首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A hedgerow intercropping study was conducted for 7 years in West Sumatra, Indonesia on an acid and highly Al-saturated soil to determine growth and yield responses of tree hedgerows and upland rice and cowpea intercrops. Three tree species,Paraserianthes falcataria, Calliandra calothyrsus, andGliricidia sepium and a no-tree control were planted at three lime rates with low annual fertilizer inputs of 20 kg P and 50 kg K ha–1.Paraserianthes andCalliandra grew vigorously, whileGliricidia grew poorly and was replaced after four years withFlemingia macrophylla. After four years,Paraserianthes yields declined due to tree mortality, probably due to intensive pruning.Calliandra andFlemingia were well adapted to intensive pruning (4 to 6 times per year). Gliricidia growth was especially limited by low soil Ca availability and high soil acid saturation.Calliandra andFlemingia yields increased with liming only in the last several years of the study whileParaserianthes did not respond to lime. The species can be tentatively ranked in response to lime as:Gliricidia > Calliandra > Flemingia > Paraserianthes.  相似文献   

2.
Tree–understory competition is one of the most important aspects that control tree growth after reforestation. The relationship between trees and the understory can be modified by improving acidic soils with lime and by fertilisation. This experiment aims to evaluate the effect of soil improvements on the pasture–tree relationship by liming and fertilisation on different dates in a Pinus radiata-reforested area. Both lime and sewage sludge improved soil fertility by increasing Ca and reducing Al in the soil. Initially, tree development was reduced by lime, which improved the establishment of competitive grasses. Tree growth in limed treatments did not initially respond to sludge inputs, likely because both tree and grass roots shared the same soil depth layer. Three years after establishment, the use of high doses of sewage sludge in limed plots caused a growth rate similar to the best treatments of unlimed plots, which grew with a poorly sown grass establishment. After 2 years of the experiment, the presence of Erica woody shrub diminished tree development. High doses of sewage sludge with lime, as well as high doses of sewage sludge without lime, applied in April and low doses of sewage sludge without lime added in early February improved tree growth. From a practical point of view, lime and sewage sludge dose close to 100 kg total N ha−1 should be recommended if a silvopastoral system is established, as it enhances pasture production and tree growth.  相似文献   

3.
Water is the most limiting factor for plant production in arid to semiarid regions. In order to overcome this limitation surface runoff water can be used to supplement seasonal rainfall. During 1996 we conducted a runoff irrigated agroforestry field trial in the Turkana district of Northern Kenya. The effects of two different Acacia saligna (Labill.) H. Wendl. tree planting densities (2500 and 833 trees per ha), tree pruning (no pruning vs. pruning) and annual intercrops (no intercrop vs. intercrop: Sorghum bicolor (L.) Moench during the first season and Vigna unguiculata (L.) Walp. during the second season) on water use were investigated. The annual crops were also grown as monocrops. Water consumption ranged from 585 to 840 mm during the first season (only treatments including trees). During the second season, which was shorter and the plants relied solely on stored water in the soil profile, water consumption was less than half of that during the first season. Highest water consumptions were found for non-pruned trees at high density and the lowest were found for the annual crops grown as monocrops. Tree pruning decreased water uptake compared to non-pruned trees but soil moisture depletion pattern showed complementarity in water uptake between pruned trees and annual intercrops. The highest values of water use efficiency for an individual treatment were achieved when the pruned trees at high density were intercropped with sorghum (1.59 kg m–3) and cowpea (1.21 kg m–3). Intercropping and high tree density increased water use efficiency in our runoff agroforestry trial. We ascribe the observed improvement in water use efficiency to the reduction of unproductive water loss from the bare soil.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

