首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ObjectiveTo evaluate and compare the cardiopulmonary effects of induction of anesthesia with isoflurane (Iso), ketamine–diazepam (KD), or propofol–diazepam (PD) in hypovolemic dogs.Study designProspective randomized cross–over trial.AnimalsSix healthy intact, mixed breed, female dogs weighing 20.7 ± 4.2 kg and aged 22 ± 2 months.MethodsDogs had 30 mL kg?1 of blood removed at a rate of 1.5 mL kg?1 minute?1 under isoflurane anesthesia. Following a 30–minute recovery period, anesthesia was reinduced. Dogs were assigned to one of three treatments: isoflurane via facemask using 0.5% incremental increases in the delivered concentration every 30 seconds, 1.25 mg kg?1 ketamine and 0.0625 mg kg?1 diazepam intravenously (IV) with doses repeated every 30 seconds as required, and 2 mg kg?1 propofol and 0.2 mg kg?1 diazepam IV followed by 1 mg kg?1 propofol increments IV every 30 seconds as required. Following endotracheal intubation all dogs received 1.7% end–tidal isoflurane in oxygen. Cardiopulmonary variables were recorded at baseline (before induction) and at 5 or 10 minute intervals following endotracheal intubation.ResultsInduction time was longer in Iso (4.98 ± 0.47 minutes) compared to KD (3.10 ± 0.47 minutes) or PD (3.22 ± 0.45 minutes). To produce anesthesia, KD received 4.9 ± 2.3 mg kg?1 ketamine and 0.24 ± 0.1 mg kg?1 diazepam, while PD received 2.2 ± 0.4 mg kg?1 propofol and 0.2 mg kg?1 diazepam. End–tidal isoflurane concentration immediately following intubation was 1.7 ± 0.4% in Iso. Arterial blood pressure and heart rate were significantly higher in KD and PD compared to Iso and in KD compared to PD. Arterial carbon dioxide partial pressure was significantly higher in PD compared to KD and Iso immediately after induction.Conclusions and clinical relevanceIn hypovolemic dogs, KD or PD, as used in this study to induce anesthesia, resulted in less hemodynamic depression compared to isoflurane.  相似文献   

2.
ObjectiveTo determine the potency ratio between S-ketamine and racemic ketamine as inductive agents for achieving tracheal intubation in dogs.Study designProspective, randomized, ‘blinded’, clinical trial conducted in two consecutive phases.Animals112 client-owned dogs (ASA I or II).MethodsAll animals were premedicated with intramuscular acepromazine (0.02 mg kg−1) and methadone (0.2 mg kg−1). In phase 1, midazolam (0.2 mg kg−1) with either 3 mg kg−1 of racemic ketamine (group K) or 1.5 mg kg−1 of S-ketamine (group S) was administered IV, for induction of anaesthesia and intubation. Up to two additional doses of racemic (1.5 mg kg−1) or S-ketamine (0.75 mg kg−1) were administered if required. In phase 2, midazolam (0.2 mg kg−1) with 1 mg kg−1 of either racemic ketamine (group K) or S-ketamine (group S) was injected and followed by a continuous infusion (1 mg kg minute−1) of each respective drug. Differences between groups were statistically analyzed via t-test, Fisher exact test and ANOVA for repeated measures.ResultsDemographics and quality and duration of premedication, induction and intubation were comparable among groups. During phase 1 it was possible to achieve tracheal intubation after a single dose in more dogs in group K (n = 25) than in group S (n = 16) (p = 0.046). A dose of 3 mg kg−1 S-ketamine allowed tracheal intubation in the same number of dogs as 4.5 mg kg−1 of racemic ketamine. The estimated potency ratio was 1.5:1. During phase 2, the total dose (mean ± SD) of S-ketamine (4.02 ±1.56 mg kg−1) and racemic ketamine (4.01 ± 1.42) required for tracheal intubation was similar.Conclusion and clinical relevanceRacemic and S-ketamine provide a similar quality of anaesthetic induction and intubation. S-ketamine is not twice as potent as racemic ketamine and, if infused, the potency ratio is 1:1.  相似文献   

