首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fifty crossbred gilts immunized against bovine serum albumin (BSA) or androstenedione conjugated to BSA (AD) were used in three experiments. Primary immunizations were given at 120 d of age and boosters at 148 and 176 d. Gilts were moved to pens containing four to five animals each and exposed to boars beginning at 180 d of age. Immunization against AD did not affect age at puberty, percentage of gilts exhibiting estrus or duration of first estrous cycle. Over the three experiments, ovulation rate was 24% greater for AD-immunized gilts than for controls, and the number of corpora lutea was related positively (r = .82) to the log of the antibody titer. Number of ovulations decreased as interval from booster immunization to onset of estrus increased. During diestrus of the first estrous cycle, gilts immunized against AD had more follicles 5 to 10 mm in diameter, more total ovarian follicles and more total ovarian structures (corpora lutea plus follicles) than controls. Immunization against AD increased the frequency of LH pulses on d 16 but not on d 17 or 18, of the estrous cycle. However, average serum concentrations of LH, FSH and estradiol from 5 d before until 2 d after expected estrus were not different between treatment groups. Concentrations of AD in follicles 4 to 6 and greater than 7 mm in diameter were greater in gilts immunized against AD. Mean serum progesterone was higher on d 9 and 12 after mating in AD immunized gilts than in controls. Immunization against AD had no effect on maintenance of pregnancy or embryo survival rate.  相似文献   

2.
A series of experiments were conducted to investigate the relationship between the number of corpora lutea (CL) and concentration of progesterone (P4) on different days after induced and spontaneous ovulation of gilts of different ages. Possible relationship between the number of ovulations after injection of gonadotropin into the prepubertal gilt and the number at a second induced ovulation and finally the number of postpubertal, spontaneous ovulations, was also studied. Number of CL was related (r = .75 to .95, P less than .01) to levels of P4 on d 3 to 10 after induced ovulation of prepubertal gilts of 105 to 180 d of age. Relationship between the number of CL and level of P4 in cyclic gilts ranged from r = .28 to .67 with the highest relationship at d 4 to 9. Number of CL induced at 135 d of age was correlated (r = .67 to .91, P less than .01) with number of CL induced at 195 d. There were correlations (r = .75 to .99, P less than .01) between levels of P4 and number of CL on d 7 to 9 after induction of ovulation of gilts of 135 and 195 d of age with either pregnant mare's serum gonadotropin (PMSG) followed in 96 h by human chorionic gonadotropin (hCG) or estradiol benzoate (EB) followed in 72 h by hCG. There was a correlation (r = .84, P less than .001) between number of CL at the first spontaneous postpubertal estrus and number of CL at third estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Two experiments were conducted to determine the effect of exogenous gonadotropins on follicular development in gilts actively immunized against gonadotropin releasing hormone (GnRH). Four gilts, which had become acyclic after immunization against GnRH, and four control gilts were given 1,000 IU pregnant mare serum gonadotropin (PMSG), while four additional control gilts were given saline. Control animals were prepuberal crossbred gilts averaging 100 kg body weight. Control gilts given saline had ovaries containing antral follicles (4 to 6 mm in diameter). Control gilts given PMSG exhibited estrus and their ovaries contained corpora hemorrhagica and corpora lutea. PMSG failed to stimulate follicular growth in gilts immunized against GnRH, and ovaries contained regressed corpora albicantia and small antral follicles (less than 1 mm in diameter). Concentrations of luteinizing hormone (LH) and estradiol-17 beta (E2) were non-detectable in gilts immunized against GnRH and given PMSG. In the second experiment, five gilts actively immunized against GnRH were given increasing doses of PMSG every third day until unilateral ovariectomy on d 50. PMSG failed to stimulate follicular growth, and concentrations of follicle stimulating hormone (FSH), E2 and LH were not detectable. Six weeks later, gilts were given a booster immunization and then were given 112 micrograms LH and 15 micrograms FSH intravenously every 6 h for 9 d. The remaining ovary was removed on d 10. Although LH and FSH concentrations were elevated, administration of gonadotropins did not stimulate follicular growth or increase E2 concentrations. These results indicate that neither PMSG or exogenous LH and FSH can induce E2 synthesis or sustain follicular development in gilts actively immunized against GnRH.  相似文献   

4.
