首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
OBJECTIVES: To compare bone fragment compression and the mechanical pushout strength and stiffness of 6.5-mm Acutrak Plus (AP) and 4.5-mm AO cortical (AO) bone screws after stabilization of a simulated equine third metacarpal (MC3) bone complete lateral condylar fracture. STUDY DESIGN: In vitro biomechanical paired study of screw insertion variables, bone fragment compression, and screw pushout tests using a bone screw stabilized simulated lateral condylar fracture model. SAMPLE POPULATION: Six pairs of cadaveric equine MC3s. METHODS: Metacarpi were placed in a fixture and centered on a biaxial load cell in a materials testing system to measure torque, compressive force, and time for drilling, tapping, and screw insertion. Fragment compression was measured with a pressure-sensing device placed between the simulated fracture fragments during screw insertion for fragment stabilization. Subsequently, screws were pushed out of the stabilized bone fragments in a single cycle to failure. A paired t test was used to assess differences between site preparation, screw insertion, fragment compression, and screw pushout variables, with significance set at P <.05. RESULTS: Measured drilling variables were comparable for AO and AP specimens. However, the AP tap had significantly greater insertion torque and force. Mean maximum screw insertion torque was significantly greater for AO screws. For fragment compression, AP screws generated 65% and 44% of the compressive pressure and force, respectively, of AO screws. AP screws tended to have higher overall pushout strength. Pushout stiffness was similar between both screw types. CONCLUSION: The 6.5-mm tapered AP screw generated less interfragmentary compressive pressure and force but had similar pushout stiffness. Evaluation of failure patterns demonstrated that AP screws had greater pushout strength compared with 4.5-mm AO screws for fixation of a simulated complete lateral condylar fracture. CLINICAL RELEVANCE: The 6.5-mm tapered AP screw should provide ample holding strength but would provide less interfragmentary compression than 4.5-mm AO screws for repair of complete lateral condylar fractures in horses.  相似文献   

2.
OBJECTIVE: To compare the mechanical shear strengths and stiffnesses obtained from in vitro testing of a simulated complete third carpal bone (C3) frontal plane radial facet slab fracture (osteotomy) stabilized with either a 4/5 Acutrak (AT) compression screw or a 4.5-mm AO cortical bone (AO) screw inserted in lag fashion. Drilling, tapping, and screw insertion torques, forces, and times also were compared between AT and AO implants. STUDY DESIGN: In vitro biomechanical assessment of site preparation, screw insertion, and shear failure test variables of bone screw stabilized simulated C3 slab fracture in paired cadaveric equine carpi. SAMPLE POPULATION: Eight pairs of cadaveric equine C3 without orthopedic abnormalities. METHODS: Standardized simulated C3 slab fractures were repaired with either AO or AT screws (AO/C3 and AT/C3 groups, respectively). Drilling, tapping, and screw insertion torques, forces, and times were measured with a materials testing machine for each screw type. Repaired specimens were tested in axially oriented shear until failure. Paired Students t-tests were used to assess differences between site preparation, screw insertion, and shear testing variables. Significance was set at P <.05. RESULTS: There were no significant differences in bone fragment measurements of the standardized simulated C3 slab fractures created for AO or AT screws. There were no significant differences for mean and maximum drilling torques; however, the tapered AT drill had greater maximum drilling force compared with the 3.2-mm and 4.5-mm AO drill bits. Mean insertion torque and force measured from the self-tapping AT screw were not significantly different compared with the 4.5-mm AO tap. There were no significant differences in maximum screw torque among constructs. Total procedure time was significantly longer for the AT group (5.8 +/- 1.6 minutes) compared with the AO group (2.9 +/- 1.1 minutes; P =.001). AT stabilized specimens had significantly greater mean +/- SD initial shear stiffness (3.64 +/- 1.08 kN/mm) than AO specimens (1.64 +/- 0.73 kN/mm; P =.005). All other shear mechanical testing variables were not statistically different among screw types. CONCLUSION: The 4/5 Acutrak insertion technique was accurate and safe, and the AT screw effectively stabilized simulated equine C3 frontal plane slab fractures. When tested in shear, this screw type was mechanically comparable to the 4.5-mm AO screw; however, AT constructs had greater initial shear stiffness. Initial shear stiffness was likely an indirect measure of interfragmentary compression, and thus may indicate that the AT screw provides a more rigid fixation for frontal plane C3 slab fractures in horses. CLINICAL RELEVANCE: Considering the comparable mechanical behavior, greater initial shear stiffness for AT screw stabilized C3 slab fracture fragments, the ability to accurately insert the screw with the aid of a guide pin, and the potential for less persistent soft tissue irritation with the headless screw design, the 4/5 tapered AT screw is an attractive alternative for repair of C3 slab fractures in horses.  相似文献   

