首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于ARM与ZigBee的温室环境无线监控系统设计   总被引:1,自引:0,他引:1  
针对农作物生长有线监控系统的局限性,采用ATM板作为下位机对农作物生长环境进行监控,利用PID闭环控制系统反馈调节机制对ZigBee无线网络监控模型进行了改进,提高了系统反应的灵敏度,设计了一个新的ZigBee无线传感器网络。该无线传感器网络利用可视化显示技术,可以对农作物生长过程中土壤的温度和湿度进行实时在线监测。系统选用三轴数字加速度传感器ADXL345作为环境监测的传感器,采用IIC方式和ZigBee无线网络节点进行互联,利用数据选择性输出,节省了数据传输成本,降低了数据冗余量,从而节省比较多的传感器网络能量,为现代农业技术研究提供了技术参考。  相似文献   

2.
设计并实现温室农业无线传感器网路,用于监测农作物生长环境.用高性能、超低功耗单片机MSP430F149设计温湿度、光照强度传感器节点和汇聚节点;采用无线射频器件CC2420实现数据的无线收发;针对汇聚节点能量不限的特点,改进传统MAC协议,提出并实现了一种基于令牌的MAC协议.实验证明,该网络具有生命周期长、稳定性好的优点,可以满足温室农业的环境监测要求.  相似文献   

3.
<正>物联网在设施农业中的应用,是对农作物生长环境进行监测和改造,是在田地里铺设各种传感器,安装自动化设备,搭建传感器网络,建立监控中心,从而构建农作物生长决策系统、监测系统。利用各种传感器对空气温湿度、光照强度、土壤温湿度、日照数等数据进行实时采集,以获得农作物生长的当前环境条件。决策系统通过传感器网络获取数据后,再根据农作物在每个阶段的生长要求,对这些数据参数进行分析,通过分析种植环境因素对农作物长  相似文献   

4.
针对植物生长环境信息大滞后及大惯性的特点,基于WSN和低功耗ZigBee CC2430无线通信技术设计一个植物生长环境多环境参数监测系统。无线传感器网络实时采集和处理植物生长环境数据,由信息接收端保存,可进一步显示处理结果,从而完成动态信息监测任务。植物生长环境数据最终传送至系统的上位机监测中心,对环境数据进行统一管理,充分发挥无线传感器网络的路由监测作用。系统克服了有线传感器网络的局限性,组网灵活、节点成本低、网络容量大。同时,实时监测实验表明,该系统操作灵活,有较好的数据传输精度。由于良好的系统稳定性,使得其在植物生长环境信息监测中可以胜任多参数监测任务。  相似文献   

5.
在"互联网+农业"的背景下,为有效的对温室内植物生长环境进行监测与管理,实现"一个中心、一个平台"的管理模式。通过物联网、移动互联网、云计算等信息技术与传统农业生产相结合,搭建农业智能化、标准化生产服务平台。本系统硬件微处理器模块采用MSP430,无线射频模块采用CC1101对数据进行传输与接收,采用多传感器自适应融合算法对环境数据进行处理,通过阿里云(ECS)技术将中间件部署在云端作为信号传输中介。系统能够实时监测环境信息、温室画面,并且能够依赖网络从云服务器下发指令远程控制温室内机构,达到适宜作物生长的环境。该系统稳定可靠,数据传输误差小于8%,保证数据不丢失。  相似文献   

6.
无线传感器网络数据融合能够减少节点能耗、延长网络生命周期,近年来受到了广泛关注。已有的应用于农业监测的空间数据融合算法多采用取平均值等方法将一定区域内监测到的数据融合成一个值。而农田环境监测具有监测范围广、监测点多、监测数据量大的特点,监测数据间除了冗余性还具有差异性,因此数据融合应该在消除冗余的同时保留数据的差异。针对农业监测的这一特点,提出在簇头节点应用聚类算法进行空间数据融合,通过聚类减少数据发送量,降低能耗;同时将差异较大的参量聚类到不同类别中以保留数据间的差异。此外,还提出了一种应用于WSN簇头节点的自适应改进K-means聚类算法,仿真结果表明,所提算法融合后的数据上传量比没有融合减少41.19%,消除了数据冗余;算法融合前后最大误差低于取平均值法误差的36%,保留了数据差异性。在没有明确误差要求时, 该算法能够在尽量减少数据上传量的同时保持相对误差低于10%,避免了因聚类个数不当引起的巨大误差。而在有具体误差要求时,该算法融合前后的绝对误差严格低于要求误差。  相似文献   