Eighty crossbred gilts were assigned randomly to treatments: 1) removal of an ovary and ipsilateral uterine horn (UHO) at 130 d of age and removal of the remaining ovary and uterine horn 12 d post-puberty; 2) UHO at 130 d of age, mated and reproductive tracts recovered when slaughtered at 30 d of gestation; 3) UHO 12 d post-puberty, mated and slaughtered at 30 d of gestation and 4) unoperated controls that were mated and slaughtered at 30 d of gestation. Age of puberty was not affected by treatments. Gilts in treatment 1 had a mean ovulation rate at the pubertal estrus comparable to gilts in treatment 3. But, gilts in treatments 2 and 3 had 16% fewer (P less than .01) corpora lutea at 30 d of gestation than control gilts. Length and weight of the remaining uterine horn at 12 d post-puberty for gilts treated at 130 d of age were similar to the averages of gilts left intact. Gilts with one uterine horn had 2.2 fewer live embryos at 30 d of gestation than control gilts (P less than .01). But, the proportion of corpora lutea represented by live embryos did not differ significantly among treatments. Gilts with one uterine horn had 1.1 fewer live embryos (P less than .15) after adjustment for number of corpora lutea, less uterine space occupied by each embryo (P less than .01) and less total placental membrane per embryo (P less than .05) than control gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The influence of varying doses of human chorionic gonadotropin (hCG) on the preovulatory luteinizing hormone (LH) surge, estradiol-17 beta (E2) and progesterone (P4) was studied in synchronized gilts. Altrenogest (AT) was fed (15 mg X head-1 X d-1) to 24 cyclic gilts for 14 d. Pregnant mares serum gonadotropin (PMSG; 750 IU) was given im on the last day of AT feeding. The gilts were then assigned to one of four groups (n = 6): saline (I), 500 IU hCG (II), 1,000 IU hCG (III) and 1,500 IU hCG (IV). Human chorionic gonadotropin or saline was injected im 72 h after PMSG. No differences in ovulation rate or time from last feeding of AT to occurrence of estrus were observed. All gilts in Groups I and II expressed a preovulatory LH surge compared with only four of six and three of six in Groups III and IV, respectively. All groups treated with hCG showed a rapid drop (P less than .01) in plasma levels of E2 11, 17, 23 h after hCG injection when compared with the control group (35 h). The hCG-treated gilts exhibited elevated P4 concentrations 12 h earlier than the control group (3.1 +/- .5, 3.4 +/- .72, 3.1 +/- .10 ng/ml in groups II, III and IV at 60 h post-hCG vs .9 +/- .08 ng/ml in group I; P less than .05). These studies demonstrate that injections of ovulatory doses of hCG (500 to 1,500 IU) had three distinct effects on events concomitant with occurrence of estrus in gilts: decreased secretion of E2 immediately after hCG administration, failure to observe a preovulatory LH surge in some treated animals and earlier production of P4 by newly developed corpora lutea.  相似文献   

6.