3.
Objectives— To compare compression pressure (CP) of 6.5 mm Acutrak Plus (AP) and 4.5 mm AO cortical screws (AO) when inserted in simulated lateral condylar fractures of equine 3rd metacarpal (MC3) bones. Study Design— Paired in vitro biomechanical testing. Sample Population— Cadaveric equine MC3 bones (n=12 pair). Methods— Complete lateral condylar osteotomies were created parallel to the midsagittal ridge at 20, 12, and 8 mm axial to the epicondylar fossa on different specimens grouped accordingly. Interfragmentary compression was measured using a pressure sensor placed in the fracture plane before screw placement for fracture fixation. CP was acquired and mean values of CP for each fixation method were compared between the 6.5 mm (AP) and 4.5 mm (AO) for each group using a paired t‐test within each fracture fragment thickness group with statistical significance set at P<.05. Results— AO screw configurations generated significantly greater compressive pressure compared with AP configurations. The ratio of mean CP for AP screws to AO screws at 20, 12, and 8 mm, were 21.6%, 26.2%, and 34.2%, respectively. Conclusion— Mean CP for AP screw fixations are weaker than those for AO screw fixations, most notably with the 20 mm fragments. The 12 and 8 mm groups have comparatively better compression characteristics than the 20 mm group; however, they are still significantly weaker than AO fixations. Clinical Relevance— Given that the primary goals of surgical repair are to achieve rigid fixation, primary bone healing, and good articular alignment, based on these results, it is recommended that caution should be used when choosing the AP screw for repair of lateral condylar fractures, especially complete fractures. Because interfragmentary compression plays a factor in the overall stability of a repair, it is recommended for use only in patients with thin lateral condyle fracture fragments, as the compression tends to decrease with an increase in thickness.  相似文献   

4.
OBJECTIVE: To compare acute fixation stability and insertion effort of cortex bone screws with and without a shaft inserted in lag fashion in equine metacarpal (metatarsal, MC(T)III) bone. METHODS: Screw types with independent variables of screw diameter (4.5 or 5.5 mm) and shaft type (without shaft, with 20-mm shaft, or with 25-mm shaft) were studied. Bone specimens cut from distal equine MC(T)III condyles were used. After screw insertion in lag fashion into 2 bone blocks with an instrumented device, shear tests were conducted in a mechanical testing machine. Outcome variables of peak insertion torque, insertion energy, stiffness. yield strength, and displacement at 3 kN of load were compared. RESULTS: The effects of screw design were substantial. Screws with shaft were 30% to 40% stiffer and 60% to 70% stronger than screws without shaft. Screws with shaft could tolerate 80 to 95 kg more force than screws without shaft before yielding. At 3 kN load, the displacement with screws with shaft was 55% to 60% of that with screws without shaft. Screws with a long shaft tended to perform better than those with a short shaft. There was no difference in the shear stiffness, shear yield strength, or shear displacement between the 2 screw diameters. Although larger diameter screws required more insertion effort, and screws with a short shaft required the most insertion energy, these differences were small. CONCLUSIONS: Cortex screws with a long shaft of 4.5- or 5.5-mm diameter provide better stability in equine MC(T)III condyle bone with less insertion effort compared with those with a short shaft or no shaft. CLINICAL SIGNIFICANCE: Cortex bone screws with a shaft inserted in lag fashion should be considered for the fixation of equine MC(T)III condylar fractures.  相似文献   

5.
OBJECTIVE: To compare screw insertion characteristics and pullout mechanical properties between self-tapping (ST) and non-self-tapping (NST) AO 4.5-mm cortical bone screws in adult equine third metacarpal bone (MC3). STUDY DESIGN: In vitro biomechanical experiment. ANIMALS OR SAMPLE POPULATION: Seven pairs of adult equine MC3. METHODS: Bicortical holes were drilled transversely in proximal metaphyseal, diaphyseal, and distal metaphyseal locations of paired MC3. NST screws were inserted in pre-tapped holes in 3 sites of one bone pair, and ST screws were inserted in non-tapped holes of contralateral MC3. Tapping and screw insertion times and maximum torques were measured. Screw pullout mechanical properties were determined. RESULTS: Screw insertion time was longer for ST screws. Total time for tapping and insertion (total insertion time) was over twice as long for NST screws. Statistically significant differences were not observed between screws for any pullout mechanical property. From pullout tests, diaphyseal locations had significantly stiffer and stronger structure than metaphyseal locations. Pullout failure more commonly occurred because of screw breakage than bone failure. Bone failure and bone comminution were more commonly associated with ST screws. Bone failure sites had pullout failure loads that were 90% of screw failure sites. CONCLUSIONS: NST and ST 4.5-mm-diameter cortical bone screws have similar pullout mechanical properties from adult equine MC3. ST screws require less than half the total insertion time of NST screws. CLINICAL RELEVANCE: Use of ST 4.5-mm-diameter cortical bone screws should be considered for repair of adult equine MC3 fractures; however, bone failures at screw sites should be monitored.  相似文献   