4.
We tested the hypothesis that shallow-rooted crops and deep-rooted trees will share the available water in a complementary manner, when grown together, in a field trail in the Turkana district of northern Kenya during 1994 to 1996. Such studies have been few in dryland agroforestry. The effects of two different Acacia saligna (Labill.) H. Wendl. tree planting densities (2500 and 833 trees per ha), tree pruning (no pruning vs. pruning) and annual intercrops (no intercrop vs. intercrop) on total biomass production and their interactions were tested. In 1996 Sorghum bicolor (L.) Moench was used during the first vegetation period and Vigna unguiculata (L.) Walp. during the second. We used naturally generated runoff water for irrigation to supplement low rainfall amounts typical for the area. High biomass production (> 13 t ha–1 over a two year period) was observed irrespective of intercropping of pruned trees or sole tree stands. Although the pruning treatment reduced total tree biomass yields by a quarter, the introduction of annual intercrops after the pruning of trees outweighed this loss. The yields of the intercrops in the pruned tree treatments were similar to their yields when grown as monocrops. The calculation of land equivalent ratios showed overyielding for intercropped, pruned systems. The high values for LER (1.36 at low and 1.47 at high density of trees) indicate that there is complementarity in resource use between the different species.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
Alley cropping is increasingly becoming accepted as an appropriate technology with the potential to provide stable and sustainable food production in the tropics. However, only a few of the potential trees/shrubs have been tested. The performance of Calliandra calothyrsus (Meissn) as an alley cropping species was evaluated on an Oxic Paleustalf. The treatments were: prunings removal, prunings application; and three N levels, 0,45, and 90 kg N ha–1, in a factorial arrangement. The cropping sequence was maize (main season) follwed by cowpea (minor season). Nitrogen fertilizer treatments were applied to the maize crop only. Four annual prunings of Calliandra hedgerows produced a total of 6 t ha–1 of dry matter prunings containing about 200 kg ha–1 of N. Maize yields were increased by the application of prunings but no benefits were obtained by supplementing the prunings with inorganic N. An average maize grain yield of 3.1 t ha–1 per year was maintained without any chemical fertilizer input. However, without any prunings, maize yields were substantially increased by the application of inorganic N. Cowpea yield did not respond to application of prunings but plants grown adjacent to the hedgerows had reduced yield probably due to shading. Our results suggest that six rows (0.57 m inter-row spacing) between Calliandra hedgerows spaced at 4 m are optimum for this cowpea variety. The performance of Calliandra was comparable to that of Leucaena which has been widely shown to be effective in alley cropping systems of the region.  相似文献   

6.
In recent years, in the European Union, sewage sludge production has been increased as a result of EU policy (European directive 91/271/EEC). Organic matter and nutrient sewage sludge contents, principally nitrogen, indicate it can be used as fertilizer. The objective of the experiment was to compare the effect of no fertilization, three doses of sewage sludge, with or without liming, and the fertilization usually used in the region applied over a period of 3 years on pasture production and tree growth in a silvopastoral system. The experiment was conducted in the northwest of Spain. The soil was very acid (soil pH = 4.5) and had very low nutrient levels, especially P, that is related to site index. It was sown with a grass mixture (25 kg ha−1 of Lolium perenne L. 10 kg ha−1 of Dactylis glomerata L. and 4 kg ha−1 of Trifolium repens L.) in Autumn 1997 under a plantation of 5-year-old Pinus radiata D. Don at a density of 1,667 trees ha−1. Liming and sewage sludge fertilization increased soil pH and reduced saturated aluminium percentage in the interchange complex (Al/IC) in the soil, coming up the effect before with liming. Medium and high sewage sludge doses increased pasture production in the two first years. In a silvopastoral system, positive tree growth response to different fertilization treatments depended on tree age, initial soil fertility, soil pH, the relationship of competition with pasture production and previous liming application.  相似文献   