3.
ObjectiveTo evaluate the effects of the co-administration of midazolam on the dose requirement for propofol anesthesia induction, heart rate (HR), systolic arterial pressure (SAP) and the incidence of excitement.Study designProspective, randomized, controlled and blinded clinical study, with owner consent.AnimalsSeventeen healthy, client owned dogs weighing 28 ± 18 kg and aged 4.9 ± 3.9 years old.MethodsDogs were sedated with acepromazine 0.025 mg kg?1 and morphine 0.25 mg kg?1 intramuscularly (IM), 30 minutes prior to induction of anesthesia. Patients were randomly allocated to receive midazolam (MP; 0.2 mg kg?1) or sterile normal saline (CP; 0.04 mL kg?1) intravenously (IV) over 15 seconds. Propofol was administered IV immediately following test drug and delivered at 3 mg kg?1 minute?1 until intubation was possible. Scoring of pre-induction sedation, ease of intubation, quality of induction, and presence or absence of excitement following co-induction agent, was recorded. HR, SAP and respiratory rate (fR) were obtained immediately prior to, immediately following, and 5 minutes following induction of anesthesia.ResultsThere were no significant differences between groups with regard to weight, age, gender, or sedation. Excitement occurred in 5/9 dogs following midazolam administration, with none noted in the control group. The dose of propofol administered to the midazolam group was significantly less than in the control group. Differences in HR were not significant between groups. SAP was significantly lower in the midazolam group compared with baseline values 5 minutes after its administration. However, values remained clinically acceptable.Conclusions and clinical relevanceThe co-administration of midazolam with propofol decreased the total dose of propofol needed for induction of anesthesia in sedated healthy dogs, caused some excitement and a clinically unimportant decrease in SAP.  相似文献   

4.

Objectives

To compare propofol and alfaxalone, with or without midazolam, for induction of anesthesia in fentanyl-sedated dogs, and to assess recovery from total intravenous anesthesia (TIVA).

Study design

Prospective, incomplete, Latin-square study.

Animals

Ten dogs weighing 24.5 ± 3.1 kg (mean ± standard deviation).

Methods

Dogs were randomly assigned to four treatments: treatment P-M, propofol (1 mg kg?1) and midazolam (0.3 mg kg?1); treatment P-S, propofol and saline; treatment A-M, alfaxalone (0.5 mg kg?1) and midazolam; treatment A-S, alfaxalone and saline, administered intravenously (IV) 10 minutes after fentanyl (7 μg kg?1) IV. Additional propofol or alfaxalone were administered as necessary for endotracheal intubation. TIVA was maintained for 35–55 minutes by infusions of propofol or alfaxalone. Scores were assigned for quality of sedation, induction, extubation and recovery. The drug doses required for intubation and TIVA, times from sedation to end of TIVA, end anesthesia to extubation and to standing were recorded. Analysis included a general linear mixed model with post hoc analysis (p < 0.05).

Results

Significant differences were detected in the quality of induction, better in A-M than A-S and P-S, and in P-M than P-S; in total intubation dose, lower in P-M (1.5 mg kg?1) than P-S (2.1 mg kg?1), and A-M (0.62 mg kg?1) than A-S (0.98 mg kg?1); and lower TIVA rate in P-M (268 μg kg?1 minute?1) than P-S (310 μg kg?1 minute?1). TIVA rate was similar in A-M and A-S (83 and 87 μg kg?1 minute?1, respectively). Time to standing was longer after alfaxalone than propofol, but was not influenced by midazolam.

Conclusions and clinical relevance

Addition of midazolam reduced the induction doses of propofol and alfaxalone and improved the quality of induction in fentanyl-sedated dogs. The dose rate of propofol for TIVA was decreased.  相似文献   