6.
OBJECTIVE: To compare variables for screw insertion, pushout strength, and failure modes for a headless tapered compression screw inserted in standard and oversize holes in a simulated lateral condylar fracture model. SAMPLE POPULATION: 6 pairs of third metacarpal bones from horse cadavers. PROCEDURE: Simulated lateral condylar fractures were created, reduced, and stabilized with a headless tapered compression screw by use of a standard or oversize hole. Torque, work, and time for drilling, tapping, and screw insertion were measured during site preparation and screw implantation. Axial load and displacement were measured during screw pushout. Effects of drill hole size on variables for screw insertion and screw pushout were assessed by use of Wilcoxon tests. RESULTS: Drill time was 59% greater for oversize holes than for standard holes. Variables for tapping (mean maximum torque, total work, positive work, and time) were 42%, 70%, 73%, and 58% less, respectively, for oversize holes, compared with standard holes. Variables for screw pushout testing (mean yield load, failure load, failure displacement, and failure energy) were 40%, 40%, 47%, and 71% less, respectively, for oversize holes, compared with standard holes. Screws could not be completely inserted in 1 standard and 2 oversize holes. CONCLUSIONS AND CLINICAL RELEVANCE: Enlarging the diameter of the drill hole facilitated tapping but decreased overall holding strength of screws. Therefore, holes with a standard diameter are recommended for implantation of variable pitch screws whenever possible. During implantation, care should be taken to ensure that screw threads follow tapped bone threads.  相似文献   

7.
OBJECTIVES: To compare biomechanical properties of a prototype 5.5 mm tapered shaft cortical screw (TSS) and 5.5 mm AO cortical screw for an equine third metacarpal dynamic compression plate (EM-DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: Paired in vitro biomechanical testing of cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. ANIMAL POPULATION: Adult equine cadaveric MC3 bones (n=12 pairs). METHODS: Twelve pairs of equine MC3 were divided into 3 groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional single cycle to failure testing. An EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of each, mid-diaphyseal osteotomized, MC3 pair. For each MC3 bone pair, 1 was randomly chosen to have the EM-DCP secured with four 5.5 mm TSS (2 screws proximal and distal to the osteotomy; TSS construct), two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws in the remaining holes. The control construct (AO construct) had four 5.5 mm AO cortical screws to secure the EM-DCP in the 2 holes proximal and distal to the osteotomy in the contralateral bone from each pair. The remaining holes of the EM-DCP were filled with two 5.5 mm AO cortical screws (most proximal and distal holes in the plate) and four 4.5 mm AO cortical screws. All plates and screws were applied using standard AO/ASIF techniques. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the TSS construct were significantly greater (P<.00004 for yield and P<.00001 for failure loads) than those of the AO construct. Mean cycles to failure in 4-point bending of the TSS construct was significantly greater (P<.0002) than that of the AO construct. The mean yield load and composite rigidity in torsion of the TSS construct were significantly greater (P<.0039 and P<.00003, respectively) than that of the AO construct. CONCLUSION: The TSS construct provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: The results of this in vitro study support the conclusion that the EM-DCP fixation using the prototype 5.5 mm TSS is biomechanically superior to the EM-DCP fixation using 5.5 mm AO cortical screws for the stabilization of osteotomized equine MC3.  相似文献   