Characterization of effects of zearalenone in swine during early pregnancy   总被引:2,自引:0,他引:2  
Mature gilts (n = 16) were hand mated and randomly assigned to 1 of 4 groups of 4 gilts each. Treated gilts had 108 mg of purified zearalenone added to their diet on postmating days (PMD) 2 to 6, 7 to 10, or 11 to 15. Control gilts were given the same diet without added zearalenone. On PMD 6, 10, and 15, control gilts had venous cannulas placed in the jugular vein, and blood samples were taken at 20-minute intervals for 4 hours before feeding and 4 hours after feeding. Samples were collected from treated gilts on the last day that zearalenone was consumed. Samples were analyzed for follicle stimulating hormone, luteinizing hormone (LH), and prolactin. Single blood samples were taken by venipuncture on PMD 8, 12, 16, 20, 24, and 28 and at euthanasia and were analyzed for serum concentration of progesterone and estradiol-17 beta. All gilts were euthanatized 30 to 32 days after mating, and fetal development was assessed. Three gilts that were given zearalenone on PMD 7 to 10 were not pregnant and had regressing corpora lutea on the ovaries at euthanasia. All other treated and control gilts were pregnant. Serum samples from treated gilts on PMD 10 and 15 had lower mean prolactin concentrations than did those from controls. The number of LH spikes were fewer (P less than 0.05) in gilts that were given zearalenone on PMD 15 compared with those in controls on PMD 15. Serum progesterone concentrations indicated that corpora lutea regressed between PMD 20 and 28 in nonpregnant gilts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Thirteen beef cows were superovulated using 4,000 i.u. of pregnant mare serum gonadotrophin (PMSG) on days 9 to 14 of the estrous cycle, followed by two injections of 500 micrograms prostaglandin F2 alpha analogue (PGF2 alpha) 48 and 55 hrs later. Seven of them were injected intramuscularly with bovine anti-PMSG serum 12 hrs after the first signs of estrus. The remaining 6 cows were served as controls and received no antiserum. Peripheral blood concentrations of progesterone (P) and estradiol-17 beta (E2) were compared in relation to the superovulatory responses. The injection of anti-PMSG serum did not significantly affect the numbers of the corpora lutea (CL), the anovulatory follicles and the transferable embryos at 7 to 8 days after superovulatory estrus, but increased the ratio of embryos classified as excellent or good quality. Although the plasma P concentration showed no significant differences between the anti-PMSG-treated and control cows, the plasma E2 concentration displayed a characteristic difference, suppressing the second E2 peak in the anti-PMSG-treated cows. It is concluded that the use of bovine anti-PMSG serum for PMSG/PGF2 alpha-treated cows at 12 hrs after the beginning of the estrus improves the quality of embryos recovered, probably due to inhibition of high estrogenic environment following ovulation.  相似文献   

8.
In 72 (46%) of 155 gilts discarded for genetic reasons after performance testing and housed under fattening conditions no heat could have been detected during the first 30 days. The gilts were assigned alternatingly to a control group and four different treatments of delayed puberty. The induction of puberty was carried out by injections of 1000 iu PMSG, 400 iu HCG and 2 mg oestradiol benzoate, 400 iu PMSG and 200 iu HCG and 800 iu PMSG and 400 iu HCG. If there was no estrus gilts were slaughtered 12 days later for examination of the ovaries. Those coming into estrus were slaughtered 8 days after disappearance of estrus. Estrus could be induced in 69 to 94% of the gilts, whereas 40% of the untreated showed estrus signs. After treatment with PMSG and HCG in 40 and 87% of the gilts cysts were found whereas none of the untreated and 26 and 29% of those treated with PMSG und HCG + oestradiol benzoate revealed ovarian cysts. In addition, those gilts that had come into estrus during the first 30 days were given injections of either 1000 iu PMSG or 800 iu PMSG and 400 iu HCG. The injections were made either on the 5th, 10th or 15th day of cycle. In both latter groups significantly more gilts showed standing heat than after treatment at cycle day 5. The results of inspection of the ovaries at slaughter and steroid hormones could not be assigned to a defined stage of the physiological ovarian cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