5.
ObjectiveTo evaluate the effects of a constant rate infusion (CRI) of lidocaine alone or in combination with ketamine on the minimum infusion rate (MIR) of propofol in dogs and to compare the hemodynamic effects produced by propofol, propofol-lidocaine or propofol-lidocaine-ketamine anesthesia.Study designProspective, randomized cross-over experimental design.AnimalsFourteen adult mixed-breed dogs weighing 15.8 ± 3.5 kg.MethodsEight dogs were anesthetized on different occasions to determine the MIR of propofol alone and propofol in combination with lidocaine (loading dose [LD] 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) or lidocaine (LD 1.5 mg kg?1, CRI 0.25 mg kg?1 minute?1) and ketamine (LD 1 mg kg?1, CRI 0.1 mg kg?1 minute?1). In six other dogs, the hemodynamic effects and bispectral index (BIS) were investigated. Each animal received each treatment (propofol, propofol-lidocaine or propofol-lidocaine-ketamine) on the basis of the MIR of propofol determined in the first set of experiments.ResultsMean ± SD MIR of propofol was 0.51 ± 0.08 mg kg?1 minute?1. Lidocaine-ketamine significantly decreased the MIR of propofol to 0.31 ± 0.07 mg kg?1 minute?1 (37 ± 18% reduction), although lidocaine alone did not (0.42 ± 0.08 mg kg?1 minute?1, 18 ± 7% reduction). Hemodynamic effects were similar in all treatments. Compared with the conscious state, in all treatments, heart rate, cardiac index, mean arterial blood pressure, stroke index and oxygen delivery index decreased significantly, whereas systemic vascular resistance index increased. Stroke index was lower in dogs treated with propofol-lidocaine-ketamine at 30 minutes compared with propofol alone. The BIS was lower during anesthesia with propofol-lidocaine-ketamine compared to propofol alone.Conclusions and clinical relevanceLidocaine-ketamine, but not lidocaine alone, reduced the MIR of propofol in dogs. Neither lidocaine nor lidocaine in combination with ketamine attenuated cardiovascular depression produced by a continuous rate infusion of propofol.  相似文献   

6.
ObjectiveTo compare anaesthetic induction in healthy dogs using propofol or ketofol (a propofol-ketamine mixture).Study designProspective, randomized, controlled, ‘blinded’ study.AnimalsSeventy healthy dogs (33 males and 37 females), aged 6–157 months and weighing 4–48 kg.MethodsFollowing premedication, either propofol (10 mg mL?1) or ketofol (9 mg propofol and 9 mg ketamine mL?1) was titrated intravenously until laryngoscopy and tracheal intubation were possible. Pulse rate (PR), respiratory rate (fR) and arterial blood pressure (ABP) were compared to post-premedication values and time to first breath (TTFB) recorded. Sedation quality, tracheal intubation and anaesthetic induction were scored by an observer who was unaware of treatment group. Mann–Whitney or t-tests were performed and significance set at p = 0.05.ResultsInduction mixture volume (mean ± SD) was lower for ketofol (0.2 ± 0.1 mL kg?1) than propofol (0.4 ± 0.1 mL kg?1) (p < 0.001). PR increased following ketofol (by 35 ± 20 beats minute?1) but not consistently following propofol (4 ± 16 beats minute?1) (p < 0.001). Ketofol administration was associated with a higher mean arterial blood pressure (MAP) (82 ± 10 mmHg) than propofol (77 ± 11) (p = 0.05). TTFB was similar, but ketofol use resulted in a greater decrease in fR (median (range): ketofol -32 (-158 to 0) propofol -24 (-187 to 2) breaths minute?1) (p < 0.001). Sedation was similar between groups. Tracheal intubation and induction qualities were better with ketofol than propofol (p = 0.04 and 0.02 respectively).Conclusion and clinical relevanceInduction of anaesthesia with ketofol resulted in higher PR and MAP than when propofol was used, but lower fR. Quality of induction and tracheal intubation were consistently good with ketofol, but more variable when using propofol.  相似文献   

7.
ObjectivesTo evaluate the cardiorespiratory and biochemical effects of ketamine-propofol (KP) or guaifenesin-ketamine-xylazine (GKX) anesthesia in donkeys.Study designProspective crossover trial.AnimalsEight healthy, standard donkeys, aged 10 ± 5 years and weighing 153 ± 23 kg.MethodsDonkeys were premedicated with 1.0 mg kg?1 of xylazine (IV) in both treatments. Eight donkeys were administered ketamine (1.5 mg kg?1) and propofol (0.5 mg kg?1) for induction, and anesthesia was maintained by constant rate infusion (CRI) of ketamine (0.05 mg kg?1 minute?1) and propofol (0.15 mg kg?1 minute?1) in the KP treatment. After 10 days, diazepam (0.05 mg kg?1) and ketamine (2.2 mg kg?1) were administered for induction, and anesthesia was maintained by a CRI (2.0 mL kg?1 hour?1) of ketamine (2.0 mg mL?1), xylazine (0.5 mg mL?1) and guaifenesin (50 mg mL?1) solution. Quality of anesthesia was assessed along with cardiorespiratory and biochemical measurements.ResultsAnesthetic induction took longer in GKX than in KP. The induction was considered good in 7/8 with KP and in 6/8 in GKX. Anesthetic recovery was classified as good in 7/8 animals in both treatments. Xylazine administration decreased heart rate (HR) in both treatments, but in KP the HR increased and was higher than GKX throughout the anesthetic period. Respiratory rate was higher in GKX than in KP. PaO2 decreased significantly in both groups during the anesthetic period. Glucose concentrations [GLU] increased and rectal temperature and PCV decreased in both treatments. Arterial lactate [LAC] increased at recovery compared with all time points in KP. [GLU] and calcium were higher in GKX than in KP at recovery.Conclusion and clinical relevanceThese protocols induced significant hypoxemia but no other cardiorespiratory or metabolic changes. These protocols could be used to maintain anesthesia in donkeys, however, they were not tested in animals undergoing surgery.  相似文献   