8.
Objective—To assess feasibility of insertion of 4.5-mm Herbert cannulated bone screws (HS) using fluoroscopic guidance and compare the mechanical shear strength of these HS and 4.5-mm AO cortical bone screws (AO) for fixation of dorsal plane slab osteotomies in equine cadaver third carpal bones (C3).
Animals or Sample Population—Eight equine cadavers.
Methods—Bone mineral composition and density of contralateral C3 were confirmed to be equivalent using dual-energy x-ray absorptiometry. A standard 10-mm C3 slab osteotomy was reduced using HS or AO instrumentation under fluoroscopic guidance. Specimens were loaded in shear until failure, using a materials testing apparatus.
Results—HS and AO instrumentation allowed accurate reconstruction of the osteotomy, but there was difficulty encountered seating the HS proximal self-tapping threads. There was no significant difference in maximal load to failure, stiffness, or mode of failure of constructs created with the HS and AO screws.
Conclusions —Use of 4.5-mm HS for repair of C3 radial facet, dorsal plane slab fractures may result in a mechanically comparable fixation to a repair using a 4.5-mm AO. Equine dorsal C3 may be too dense, however, to allow placement of the proximal self-tapping threads of the HS without potentially excessive application of torque to the screw itself.
Clinical Relevance —Dorsal plane, radial facet slab fractures of the equine C3 are a significant clinical problem. Accurate reconstruction and stabilization are necessary for return to athletic function.  相似文献   

9.
OBJECTIVE: To compare screw insertion variables and pullout mechanical properties between AO 6.5-mm cancellous and 7.3-mm cannulated bone screws in foal femoral bone. STUDY DESIGN: A paired, in vitro mechanical study. SAMPLE POPULATION: Seven pairs of femora from immature (1-7 months) foals. METHODS: The 6.5 cancellous and 7.3-mm cannulated screws were inserted at standardized proximal and distal metaphyseal, and mid-diaphyseal locations. Insertion torque, force, and time to drill, tap (6.5-mm cancellous), guide wire insertion (7.3-mm cannulated), and screw insertion were measured. Screw pullout properties (yield and failure load, displacement, and energy, and stiffness) were determined from mechanical tests. The effects of screw type and location on insertion variables and pullout properties were assessed with repeated measures ANOVA. Pairwise comparisons were examined with post hoc contrasts. Significance was set at P<.05 for all comparisons. RESULTS: Insertion torques for the 7.3-mm cannulated screws were significantly greater than for the 6.5-mm tap, but significantly lower than for the 6.5-mm cancellous screws. Total screw insertion times were similar. Pullout properties of both screws were similar at each femoral location. The holding power of both screws was significantly greater in the mid-diaphysis than in either metaphyseal location. Pullout failure occurred by bone shearing at the bone-screw interface in all specimens. CONCLUSIONS: The 6.5-mm cancellous and 7.3-mm cannulated screws vary in insertion properties, but have similar pullout properties in the mid-diaphysis, proximal, and distal metaphysis of foal femora. Both screw types have greater holding power at the mid-diaphyseal location compared with metaphyseal locations. Based on overall similar holding powers of 6.5-mm cancellous and 7.3-mm cannulated screws, it is unlikely that increasing the screw diameter beyond 6.5 mm will provide increased holding power in foal femoral bone. CLINICAL RELEVANCE: Use of the 7.3-mm cannulated screw should be considered for foal femoral fracture repair when greater accuracy is needed, or when bone threads for the 6.5-mm cancellous screw have been stripped.  相似文献   

10.
OBJECTIVE: To report clinical evaluation of headless compression screws for repair of metacarpal/metatarsal (MC/MT3) condylar fractures in horses. STUDY DESIGN: Retrospective case study. SAMPLE POPULATION: Racing Thoroughbreds (n=16) with nondisplaced lateral condylar fractures of MC/MT 3. METHODS: Medical records (1999-2004) of horses with nondisplaced longitudinal fractures of the lateral condyle of MC/MT3 were reviewed. Pre-operative variables retrieved were: patient age, gender, limb involvement, injury occurrence, fracture length, and width, evidence of palmar comminution and degenerative joint disease, number of pre-injury starts, and pre-injury earnings. Post-operative variables retrieved were: surgical complications, surgical time, number of race starts, and post-operative earnings. RESULTS: MC3 (n=11) and MT3 (5) nondisplaced longitudinal fractures of the lateral condyle were repaired with Acutrak Equine (AE) screws. Left front limb fractures were most common (8) followed by left hind (5) and right front (3). Nine fractures occurred during training and 7 during racing; 4 fractures had palmar comminution. No surgical complications occurred. Of 15 horses that returned to training, 11 (73%) raced 306+/-67 days after injury and had greater mean (+/-SD) post-injury earnings/start ($5290.00+/-$8124.00) than pre-injury ($4971.00+/-$2842.00). Screw removal was not required in any horse. CONCLUSION: The AE screw is a viable option for repair of nondisplaced lateral condylar MC/MT3 fractures in Thoroughbred racehorses. CLINICAL RELEVANCE: Adequate stability of nondisplaced lateral condylar fractures can be achieved with a headless tapered compression screw while avoiding impingement on the collateral ligaments and joint capsule of the fetlock joint.  相似文献   

