psychrophilum is known to occur, and it has been speculated that a combined infection can result in dramatic losses. Both pathogens can persist in fish in an asymptomatic carrier state, but the impact of co‐infection has not been well characterized or documented. In this study, it was hypothesized that fish co‐infected with F. psychrophilum and IHNV would exhibit greater mortality than fish infected with either pathogen alone. To test this, juvenile rainbow trout were co‐infected with low doses of either IHNV or F. psychrophilum, and at 2 days post‐initial challenge, they were given a low dose of the reciprocal pathogen. This combined infection caused high mortality (76.2%–100%), while mortality from a single pathogen infection with the same respective dose was low (5%–20%). The onset of mortality was earlier in the co‐infected group (3–4 days) when compared with fish infected with F. psychrophilum alone (6 days) or IHNV (5 days), confirming the synergistic interaction between both pathogens. Co‐infection led to a significant increase in the number of F. psychrophilum colony‐forming units and IHNV plaque‐forming units within tissues. This finding confirms that when present together in co‐infected fish, both pathogens are more efficiently recovered from tissues. Furthermore, pathogen genes were significantly increased in co‐infected groups, which parallel the findings of increased systemic pathogen load. Extensive tissue necrosis and abundant pathogen present intracellularly and extracellularly in haematopoietic tissue. This was pronounced in co‐infected fish and likely contributed to the exacerbated clinical signs and higher mortality. This study provides novel insight into host–pathogen interactions related to co‐infection by aquatic bacterial and viral pathogens and supports our hypothesis. Such findings confirm that mortality in fish exposed to both pathogens is greatly elevated compared to a single pathogen infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号