7.
无线传感器网络在现代农业中有着广阔的应用。为此,针对农田环境场景,设计了一个基于无线传感器网络的农田环境信息监测管理平台。采用GPRS网络和Socket通信编程技术,将无线传感器网络节点采集的田间环境参数数据存储于服务器数据库中,由C#编写的网站平台发布监测信息。该平台能够将农作物种植地的关键环境参数准确直观地展示给用户和管理者,高效地实现了农田环境信息监测。  相似文献   

8.
基于WSN的水产养殖环境监测系统   总被引:1,自引:0,他引:1  
将无线传感器网络(WSN)技术引入到环境监测系统的开发中,可有效解决水产养殖工作环境复杂、监测地点分散和布线成本高等问题。所介绍的监测系统以一套无线传感器网络节点来形成获取环境参数的自组织网络,利用一种基于GPRS的远程数据传输系统实现无线传感器网络与远程监控端的通信,并通过监测软件对数据进行接收、观测和存储。实验室和水产养殖基地的测试表明,系统运行稳定,数据真实可信,可对水产养殖环境进行有效监测。  相似文献   

9.
针对现有基于无线传感网络的农产品冷链物流监测系统,传感器节点数据传输量大,带宽利用率低、能耗高,网络生命周期短的问题,提出了一种基于算术平均值与分批估计的簇内数据融合及自适应加权的簇间数据融合冷链温度监测方法。首先利用疏失误差对采集数据进行预处理,然后利用平均值与分批估计方法对簇成员节点发送的数据进行融合处理,最后簇头节点利用自适应加权算法对接收到的成员节点数据进行进一步的融合处理。实验证明,基于该数据融合方法的冷链监测系统网络生存周期相比传统方法提高了34.2%,稳定周期相比于传统低功耗自适应集簇分层型协议提高了11.4%,数据融合精度高于传统算术平均值法7.6%,系统能耗每轮降低约32.5%。能够有效降低冗余和可信度较差的数据对测量结果带来的影响,减少不必要数据传输损耗,降低了冷链物流成本,提高了农产品冷链物流信息化程度。  相似文献   

10.
设计了一种无线传感器网络中央监测系统。以承载ZigBee技术的CC2430芯片为无线节点的检测与信息处理核心,结合温度、湿度传感器模块,构成无线传感器网络终端检测节点,对现场环境实时检测,并通过路由节点将数据上传;路由节点模块设计,采用无线或RS—485标准的方式与中心节点进行信息通讯,现场循环检测数据能实时传送给中央监控计算机,实现深入现场内部的多点检测和实时监测。在草莓大棚的应用表明,系统可以满足大棚信息采集需求。  相似文献   

11.
在移动互联网快速发展与广泛应用时代,为高效实现对设施农业环境数据的监控与管理,鉴于农业设施环境布线复杂,研究以ZigBee无线传感器网络为基础,应用STM32F429ZGT6微处理器体系,实时采集环境的图像、温度、湿度、光照强度以及二氧化碳等传感器数据,并通过MC35i GPRS无线通信模块将采集的数据传输到云端管理服务器。试验结果表明:移动终端应用软件管理系统能够实时监测无线传感器网络采集的数据,无线数据传输丢包率小于0.86%,数据传输响应时间小于1 s,系统运行稳定可靠,能够精准感知设施农业环境数据,具有相对较好的推广应用价值。  相似文献   

12.
基于无线传感的丘陵葡萄园环境监测系统研究   总被引:1,自引:0,他引:1  
为了解决丘陵葡萄园环境信息和土壤墒情的无线监测问题,设计了一种能够实时采集、传输数据的丘陵葡萄园环境采集系统。系统基于无线传感器网络技术,采用Amega128L微处理器和CC2420芯片为基础设计无线传感器节点,传感器节点上接有土壤温湿度传感器、空气温湿度传感器以及光照强度传感器,通过这些传感器采集葡萄园环境信息。传感器节点将采集的环境信息经无线方式传给汇聚节点,汇聚节点通过RS232串口将数据传到上位机的数据库中,实现了丘陵葡萄园环境信息的无线实时监测。试验研究表明,系统具有功耗低、传输数据实时可靠等优点,能很好地实现丘陵葡萄园环境监测的应用要求。  相似文献   

13.
基于ZigBee无线传感器网络的土壤墒情监测系统   总被引:2,自引:0,他引:2  
针对当前对智能节水灌溉的需求,为精准农业提供科学依据,设计了基于ZigBee无线传感器网络(Wireless Sensor Network,WSN)的土壤墒情监测系统。本设计研发了集环境自动监测传感器、无线智能控制终端和数据采集传输终端于一体的低功耗智能传感器节点,重点阐述了其软硬件设计,控制器采用低功耗单片机Msp430F149。本设计采用ZigBee无线传感器网络,能实现信息采集节点的自动部署,数据自组织传输,可应用于温室、农田等区域,有助于更好的节能节水,有效地提高农作物单位面积产量。初步测试结果验证了该系统的合理性与实用性。  相似文献   