11.
OBJECTIVE: To compare mechanical properties and failure characteristics of 2 methods of fixation for repair of a transverse, midbody fracture of the proximal sesamoid bone (PSB): 4.5-mm AO cortical bone screw (AO) placed in lag fashion and 4/5-mm Acutrak (AT) self-compressing screw. STUDY DESIGN: An in vitro biomechanical evaluation of intact forelimb preparations and forelimb preparations with a simulated midbody PSB fracture stabilized by a bone screw. SAMPLE POPULATION: Sixteen paired and 8 unilateral cadaveric equine forelimbs. METHODS: A midbody transverse osteotomy was created in the medial PSB of bilateral forelimbs of 8 equine cadavers. The osteotomized PSB in 1 forelimb from each cadaver was repaired with an AO screw. The osteotomized PSB in each contralateral limb was repaired with an AT screw. Eight unilateral intact control limbs were also studied. Mechanical properties were determined from axial compression, single cycle to failure, load-deformation curves. Failure characteristics were determined by evaluation of video images and radiographs. RESULTS: No statistically significant differences were found between repair groups. Both AO and AT groups had significantly lower mechanical properties than intact limbs except for stiffness. CONCLUSION: AO and AT constructs were mechanically comparable when used to stabilize a simulated midbody fracture of the medial PSB. Both constructs were mechanically inferior to intact limbs. Clinical Relevance- The AT screw should be considered for clinical use because of the potential for less soft tissue impingement and superior biocompatibility compared with the stainless-steel AO screw. However, postoperative external coaptation is necessary to augment initial fracture stability for either fixation method, and to maintain a standing metacarpophalangeal joint dorsiflexion angle between 150 degrees and 155 degrees.  相似文献   

12.
Objective—To determine and compare the in vitro pullout strength of 5.5-mm cortical versus 6.5-mm cancellous bone screws inserted in the diaphysis and metaphysis of adult equine third metacarpal (MCIII) bones, in threaded 4.5-mm cortical bone screw insertion holes that were then overdrilled with a 4.5-mm drill bit to provide information relevant to the selection of a replacement screw if a 4.5-mm cortical screw is stripped. Study Design—In vitro pullout tests of 5.5-mm cortical and 6.5-mm cancellous screws in equine MCIII bones. Sample Population—Two independent cadaver studies each consisting of 14 adult equine MCIII bones. Methods—Two 4.5-mm cortical screws were placed either in the middiaphysis (study 1) or distal metaphysis (study 2) of MCIII bones. The holes were then overdrilled with a 4.5-mm drill bit and had either a 5.5-mm cortical or a 6.5-mm cancellous screw inserted; screw pullout tests were performed at a rate of 0.04 mm/second until screw or bone failure occurred. Results—In diaphyseal bone, the screws failed in all tests. Tensile breaking strength for 5.5-mm cortical screws (997.5 ± 49.3 kg) and 6.5-mm cancellous screws (931.6 ± 19.5 kg) was not significantly different. In metaphyseal bone, the bone failed in all tests. The holding power for 6.5-mm cancellous screws (39.1 ± 4.9 kg/mm) was significantly greater than 5.5-mm cortical screws (23.5 ± 3.5 kg/mm) in the metaphysis. There was no difference in the tensile breaking strength of screws in the diaphysis between proximal and distal screw holes; however, the holding power was significantly greater in the distal, compared with the proximal, metaphyseal holes. Conclusions—Although tensile breaking strength was not different between 5.5-mm cortical and 6.5-mm cancellous screws in middiaphyseal cortical bone, holding power of 6.5-mm cancellous screws was greater than 5.5-mm cortical screws in metaphyseal bone of adult horses. Clinical Relevance—If a 4.5-mm cortical bone screw strips in MCIII diaphyseal bone of adult horses, either a 5.5-mm cortical or 6.5-mm cancellous screw, however, would have equivalent pullout strengths. A 6.5-mm cancellous screw, however, would provide greater holding power than a 5.5-mm cortical screw in metaphyseal bone.  相似文献   