This study was conducted to determine whether chronic hCG treatment would cause regression of induced corpora lutea (CL) in mature cyclic gilts. Thirty-two mature gilts that had displayed one or more estrous cycles of 18 to 22 d were used. Sixteen gilts were hysterectomized (HYSTX) on d 6 to 9 (d 0 = onset of estrus) and their CL were marked with charcoal (spontaneous group). Sixteen gilts (induced group) were injected with 1,500 IU of pregnant mare's serum gonadotropin (PMSG) on d 6 and 500 IU of hCG on d 9 (day of hCG = d 0 of the induced cycle). Ovulation was assumed to occur on d 2 of the induced cycle. Induced gilts were HYSTX on d 8 to 9 (d 17 to 18 of the original spontaneous cycle) and their CL were marked with charcoal. Only gilts (n = 14) in which induced CL were present and in which the original CL had regressed were then subjected to treatment with saline or hCG. From d 10 to 29, gilts with spontaneous CL were injected daily with 500 IU of hCG (n = 8) or saline (n = 8). From d 10 to 29 of the induced cycle, induced gilts were injected daily with 500 IU of hCG (n = 6) or saline (n = 8). Jugular blood samples were collected every other day from all gilts beginning on the 1st d of daily hCG treatment and quantified for estradiol and progesterone by RIA. On the day after the last hCG injection, the number of charcoal-marked CL and charcoal-marked corpora albicantia (CA) were determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
An experiment was conducted to evaluate the effect of exogenous gonadotropin releasing hormone (GnRH) on ovulation and embryonic survival in pubertal gilts. Gilts were assigned in replicates to a control (n = 10) and treatment (n = 10) group. Treatment consisted of an iv injection of 200 micrograms of GnRH immediately after initial mating on the first day of detected estrus. Control gilts were similarly injected with physiological saline. Blood samples were collected from the anterior vena cava immediately prior to injection, thereafter at 15-min intervals for 90 min, and subsequently, before slaughter on d 30 of gestation. Serum samples were analyzed for luteinizing hormone (LH) and progesterone by radioimmunoassay. Treatment with GnRH increased the quantity of LH released (P less than .05), with highest serum concentrations (ng/ml, means +/- SE) of gonadotropin in treated gilts (17.3 +/- 3.5) occurring at 75 min post-injection. In control gilts, serum concentrations of LH were not affected by injection of saline. Mean number of ovulations in treated gilts was also greater (P less than .05) than that of control animals (14.5 +/- .7 vs 12.1 +/- .6). However, treatment with GnRH did not enhance the number of attached conceptuses (normal and degenerating) present (treated, 10.9 +/- .9 vs control, 10.5 +/- .7) nor the percentage of viable fetuses (treated, 74.7 +/- 6.9 vs control, 83.5 +/- 5.0%) on d 30 of gestation. Although GnRH increased ovulation rate, mean weight of corpora lutea of treated and control gilts did not differ (402.8 +/- 16.3 vs 389.5 +/- 11.3 mg, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A study was done to test whether ovulatory follicles destined to form subfunctional corpora lutea differed from normal ovulatory follicles in steroidogenic function. Twenty-five ewes were treated with prostaglandin F2 alpha on d 11 of the estrous cycle, then unilaterally ovariectomized before (n = 13) or after (n = 12) the surge of luteinizing hormone (LH) at the induced estrus to collect "control" follicles, which would have produced normal corpora lutea. In 15 ewes, the second ovary was removed 63 to 84 h later to collect "treated" follicles before (n = 7) or after (n = 8) the second expected surge of LH. Five ewes (control) were allowed to ovulate from the remaining ovary at first estrus and another five (treated) at the second estrus (3 to 4 d later). Treated ewes had lower serum progesterone than control ewes during the ensuing cycle (P less than .05). Treated follicles contained less estradiol in the theca (4.4 +/- .6 vs 10.0 +/- 2.5 ng; P less than .05), less androstenedione (.1 +/- .1 vs 1.0 +/- .2 ng) and estradiol (.5 +/- .1 vs 2.9 +/- 2.2 ng) in the granulosa (P less than .05) and less progesterone in the follicular fluid (.8 +/- .4 vs 3.3 +/- .8 ng; P less than .05) than control follicles, when removed before the surge of LH. Follicles removed after the surge of LH did not differ. In conclusion, ovulatory follicles with low steroidogenic function became corpora lutea that secreted lower-than-normal quantities of progesterone.  相似文献   

12.