14.
为实现果园土壤水分信息的长期可靠获取,使用超低功耗控制器MSP430F1222和微功耗无线射频收发芯片nRF905构成监测系统的无线传感器节点.同时,引入无线传感器网络的概念来适应果园面积广阔的特殊性和传感器配置灵活的要求.接收终端配备铁电非易失性RAM、液晶屏和按键,方便存储、查阅数据和参数设定.经过人工配土测试和果园现场运行,结果表明监测系统湿度的精度误差小于3%,且结构简单、功耗低、运行可靠,满足果园土壤水分监测的要求.  相似文献   

15.
为解决农业大棚环境数据采集不方便、不准确的问题,课题组以物联网技术为基础,集成传感器、无线通信网络、嵌入式系统、组态控制等多种技术,设计了一套基于ZigBee的农业大棚监测系统,实现对大棚内农作物生长数据的精准采集和对大棚内数据的实时监测,并通过数据融合和滤波算法进行了数据优化。测试结果表明:通过功能测试和数据分析可以验证系统功能模块均能够平稳、有效地运行;通过监控界面可以监测农业大棚的实际运行状况,提高农业管理人员的工作效率,监测效果良好。证明该系统可以实现对农业数据的精准采集和显示,能给农业从业者提供准确的决策依据。  相似文献   

16.
基于无线传感器网络和LabVIEW的粮仓监控系统设计   总被引:2,自引:0,他引:2  
鉴于粮食储备安全的重要性,提出了一种基于无线传感器网络和LabVIEW的粮仓监控系统设计方案。该系统采用无线传感器网络(wireless sensor network,WSN)对粮仓环境进行监测,遵循Zigbee协议将传感器采集的数据以无线方式传输给网关节点;网关节点通过串口将数据传给监控中心;监控中心采用LabVIEW完成数据的实时显示、分析、存储,以及对异常情况的报警,系统实现了对粮仓的智能监控。  相似文献   

17.
针对温室内植物生长环境监测的需要,开发了一套基于Zig Bee无线传感器网络的温室植物生长环境监测系统。该系统以TI公司生产的CC2530为主控芯片,整个无线传感器网络由终端节点、路由节点和协调器节点组成。终端节点散布在温室内的各个监测点进行植物生长环境信息(空气温湿度、土壤水分、CO2浓度等)采集,然后通过无线方式传送给协调器。通过VB编写的上位机软件,用户终端可以对数据进行采集、可视化和储存等操作。最后通过试验验证,该系统运行稳定,操作简单,达到了应用目标。  相似文献   

18.
针对目前农村饮用水水源地水质监测存在实时性差、监测区域小、多点同步连续感知手段缺失等问题,对水源地水质在线监测传感器节点和GPRS网关节点进行了设计。传感器节点负责对监测区域水质参数进行采集,通过无线传感器网络将数据发送至网关节点,并由网关节点通过GPRS模块远程传输数据至监测中心。传感器节点与网关节点在系统休眠时的电流消耗平均为0.026 m A,传感器节点在数据采集、数据发送以及数据接收时的电流消耗分别为32.82、27.35与23.45 m A,网关节点在数据发送、数据接收以及数据上传时的电流消耗分别为34.47、30.12和57.43 m A;节点p H远程采集误差范围为0.63%~1.67%,溶解氧远程采集误差范围为1.10%~2.20%,温度远程采集误差范围为2.23%~2.27%;在43 d的组网测试中,网络平均丢包率为2.08%。测试结果表明,所设计的节点与网关可实现数据采集以及远程、稳定传输,满足农村饮用水水源地水质在线监测需求。  相似文献   

19.
介绍了一种结合嵌入式技术和无线传感器网络技术的温室现场环境信息无线采集系统的设计方案.系统主要由嵌入式控制终端和无线传感器网络节点组成.控制终端基于ARM9处理器和嵌入式Linux操作系统设计,用于温室环境数据的接收、远程发送,实时显示和存储.控制终端向远程服务器发送数据,并接收命令,两者之间的通信使用GPRS方式.无线传感器网络采集温室环境数据,并发送给控制终端.整个温室现场监测系统避免了传统温室使用有线方式布线的繁琐.  相似文献   

20.
在精细农业相关应用和理论研究基础上,自行设计用于监测农田水分含量和水层高度的无线传感器,构建农田水分无线传感器网络体系结构,设计基于水分无线传感器网络的智能节水灌溉控制系统,通过实时农田水分数据和农作物水分需求专家数据形成灌溉决策,由灌溉控制系统实施定量灌溉。实际应用表明,该系统体现出可行性和高效性,有利于精细农业的发展和水资源的可持续利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号