7.
A total of 15 years of experimentation period (1995–2010) was divided into two phases. In the first phase (1995–2005), five mango based agri-horticultural models (AHM) viz. Mango + cowpea–toria, mango + cluster bean/okra–toria, mango + sesame–toria, mango + black gram–toria and mango + pigeon pea in addition to sole mango plantation (no intercrop) and in second phase (2005–2010), two mango based AHM (mango + colocasia and mango + turmeric) in addition to sole mango (no intercrop) were studied. The mean maximum cowpea equivalent yield (t ha?1) was harvested from cowpea (1.84) followed by okra (1.21), black gram (1.11), sesame (0.68) and mean minimum with pigeon pea (0.58). The crop yield reduction among the mango based AHM was observed from third year to tenth year. The positive correlation was found between light transmission and intercrops yields amongst all models during both phases. However, the correlation between mango canopy spread and intercrop yields shown negative trends. The yield reduction in intercrops varied from 37.0–52.6 % during first phase and 20.6–23.5 % during second phase of experimentation compared to sole crop. The results revealed that the fruit based AHM were effective in improving fruit yields of the mango. The mean maximum fruit yield of mango (7.02 t ha?1) was harvested with cowpea–toria crop rotation followed by black gram–toria (6.59 t ha?1) and minimum fruit yield (5.76 t ha?1) realized with sole mango tree during first phase (1999–2005). Likewise, mean maximum fruit yield (13.71 t ha?1) from mango tree was obtained in the turmeric block followed by (13.00 t ha?1) in colocasia block and minimum fruit yield with sole mango tree (11.86 t ha?1). All the treatments of AHM recorded higher soil moisture as compared to sole mango plantation during both phases. The moisture retention under different AHM was in the order of cowpea (13.32 cm) > black gram (13.29 cm) > pigeon pea (13.27 cm) > okra (12.42 cm) > sesame (12.17 cm) > sole mango (11.62 cm) during first phase, whereas moisture retention was observed in the order of turmeric (14.20 cm) > colocasia (14.01 cm) > sole mango (12.60 cm) during second phase. The cowpea–toria crop rotation with mango gave maximum benefit: cost ratio followed by okra–toria under rainfed conditions. Besides economic viability of cowpea–toria with mango, this system had improved tree growth as well as fruit yield of mango. In the second phase, mango + turmeric yielded more benefit than mango + colocasia system. In the first phase, the mango + cowpea–toria system improved organic carbon, total nitrogen, phosphorus, potash and reduced pH by 49.0, 56.3, 48.6, 58.5 and 11.6 %, respectively as compared to initial values whereas mango + turmeric system increased organic carbon, nitrogen, phosphorus, potash and reduction in pH by 51.0, 45.0, 29.7, 29.0 and 3.4 %, respectively over initial values within soil depths of 0–30 cm during second phased. Mango based AHM is recommended for adoption with selective intercrops up to 15 years of age of mango plantation for multiple outputs and good economic viability without impairing site fertility.  相似文献   

8.
Cocoa cultivation is generally considered to foster deforestation. Contrary to this view, in the forest–savannah interface area in Cameroon, farmers have planted cocoa agroforestry systems on Imperata cylindrica grasslands, a soil-climate zone generally considered unsuitable for cocoa cultivation. We undertook a survey to understand the agricultural and ecological bases of this innovation. Age, cropping history and marketable cocoa yield were assessed in a sample of 157 cocoa plantations established on grasslands and 182 cocoa plantations established in gallery forests. In a sub-sample of 47 grassland cocoa plantations, we inventoried tree species associated with cocoa trees and measured soil organic matter levels. Marketable cocoa yields were similar for the two types of cocoa plantations, regardless of their age: 321?kg?ha?1 in cocoa plantations on grasslands and 354?kg?ha?1 in cocoa plantations in gallery forests. Two strategies were used by farmers to eliminate I. cylindrica prior to the establishment of cocoa plantations, i.e., cropping oil palms in dense stands and planting annual crops. Farmers then planted cocoa trees and fruit tree species, while preserving specific forest trees. The fruit tree and forest tree densities respectively averaged 223 and 68 trees?ha?1 in plantations under 10?years old, and 44 and 27 trees?ha?1 in plantations over 40?years old, whereas the cocoa tree density remained stable at 1,315 trees?ha?1. The Shannon–Weaver index increased from 1.97 to 2.26 over the same period although the difference was not statistically significant. The soil organic matter level was 3.13?% in old cocoa plantations, as compared to 1.7?% in grasslands. In conclusion, our results show that the occupation of grasslands by cocoa agroforestry systems is both an important example of ecological intensification and a significant farmer innovation in the history of cocoa growing.  相似文献   

9.
In an alley cropping experiment, a study was carried out on N2 fixation by Gliricidia sepium, nitrogen (N) accumulation by prunings of Gliricidia, Senna siamea (formerly Cassia siamea) and Gmelina arborea, and the N contribution to associated crops of rice and cowpea.Total N accumulated by the hedgerow trees ranged from 297–524 kg N ha–1 on average but varied between tree species and depended on the growing season. Gliricidia sepium accumulated 370 kg N ha–1 on average and more than half of this came from fixation. Senna siamea and Gmelina arborea served as reference trees for estimating N2 fixation. The estimates of N2 fixation using Gmelina as a reference gave higher estimates than those using Senna.Although the dry matter and nitrogen yields of prunings from the hedgerow trees were high, their relative nitrogen contribution to the associated crops was generally low ranging from 5 to 29%. Higher crop yields and nitrogen contribution were observed with Gliricidia sepium prunings. The low N contribution from prunings was attributed to the lack of synchronization between the N released from the prunings and the crop's demand for N.  相似文献   