This study examined the effect of number of conceptuses on maternal concentrations and profiles of estrogen sulfate, estrone, estradiol-17 beta, progesterone and prolactin in gilts. Estradiol-valerate injections were used to induce pseudopregnancy (O conceptuses; n = 5) and oviduct ligation or no treatment were utilized to obtain pregnant gilts with 4 to 7 (n = 4), or 8 to 11 (n = 4) conceptuses, respectively. Blood samples were collected every 10 d from d 10 through 110 of pregnancy or pseudopregnancy. At 110 d after onset of estrus, all gilts were slaughtered and numbers and(or) weights of fetuses, corpora lutea, placentae and the empty uterus were determined. Concentrations of estrogen sulfate and estrone, but not progesterone or prolactin, were associated with fetal number, total fetal weight, total placental weight or empty uterine weight. In contrast, only progesterone was highly correlated with number of corpora lutea. Results suggest that most conjugated estrogen, estrone and estradiol were of fetal-placental origin, whereas little, if any, placental production of progesterone or prolactin occurred. Increases in estrogen sulfate and estrone concentrations were observed at gestation d 30 and from d 70 to 100. The latter increase coincides with previously established increases in the rate of maternal mammary development and fetal growth.  相似文献   

13.
The activity of hydroxysteroid dehydrogenases was histochemically quantified in corpora lutea (CL) from prepuberal gilts induced to ovulate and mature gilts. Prepuberal (P) gilts, 120 to 130 d of age were induced to ovulate with 1,500 IU pregnant mare serum gonadotropin (PMSG) followed 72 h later by 500 IU human chorionic gonadotropin (hCG). Three P gilts and three mature (M) gilts each were ovariectomized on d 10, 14, 18, 22 and 26 (d 0 = day of hCG for P gilts and onset of estrus for M gilts). Gilts ovariectomized on d 14, 18, 22 and 26 were hysterectomized on d 6 to ensure luteal maintenance. At the time of ovariectomy, CL were frozen in liquid nitrogen and then stored at -80 C until analysis. Cryostat sections (12 microns) were histochemically analyzed for delta 5-3 beta-hydroxysteroid dehydrogenase (3 beta OHSD), 17 alpha-hydroxysteroid dehydrogenase (17 alpha OHSD) and 20 alpha-hydroxysteroid dehydrogenase (20 alpha OHSD). The intensity of staining (greater enzyme activity resulted in darker staining) was quantified using a Zeiss SF microscope integrated with a Zonax photometer, which measured the percentage of light transmitted through a given area (22,500 microns 2) of the tissue section. Data were subjected to analysis of variance using the general linear models procedure of Statistical Analysis System (SAS). The 3 beta OHSD activity did not change over days, but the mean activity (throughout all days) in the P gilts (32.6 +/- 1.8) tended (P less than .08) to be elevated above that of M gilts (27.9 +/- 1.7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
All gilts not detected in estrus by eight months of age and any sows not observed in estrus by 14 days post-weaning, throughout a six month period in a University research herd, were bled on Monday and Thursday and plasma progesterone was measured by a solid-phase RIA. Basal concentrations of progesterone in both samples were considered indicative of true anestrus while one or more elevated values suggested that ovarian activity was present. Progesterone was basal in both samples from 44 of 70 gilts and all of the 23 sows tested. These anestrous animals were injected with either 400 IU PMSG plus 200 IU hCG or with 500 IU hCG plus 1 mg estradiol benzoate. The two treatments were equally effective with 60% of the injected females showing estrus and being successfully inseminated within ten days after treatment. Most of the gilts with elevated progesterone concentrations in the initial samples showed estrus within the following three weeks. The rapid solid-phase assay was able to differentiate between basal and luteal-phase levels of progesterone using unextracted plasma and could be a useful diagnostic aid for veterinarians attempting to determine major reasons for anestrus in gilts and sows.  相似文献   

15.