13.
Objective —To determine risk of failure of the Synthes 4.5-mm cannulated screw system instrumentation in equine bone and to compare its application with the Synthes 4.5-mm standard cortex screw system.
Study Design —The maximum insertion torque of the cannulated and standard cortex screw systems were compared with the ultimate torsional strengths of the equipment. Pullout strength and ultimate tensile load of cannulated and standard cortex screws were also determined.
Sample Population—Paired equine cadaver third metacarpal and third carpal bones.
Methods —Maximum insertion torque and ultimate torsional strengths were determined by using an axial-torsional, servohydraulic materials testing system and a hand-held torquometer. Pullout tests were performed by using a servohydraulic materials testing system.
Results —Maximum insertion torque of all cannulated instrumentation was less than ultimate torsional strength at all locations ( P < .05). Maximum insertion torques of cannulated taps and screws were greater than for standard taps and screws in the third carpal bone ( P < .002). Pullout strength of the cannulated screws was less than the standard cortex screws at all sites ( P < .001). Cannulated screws broke before bone failure in all but one bone specimen. Conclusions—The risk of cannulated instrument or screw failure during insertion into bone is theoretically low. The relatively low pullout strength of the cannulated screws implies that the interfragmentary compression achievable is likely to be less than with standard cortex screws. Clinical Relevance—The relatively low pullout strength of the cannulated screw suggests that its risk of failure during fracture repair is greater than with the standard cortex screw.  相似文献   

14.
OBJECTIVE: To compare shear stability of simulated humeral lateral condylar fractures reduced with either a self-compressing pin or cortical bone screw. STUDY DESIGN: In vitro biomechanical tests. SAMPLE POPULATION: Bilateral cadaveric canine humeri (n=18) without evidence of elbow disease. METHODS: Lateral condylar fracture was simulated by standardized osteotomy. Bone fragments were stabilized with a self-compressing pin or a cortical bone screw (2.7 or 3.5 mm) inserted in lag fashion. Specimens were mounted in a materials testing system and the condylar fragment displaced in a proximal direction until failure. Mechanical testing variables derived from load-deformation curves were compared between stabilization methods using a Student's paired t-test. RESULTS: There were no statistically significant differences for mechanical testing variables between pin and screw stabilized specimens at expected walk and trot loads. Three yield points subjectively coincided with yield of the interfragmentary interface (Y1), bone at the implant interface (Y2), and implant deformation (Y3). Displacements at Y1 were 48-156% greater for pin than screw stabilized specimens. Y2 and Y3 loads were higher for screw than pin stabilized specimens, but likely supraphysiologic for dogs convalescing after surgical repair. CONCLUSIONS: A self-compressing pin or a cortical bone screw inserted in lag fashion both provided adequate strength in applied shear to sustain expected physiologic loads through the repaired canine elbow during postoperative convalescence. CLINICAL RELEVANCE: Because self-compressing pins were easy to implant and mechanical properties were not significantly different than cortical screws at expected physiologic loads, pins should be considered for the repair of traumatic humeral condylar fractures.  相似文献   

15.
OBJECTIVES: To compare the biomechanical properties, in full limb preparations, of intact second phalanx and a simulated comminuted second phalangeal fracture stabilized with either two bone plates or a custom Y-plate. STUDY DESIGN: In vitro biomechanical assessment of intact limbs and of paired limbs with a simulated second phalangeal fracture stabilized by one of two fixation methods. Animal Population-Thirteen pairs of equine cadaveric forelimbs. METHODS: A comminuted second phalangeal fracture was created in six paired cadaveric limbs. For each limb pair, the fracture was stabilized with two plates in one limb, and with a Y-plate in the contralateral limb. These limbs and seven pairs of intact limbs were subjected to axial compression in a single cycle until failure. Mechanical properties were compared with a mixed-model ANOVA and post hoc contrasts. Joint contact pressure, screw insertion torque, and final screw torque remaining after mechanical testing were also evaluated for constructs. RESULTS: No significant differences in mechanical testing variables were detected between construct types. However, the Y-Plate construct had significantly greater yield load, yield displacement and yield energy, and failure load and stiffness values than those for intact specimens, whereas the double-plate construct only had greater stiffness than intact specimens. There were no significant differences in joint contact pressures for both constructs. The final screw torque for proximal phalangeal screws was significantly greater for the Y-plate constructs than for double-plate constructs. CONCLUSIONS: The Y-plate was as effective as the double-plate technique for stabilization of simulated comminuted second phalangeal fractures in monotonically tested equine cadaveric forelimbs. CLINICAL RELEVANCE: This investigation supports evaluation of the Y-plate for repair of comminuted second phalangeal fractures in equine patients. Its specific design may facilitate repair of second phalangeal fractures, and may provide increased stability by allowing the proximal fragments of the second phalanx to be fixed with three screws placed through the plate.  相似文献   