10.
Acacia senegal, the gum arabic-producing tree, is the most important component of traditional dryland agroforestry systems in the␣Sudan. The spatial arrangement of trees and the type of agricultural crop used influence the interaction between trees and crops. Tree and crop growth, gum and crop yields and nutrient cycling were investigated over a period of 4 years. Trees were grown at 5 × 5 m and 10 × 10 m spacing alone or in mixtures with sorghum or sesame. No statistically significant differences in sorghum or sesame yields between the intercropping and control treatments were observed (mean values were 1.54 and 1.54 t ha−1 for sorghum grain and 0.36 and 0.42 t ha−1 for sesame seed in the mixed and mono-crop plots, respectively). At an early stage of agroforestry system management, A. senegal had no detrimental effect on crop yield; however, the pattern of resource capture by trees and crops may change as the system matures. A significant positive relationship existed between the second gum picking and the total gum yield. The second gum picking seems to be a decisive factor in gum production and could be used as an indicator for the prediction of the total gum yield. Soil organic carbon, N, P and K contents were not increased by agroforestry as compared to the initial levels. Soil OC was not increased by agroforestry as compared to sole cropping. There was no evidence that P increased in the topsoil as the agroforestry plantations aged. At a stocking density of 400 trees ha−1 (5 × 5 m spacing), A. senegal accumulated in its biomass a total of 18.0, 1.21, 7.8 and 972 kg ha−1 of N, P, K and OC, respectively. Agroforestry contributed ca. 217 and 1500 kg ha−1 of K and OC, respectively, to the top 25-cm of soil during the first four years of intercropping.  相似文献   

11.
Tree based land use systems make a valuable contribution to sequester carbon and improve productivity and nutrient cycling within the systems. This study was conducted to determine biomass production, C-sequestration and nitrogen allocation in Gmelina arborea planted as sole and agrisilviculture system on abandoned agricultural land. At 5 years, total stand biomass in agrisilviculture system was 14.1 Mg ha−1. Plantations had 35% higher biomass than agrisilviculture system. At 5 years, leaves, stem, branches and roots contributed 4.1, 65.2, 10.0 and 20.7%, respectively to total standing biomass (17.9 Mg ha−1). Over the 5 years of study, trees had 3.5 Mg ha−1 more C and 36 kg ha−1 more N in plantation than agrisilviculture system. Biomass and C storage followed differential allocation. Relatively more C was allocated in above ground components in plantations compared to agrisilviculture system. C:N ratios for tree components were higher in stem wood (135–142) followed by roots (134–139), branches (123–128) and leaves (20–21). In agrisilviculture system crops recommended are: soybean and cowpea in rainy season; wheat and mustard in winter season. After 5 years, soil organic C increased by 51.2 and 15.1% and N by 38.4 and 9.3% in plantation and agrisilviculture system, respectively. Total C storage in abandoned agricultural land before planting was 26.3 Mg ha−1, which increased to 33.7 and 45.8 Mg ha−1 after 5 years in plantation and agrisilviculture system, respectively. Net C storage (soil + tree) was 7.4 Mg ha−1 in agrisilviculture system compared to 19.5 Mg ha−1 in G. arborea monoculture stands. The studies suggest that competitive interactions played a significant role in agrisilviculture system. Plantations were more efficient in accreting C than agrisilviculture system on abandoned agricultural land.  相似文献   