We determined whether a single injection of slow-release estradiol-17beta (SRE2) would induce pseudopregnancy in gilts and whether PGF2alpha would regress the corpora lutea (CL) of pseudopregnancy. Crossbred gilts (n = 40) were induced to ovulate by treatment with 400 IU of hCG + 200 IU of eCG (PG600, Intervet, Millsboro, DE) given at 180 d of age (d = 0). On d 14, gilts were injected i.m. with one of five doses (n = 8 gilts/dose) of SRE2 (0, 12.5, 25, 50, or 100 mg). Blood samples were collected before SRE2 and twice weekly until d 73 to monitor serum progesterone (P4) and estradiol (E2). On d 59, gilts received (i.m.) 10 mg of PGF2alpha (Lutalyse, Pharmacia Upjohn, Kalamazoo, MI) and were checked for estrus for 7 d. On d 62, mammary development was scored (0 = no development; 1 = some development; 2 = teat and gland development) by a neutral observer. Treatment with SRE2 increased (P < .05) peak E2 concentrations, duration of luteal function, and mammary gland score. There were no differences (chi-square, P > .05) among doses of SRE2 in the percentage of pseudopregnant gilts that showed luteolysis after PGF2alpha. We conclude that a single injection of SRE2 can induce pseudopregnancy and that the CL can be regressed with PGF2alpha, providing a simple method for controlling estrus in gilts.  相似文献   

16.
Gilts (n = 267) were allotted to flushing (1.55 kg/d additional grain sorghum), altrenogest (15 mg.gilt-1.d-1) and control treatments in a 2 x 2 factorial arrangement. Altrenogest was fed for 14 d. Flushing began on d 9 of the altrenogest treatment and continued until first observed estrus; 209 gilts (78%) were detected in estrus. The interval from the last day of altrenogest feeding to estrus was shorter (P less than .05) with the altrenogest + flushing treatment (6.6 +/- .2 d) than with flushing alone (7.6 + .3 d). Ovulation rates (no. of corpora lutea) were higher (P less than .05) in all flushed gilts (14.5 +/- .4 vs 13.4 +/- .4), whether or not they received altrenogest. Flushing also increased the total number of pigs farrowed (.9 pigs/litter; P = .06) and total litter weight (1.43 kg/litter; P = .01), independent of altrenogest treatment. Number of pigs born alive and weight of live pigs were higher for gilts treated with altrenogest + flushing and inseminated at their pubertal estrus than for gilts in all other treatment combinations. In contrast, gilts receiving only altrenogest had greater live litter weight and more live pigs born when inseminated at a postpubertal estrus than when inseminated at pubertal estrus. We conclude that flushing increased litter size and litter weight, particularly for gilts that were inseminated at their pubertal estrus. Increased litter size resulted from increased ovulation rates, which, in nonflushed gilts, limited litter size at first farrowing.  相似文献   

17.
Groups of six, six and eight miniature gilts, respectively, received 5, 10 or 15 mg/day of altrenogest for 18 days, and the numbers of corpora lutea and residual follicles were counted approximately 14 days after the treatment by an exploratory laparotomy. They were compared with the numbers in a control group of eight gilts which were examined six to eight days after oestrus. The interval between the last dose of altrenogest and the onset of oestrus increased with the dose of altrenogest, and was significantly longer after the treatments with 10 or 15 mg/day than after 5 mg/day (P < 0.01). Significantly more corpora lutea were observed in the gilts receiving 5 or 10 mg/day of altrenogest than in the control gilts (P < 0.1). Groups of six, seven and six miniature gilts that had respectively received 5, 10 or 15 mg/day of altrenogest were artificially inseminated; four, six and five of the gilts in these groups farrowed, and their mean (sd) litter sizes were 5.5 (2.4), 6.8 (1.2) and 5.0 (2.3), respectively. All six of a group of control gilts farrowed and their mean litter size was 5.8 (1.2).  相似文献   

18.