16.
Objective-To determine whether partial transection of the medial branch of the suspensory ligament (MBSL) alters equine third metacarpal bone (MC3) condylar surface strains and forelimb, distal joint angles in a manner consistent with promotion of lateral condylar fracture. Study Design-In vitro biomechanical experiment. Sample Population-Right forelimbs from 7 Thoroughbred horse cadavers. Methods-Lateral and medial MC3 condylar, dorsal and abaxial, bone surface strains and distal joint angles were measured both before and after partial transection of the MBSL during in vitro axial limb compression. Dorsal, principal bone strains and abaxial, uniaxial, and proximodistal strains were compared before and after MBSL partial transection at 1,400-, 3,000-, and 5,600-N loads. Results-Bone strains increased in all locations with increasing axial load. All lateral condylar bone strains were significantly higher, and abaxial surface medial condylar bone strain was significantly lower, after partial transection of the MBSL. Respective distal joints became more flexed or extended as axial load increased but were not significantly different after partial transection of the MBSL. Conclusions-Partial transection of the MBSL increases in vitro MC3 lateral condylar bone surface strains. Clinical Relevance-Loss of integrity of the medial branch of the suspensory ligament could increase the risk for lateral condylar fracture in Thoroughbred horses by amplifying bone strain in the lateral condyle.  相似文献   

17.
OBJECTIVE: To compare monotonic mechanical properties of gap-ostectomized third metacarpal bones (MC3) stabilized with an MP35N interlocking nail system with contralateral intact bones. ANIMALS OR SAMPLE POPULATION: Twenty-four pairs of cadaveric equine MC3s. METHODS: Third metacarpal bones were divided into 4 mechanical testing groups (6 pairs per group): compression, palmarodorsal (PD) and mediolateral (ML) 4-point bending, and torsion. One MC3 from each pair was randomly selected as an intact specimen, and the contralateral gap ostectomized bone was stabilized with a 4-hole, 14-mm-diameter, 250-mm-long, MP35N intramedullary nail, and four, 7-mm-diameter, 60-mm-long MP35N interlocking screws (constructs). Mechanical testing properties were compared between intact specimens and constructs with a paired t test (significance set at P <.05). RESULTS: Intact specimens were significantly stronger and stiffer than constructs in all testing modes except PD bending. Constructs achieved mean yield strengths that were 57% (compression), 81% (PD bending), 68% (ML bending), and 78% (torque) of intact specimens. Constructs achieved mean stiffnesses that were 53% (compression), 58% (PD bending), 41% (ML bending), and 47% (torque) of intact specimens. CONCLUSION: Monotonic yield mechanical properties of MP35N intramedullary interlocking nail-stabilized, gap-ostectomized MC3 were lower than those of paired intact bones but exceeded reported in vivo loads for dorsopalmar bending and compression and estimated in vivo torsional loads. CLINICAL RELEVANCE: Considering the benefits associated with intramedullary interlocking nail fixation of fractures, this system should be considered for use for repair of MC3 fractures with applicable fracture configurations.  相似文献   

18.
Objective— To describe a lateral approach for screw fixation in lag fashion of simple spiral medial condylar fractures of the third metacarpus/metatarsus (MC3/MT3).
Study Design— Case series.
Animals— Thoroughbred racehorses (n=9).
Methods— Nondisplaced medial MC3/MT3 condylar fractures (3 thoracic, 6 pelvic limbs), with mean length 126 mm (range, 91–151 mm) were repaired by internal fixation, under general anesthesia, using multiple 4.5 mm cortical screws inserted in lag fashion from the lateral aspect of the limb, using radiographic or fluoroscopic guidance. Horses were recovered from anesthesia in half-limb casts; 7 unassisted and 2 using a rope-recovery system. Horses had 2 months box rest, 1 month in-hand walking, and follow-up radiographic examination at 3 months.
Results— Horses recovered uneventfully from anesthesia. Five horses raced; 1 returned to training, was persistently lame, and was retired to stud; 2 were retired directly to stud; and 1 horse was lost to follow-up.
Conclusions— MC3/MT3 medial condylar fractures were successfully repaired by screws inserted n lag fashion form the lateral aspect.
Clinical Relevance— Use of a lateral approach to medial condylar MC3/MT3 fractures allows screw insertion perpendicular to the fracture plane without interference with palmar/plantar soft tissue structures or from the splint bones. Although repair was performed under general anesthesia, the technique should be adaptable to application in standing horses.  相似文献   