12.
Nitrogen deficiency is widespread in southern Africa, but inorganic fertilizers are often unaffordable for smallholder farmers. Short-duration leguminous fallows are one possible means of soil fertility restoration. We monitored preseason topsoil (0 to 20 cm) ammonium and nitrate, fallow biomass production and grain yields for three years in a relay cropping trial with sesbania [Sesbania sesban (L.) Merr.] and maize (Zea mays L.). Sesbania seedlings were interplanted with maize during maize sowing at 0, 7400 or 14,800 trees ha–1, in factorial combination with inorganic N fertilizer at 0 or 48 kg N ha–1 (half the recommended rate). After maize harvest, fallows were allowed to grow during the seven-month dry season, and were cleared before sowing the next maize crop. Both sesbania fallows and inorganic N fertilizer resulted in significantly greater (P < 0.01 to 0.05) preseason topsoil nitrate-N than following unfertilized sole maize. In plots receiving no fertilizer N, preseason topsoil inorganic N correlated with maize yield over all three seasons (r 2 = 0.62, P < 0.001). Sesbania fallows gave significantly higher maize yields than unfertilized sole maize in two of three years (P < 0.01 to 0.05). Sesbania biomass yields were extremely variable, were not significantly related to sesbania planting density, and were inconsistently related to soil N fractions and maize yields. Short-duration fallows may offer modest yield increases under conditions where longer duration fallows are not possible. This gain must be considered against the loss of pigeonpea (Cajanus cajan L. Millsp) harvest in the similarly structured maize-pigeonpea intercrop common in the region.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
Yields under alley cropping might be improved if the most limiting nutrients not adequately supplied or cycled by the leaves could be added as an inorganic fertilizer supplement. Three historic leaf management strategies had been in effect for 3 years ina Leucaena leucocephala alley cropping trial on the Lilongwe Plain of central Malawi : 1) leaves returned; 2) leaves removed; and 3) leaves removed, with 100 kg inorganic N ha−1 added. An initial soil analysis showed P status to be suboptimal under all strategies. A confounded 34 factorial experiment was conducted with the following treatments: leaf management strategy (as above), N fertilizer rate (0, 30, and 60 kg N ha−1), P fertilizer rate (0, 18, and 35 kg P ha−1), and maize population (14,800, 29,600, and 44,400 plants ha−1). Both N and P were yield limiting, and interacted positively to improve yields. The addition of 30 kg N and 18 kg P ha−1 improved yields similarly under all leaf management strategies by an average of 2440 kg ha−1. Increasing the rates to 60 kg N and 35 kg P ha−1 improved yields an additional 1990 kg ha−1 in the ‘leaves returned’ and leaves removed + N’ strategies, but did not improve yields under the ‘leaves removed’ strategy. Lower yields were related to lack of P response at the highest P rate in this treatment, which may have induced Zn deficiency. Plots receiving leaves had higher organic C, total N, pH, exchangeable Ca, Mg, K, and S, and lower C/N ratios in the 0–15 cm soil layer than did plots where leaves had been removed. Leaf removal with N addition was similar to leaf removal alone for all soil factors measured except for organic C and total N, which were higher where N had been added. The results show that N and P were the primary yield-limiting nutrients. Historic N application maintained the soil's ability to respond to N and P on par with leaf additions.  相似文献   