Selection for increased number of corpora lutea in gilts is associated with increased plasma FSH concentrations during pubertal development. In the current study, 270 gilts from a control (CO) line and a line selected for increased ovulation rate (OR) were unilaterally ovariectomized at 85 d of age, and this ovarian weight was related to FSH concentrations at 65, 75, and 85 d of age. Gilts were produced during two farrowing seasons, spring and fall, and the age at first estrus was monitored from 160 to 250 d. Plasma FSH was greater in OR than in CO gilts at 65 (P < 0.01) and 75 d (difference in spring greater than in fall, P < 0.01), but FSH at these ages was not correlated with ovarian weight at 85 d. At 85 d, FSH did not differ in gilts of these lines; however, FSH was negatively correlated (r = -0.27, P < 0.01) with ovarian weight. The proportion of gilts detected in estrus was less for spring-born CO gilts than for spring-born OR or for fall-born CO and OR gilts (78 vs. 92%, season x line, P < 0.02). The age at first estrus was similar in the two lines but was earlier (P < 0.01) for spring-born than for fall-born gilts (194 vs. 204 d). Concentrations of FSH at each of the ages examined were not correlated with the age at first estrus. These observations support the conclusion that selection for a greater number of corpora lutea produces a correlated increase in plasma FSH during early pubertal development. This increase in FSH most likely reflects differences in FSH synthesis and release and not differences in the stage of pubertal development.  相似文献   

19.
The object of the investigation was to study a number of gilts during their first six heats in respect of duration and external signs of oestrus in relation to ovarian function. The study comprised 11 crossbred gilts (Swedish Landrace X Yorkshire). Heat control was done twice daily and comprised a careful inspection of the vulva and check of the standing reflex with and without a vasectomized boar. The ovaries were inspected after the first, third and fifth heats by laparoscopy. Blood samples for progesterone determination were taken once a week during the whole observation period. The genital organs were examined after slaughter.All gilts came in heat regularly during the whole period. Reddening and swelling of the vulva were observed during a significantly longer time in the first and second than in the subsequent pro-oestrous periods. The length of oestrus did not vary significantly in successive heats. The duration of the standing reflex was consistently shorter when the heat control was done in the absence of a boar. All gilts had low progesterone values before their first observed heat. The progesterone level in the blood during the five oestrous cycles studied varied in a cyclical pattern. The number of corpora lutea increased from heat 1 to 5.  相似文献   

20.
This study was conducted to evaluate the effect of estrus induction with gonadotropins on endometrial and conceptus expression of HoxA10, transforming growth factor (TGF) β1, leukemia inhibitory factor (LIF), and prostaglandin H synthase-2 (PGHS-2) during early pregnancy in pigs. Twenty-four prepubertal gilts received 750 IU of pregnant mare serum gonadotropin (PMSG) and 500 IU of human chorionic gonadotropin (hCG) 72 h later. Gilts in the control group (n = 23) were observed daily for estrus behavior. Endometrial tissue samples, conceptuses, blood serum, and uterine luminal flushings (ULFs) were collected on days 10, 11, 12, and 15 after insemination. There was no effect of estrus induction on estradiol content in ULFs, or on ovulation and fertilization rates in studied gilts. However, the content of progesterone in the blood serum was greater in naturally ovulated gilts in comparison to gonadotropin-treated animals on day 12 of pregnancy (P < 0.05). HoxA10 expression was up-regulated in the endometrium of pregnant gilts, with natural ovulation on days 12 (P < 0.05) and 15 (P < 0.001) in comparison to days 10 and 11. When compared to control gilts, administration of PMSG/hCG resulted in decreased expression of endometrial HoxA10, TGFβ, LIF, and PGHS-2 on day 12 of pregnancy (P < 0.05). Conceptus expression of studied factors was not affected by gonadotropin treatment. Overall, these results suggest improper endometrial preparation for implantation in prepubertal gilts induced to ovulate with PMSG/hCG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号