19.
OBJECTIVE--To compare the mechanical properties of 2 interlocking-nail systems for fixation of ostectomized equine third metacarpi (MC3): (1) a standard interlocking nail with 2 parallel screws proximal and distal to a 1-cm ostectomy; and (2) a modified interlocking nail with 2 screws proximal and distal to a 1-cm ostectomy with the screws offset by 30 degrees. ANIMAL OR SAMPLE POPULATION--Twelve pairs of adult equine forelimbs intact from the midradius distally. METHODS--Twelve pairs of equine MC3 were divided into 2 test groups (6 pairs each): torsion and caudocranial 4-point bending. Standard interlocking nails (6-hole, 13-mm diameter, 230-mm length) were placed in 1 randomly selected bone from each pair. Modified interlocking nails (6-hole, 13-mm, 230-mm length, screw holes offset by 30 degrees) were placed in the contralateral bone from each pair. All bones had 1-cm mid-diaphyseal ostectomies. Six construct pairs were tested in caudocranial 4-point bending to determine stiffness and failure properties. The remaining 6 construct pairs were tested in torsion to determine torsional stiffness and yield load. Mean values for each fixation method were compared using a paired t test within each group. Significance was set at P <.05. RESULTS--Mean (+/-SEM) values for the MC3-standard interlocking-nail composite and the MC3-modified interlocking-nail composite, respectively, in 4-point bending were: composite rigidity, 3,119 +/- 334.5 Nm/rad (newton. meter/radian) and 3,185 +/- 401.2 Nm/rad; yield bending moment, 205.0 +/- 18.46 Nm and 186.7 +/- 6.17 Nm; and failure bending moment, 366.4 +/- 21.82 Nm and 378.1 +/- 20.41 Nm. There were no significant differences in the biomechanical values for bending between the 2 fixation methods. In torsion, mean (+/-SEM) values for the MC3-standard interlocking-nail composite and the MC3-modified interlocking-nail composite were: composite rigidity, 135.5 +/- 7.128 Nm/rad and 112.5 +/- 7.432 Nm/rad; gap stiffness, 207.6 +/- 10.57 Nm/rad and 181.7 +/- 12.89 Nm/rad; and yield load, 123.3 +/- 2.563 Nm and 107.5 +/- 8.353 Nm, respectively. Composite rigidity and gap stiffness for standard interlocking-nail fixations were significantly higher than the modified interlocking-nail fixation technique in torsion. Yield load had a tendency to be higher for the standard interlocking-nail fixation (P =.15). CONCLUSIONS--No significant differences in biomechanical properties were identified between a standard interlocking nail and one with the screw holes offset by 30 degrees in caudocranial 4-point bending. The standard interlocking nail was superior to the modified interlocking nail in torsional gap stiffness and composite rigidity. The torsional yield load also tended to be higher for the standard interlocking nail. CLINICAL RELEVANCE--The standard interlocking nail with parallel screw holes is superior to a modified interlocking nail with the screw holes offset by 30 degrees in ostectomized equine MC3 bones in vitro when tested in torsion.  相似文献   

20.
OBJECTIVES: To compare the monotonic biomechanical properties of a prototype equine third metacarpal dynamic compression plate (EM-DCP) fixation with a double broad dynamic compression plate (DCP) fixation to repair osteotomized equine third metacarpal (MC3) bones. STUDY DESIGN: In vitro biomechanical testing of paired cadaveric equine MC3 with a mid-diaphyseal osteotomy, stabilized by 1 of 2 methods for fracture fixation. POPULATION: Twelve pairs of adult equine cadaveric MC3 bones. METHODS: Twelve pairs of equine MC3 were divided into 3 test groups (4 pairs each) for (1) 4-point bending single cycle to failure testing, (2) 4-point bending cyclic fatigue testing, and (3) torsional testing. The EM-DCP (10-hole, 4.5 mm) was applied to the dorsal surface of one randomly selected bone from each pair. Two DCPs, 1 dorsally (10-hole, 4.5 mm broad) and 1 laterally (9-hole, 4.5 mm broad) were applied to the contralateral bone from each pair. All plates and screws were applied using standard AO/ASIF techniques to MC3 bones that had mid-diaphyseal osteotomies. Mean test variable values for each method were compared using a paired t-test within each group. Significance was set at P<.05. RESULTS: Mean 4-point bending yield load, yield bending moment, bending composite rigidity, failure load and failure bending moment of the EM-DCP fixation were significantly greater (P<.0001) than those of the double broad DCP fixation. Mean cycles to failure in 4-point bending of the EM-DCP fixation was significantly greater (P<.0008) than that of the double broad DCP fixation. Mean yield load, composite rigidity, and failure load in torsion of the EM-DCP fixation were significantly greater (P<.0035) than that of the double broad DCP fixation. CONCLUSION: The EM-DCP provides increased stability in both static overload testing and cyclic fatigue testing. CLINICAL RELEVANCE: Results of this in vitro study support the conclusion that the prototype EM-DCP fixation is biomechanically superior to the double broad DCP fixation for the stabilization of osteotomized equine MC3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号