14.
An expanding market for planted timber in the Philippines is providing a strong incentive for upland farmers to incorporate trees into their farming systems. Farmers often intercrop young timber species with well-fertilized annuals in expectation that inter- species competition for nutrients and light will be minimal while the trees are small, and that the trees will benefit from intensive nutrient and weed management of the intercrop. The relative level of aboveground and belowground competition in a vegetable/timber intercropping system was investigated in the uplands of Mindanao, the Philippines. Eight 5-m2 microplots were established containing one nine-month-old Eucalyptus torelliana and four rows of cabbage (two on each of the north and south sides of the tree, 0.5 and 1.0 m from the stem base). The tree canopy shaded north rows. Monocrop cabbage microplots (2 m2) were also installed. Four tree/cabbage microplots and all cabbage-only plots were fertilized with 15 5N-labeled ammonium sulfate (100 kg N ha−1); remaining microplots received unlabeled fertilizer. Cabbage yields were reduced by 16% in the north rows when compared to the south rows, and by 15% in rows closer to the tree when compared to rows further from the trees. Belowground competition in the first cabbage row, possibly for moisture, is supported by the high proportion of tree roots found in the top 30 cm of soil. Competition did not appear to be for N or other nutrients. Foliar analyses revealed no row differences in mineral concentrations in cabbage, uptake of applied N, or percent of N derived from fertilizer. The modest amount of 15N found in aboveground tree parts (4.5% of N applied to four cabbage rows) improved overall N-use efficiency in the intercropped plots. An improved understanding of the tradeoffs between improved nutrient efficiency and depressed intercrop growth, as well as management options to reduce competition, will help farmers design systems to improve efficiency without increasing competition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The effect of pruning all branches (complete pruning) or retaining one branch (partial pruning) on the dynamics of nitrogen cycling in aboveground biomass, nitrogen supplying power of an amended Eutric Cambisol, and fine root length, was studied in an Erythrina poeppigiana (Walp.) O.F. Cook—tomato (Lycopersicon esculentum Mill.) alley cropping practice in Turrialba, Costa Rica during 1999–2000. Over the 1 year pruning cycle, in which trees were completely or partially pruned four times, respective aboveground biomass production was 4.4 Mg or 7 Mg ha−1 (2-year-old trees) and 5.5 Mg or 9 Mg ha−1 (8-year-old trees); N cycled in aboveground biomass was 123 kg or 187 kg ha−1 (2-year-old trees) and 160 kg or 256 kg N ha−1 (8-year-old trees); mean fine root length was 489 or 821 m (2-year-old-trees), 184 or 364 m per tree (8-year-old-trees). Pruning intensity did not significantly affect net N mineralisation and net nitrification rates during the tomato-cropping season. For the tomato crop, pre-plant mean net N mineralisation rate of 2.5 mg N kg−1 soil day−1 was significantly lower than 16.7 or 11.6 mg N kg−1 soil day−1 at the end of vegetative development and flowering, respectively. Mean net nitrification rates of 3.5, and 4.3 mg N kg−1 soil day−1, at pre-plant and end of vegetative development, respectively, were significantly higher than 0.3 mg N kg−1 soil day−1 at end of flowering. In humid tropical low-input agroforestry practices that depend on organic inputs from trees for crop nutrition, retention of a branch on the pruned tree stump appears to be a good alternative to removal of all branches for reducing N losses through higher N cycling in aboveground biomass, and for conserving fine root length for higher N uptake, although it might enhance competition for associated crops.  相似文献   

16.
The growth, technical quality and nutritional status of pure and mixed silver birch (Betula pendula Roth) and downy birch (Betula pubescens Ehrh.) plantations were studied 21 and 22 years after planting on afforested organic soil arable land and on upland forest soil. In mixtures, 50% of both birch species was planted. Silver birch trees grew better, but had higher mortality than downy birch trees on both sites. Mortality of both species was highest, and the difference in their growth smallest, on organic soil. In pure stands on organic soil, downy birch dominant height, diameter and mean volume were 96%, 92% and 82% of those of silver birch and on mineral soil 87%, 84% and 60%, correspondingly. On mineral soil, silver birch had a higher mean annual increment (MAI) (5.8 m3 ha?1a?1) than downy birch (3.9 m3 ha?1a?1), but on organic soil the MAI of both species was similar (3.3–3.4 m3 ha?1 a?1). Planting birches in mixture did not affect the growth of the trees on organic soil. On mineral soil, the mean diameter and mean volume of silver birch trees were higher in mixed than in pure plantations. The technical stem quality of both tree species was low. On mineral soils, pure silver birch is more productive than mixture, but on peat soil the higher growth of silver birch could contribute to increased productivity and downy birch would ensure sufficient survival for future timber production.  相似文献   

17.
Abstract

On the Laurel Hill, anecdotal accounts reported coppice regeneration of oaks to be limited. Possible causes of poor sprouting success were large stump size, deer browsing, season of cutting and poor tree vigor. Our study site had been partially cut three years before this study to salvage some northern red oak (Quercus rubra L.) which had died. We attempted to increase Q. rubra vigor, as measured by increasing basal area growth, with soil amendments of 6,600 kg/h dolo-mitic lime, 110 kg/h K2O equivalents and 220 kg/h P2O5 equivalents while accounting for other growth variables. The objective was to improve overall Q. rubra sprouting success by increasing vigor prior to harvest. The soil amendments increased soil available calcium (Ca), magnesium (Mg), potassium (K) and phosphorus (P) and reduced available aluminum (Al). Foliar concentrations of Ca, Mg and K were increased. Basal area increment of treated Q. rubra trees increased by 10 percent and terminal elongation increased by nearly 100 percent. Two years after treatment, the trees were cut during the dormant season and all stumps were protected from deer browsing. After two years, 80 percent of the stumps had sprouted. No effect of lime and fertilizer on the sprouts was found.  相似文献   

18.
Soil nutrient depletion as a result of continuous cultivation of soils without adequate addition of external inputs is a major challenge in the highlands of Kenya. An experiment was set up in Meru South District, Kenya in 2000 to investigate the effects of different soil-incorporated organic (manure, Tithonia diversifolia, Calliandra calothyrsus, Leucaena leucocephala) and mineral fertilizer inputs on maize yield, and soil chemical properties over seven seasons. On average, tithonia treatments (with or without half recommended rate of mineral fertilizer) gave the highest grain yield (5.5 and 5.4 Mg ha−1 respectively) while the control treatment gave the lowest yield (1.5 Mg ha−1). After 2 years of trial implementation, total soil carbon and nitrogen contents were improved with the application of organic residues, and manure in particular improved soil calcium content. Results of the economic analysis indicated that on average across the seven seasons, tithonia with half recommended rate of mineral fertilizer treatment recorded the highest net benefit (USD 787 ha−1) while the control recorded the lowest (USD 272 ha−1). However, returns to labor or benefit-cost ratios were in most cases not significantly improved when organic materials were used.  相似文献   

19.
During the spring of 2006, three willow varieties (SV1, SX67 and 9882-41) were established on marginal land in an agroforestry tree-intercropping arrangement where plots of short rotation willows were planted between rows (spaced 15?m apart) of 21-year-old mixed tree species. As a control, the same varieties were established on an adjacent piece of land without established trees (conventional willow system). This study investigated the magnitude of carbon pools, fine root and leaf biomass inputs and clone yields in both the tree-based intercropping (agroforestry) and conventional monocropping systems. Willow biomass yield was significantly higher in the agroforestry field (4.86?odt?ha?1?y?1) compared to the conventional field (3.02?odt?ha?1?y?1). In both fields, varieties SV1 and SX67 produced higher yields than the variety 9882-41. Willow fine root biomass in the top 20?cm of soil was significantly higher in the intercropping system (3,062?kg?ha?1) than in the conventional system (2,536?kg?ha?1). Differences in fine root biomass between clones were similar to that observed for differences in biomass yield: SV1?>?SX67?>?9882-41. Leaf input was higher in the intercropping system (1,961?kg?ha?1) than in the conventional system (1,673?kg?ha?1). Clonal differences in leaf inputs followed the same trends as those for root biomass and yield: SV1?>?SX67?>?9882-41. Soil organic carbon was significantly higher in the agroforestry field (1.94?%) than in the conventional field (1.82?%). A significant difference in soil organic carbon was found between the three clones: soils under clone 9882-41 had the lowest soil organic carbon at 1.80?%.  相似文献   

20.
The magnitude of nitrogen storage and its temporal change in forest ecosystems are important when analysing global change. For example, the accelerated growth of European forests has been linked to increased nitrogen deposition, but the changes in the N inputs that cause long-term changes in ecosystems have not yet been identified. We used two Swedish forest optimum nutrition experiments with Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) to study the long-term fate of N applied to these forest ecosystems. In the pine experiment, in addition to fertiliser (NPK) application, soil acidity was manipulated by application of lime and dilute sulphuric acid. From the spruce experiment, we selected treatments with similar fertiliser doses as in the pine experiment and with and without lime addition.We quantified various terms in the N budget 12 years (pine) and 7 years (spruce) after the last N addition. In the pine stand the NPK-treatment was the only treatment to produce a significant increase in N in the tree biomass (97% above control), whereas in the spruce stand the N additions increased tree N in all treatment combinations (207% above control). In the pine stand the relative distribution of nitrogen between trees and soil did not vary across treatments, with trees containing around 12% of ecosystem N and humus containing around 44% of soil N. The increases in N stocks in the pine stands were mainly in the soil. In contrast, in the spruce ecosystem trees accumulated most of the added N and the increase in the soil was restricted to the humus layer.In the pine ecosystem, large losses of added N (between 254 and 738 kg ha−1 out of 1040 kg ha−1 added as fertiliser) occurred, whereas in the spruce ecosystem we recovered more N than could be accounted for by inputs (between 250 and 591 kg ha−1). There was no clear pattern in the interaction between acidification/liming and N additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号