8.
ObjectiveTo evaluate total intravenous anesthesia with propofol alone or in combination with S(+)-ketamine in rabbits undergoing surgery.Study designProspective, randomized, blinded trial.AnimalsNine 6-month-old New Zealand white rabbits, weighing 2.5–3 kg.MethodsAnimals received acepromazine (0.1 mg kg?1) and buprenorphine (20 μg kg?1) IM, and anesthesia was induced with propofol (2 mg kg?1) and S(+)-ketamine (1 mg kg?1) IV. Rabbits received two of three treatments: propofol (0.8 mg kg?1 minute?1) (control treatment, P), propofol (0.8 mg kg?1 minute?1) + S(+)-ketamine (100 μg kg?1 minute?1) (PK100) or propofol (0.8 mg kg?1 minute?1) + S(+)-ketamine (200 μg kg?1 minute?1) (PK200). All animals received 100% O2 during anesthesia. Heart rate, mean arterial pressure, hemoglobin oxygen saturation and respiratory rate were measured every 5 minutes for 60 minutes. Blood-gas parameters were measured at zero time and 60 minutes. Additional propofol injections, if necessary, and recovery time were recorded.ResultsAn increase in heart rate was observed in P and PK200 up to 10 minutes after induction of anesthesia. Blood pressure decreased from baseline values during the first 10 minutes in P and PK200, and during the first 15 minutes and between 45 and 55 minutes in PK100. A reduction in respiratory rate was observed after 5 minutes in all treatments. Respiratory acidosis was observed in all treatments. Six (2.8) [median (interquartile range)] further propofol injections were necessary in P, which differed statistically from PK100 [1 (0.2)] and PK200 [2 (0.6)]. Recovery time was shorter in P compared with PK100 and PK200, being [7.5 minutes (4.11)], [17.5 minutes (10.30)], and [12 minutes (10.30)], respectively.Conclusions and clinical relevanceS(+)-ketamine potentiates propofol-induced anesthesia in rabbits, providing better maintenance of heart rate. All of these techniques were accompanied by clinically significant respiratory depression.  相似文献   

9.
ObjectiveTo evaluate the influence of premedication with tramadol on xylazine–ketamine anaesthesia in young pigs.Study designProspective, randomized, blinded cross-over study.AnimalsTen young Niger hybrid pigs: mean weight 6.1 ± 0.6 kg.MethodsPigs were anaesthetized twice. Xylazine (2.5 mg kg?1), ketamine (25 mg kg?1) and atropine (0.04 mg kg?1) were administered by intramuscular (IM) injection, 5 minutes after either tramadol (5 mg kg?1)) (treatment XKT) or saline (treatment XKS). Time to loss of righting reflex (TLRR), duration of antinociception, duration of recumbency (DR) and recovery times (RCT) were recorded. Quality of induction of anaesthesia including ease of endotracheal intubation was assessed using a subjective ordinal rating score of 1 (worst) to 4 (best). Heart, pulse and respiratory rates, arterial oxygen saturations and rectal temperatures were determined over 60 minutes. Antinociception was assessed by the pigs’ response to artery forceps applied at the interdigital space. Data were compared with Student's t-test, Mann–Whitney's test or analysis of variance (anova) for repeated measures as appropriate and are presented as mean ± standard deviation.ResultsThe quality of anaesthetic induction was significantly better and duration of antinociception significantly longer (p < 0.05) in treatment XKT (3.1 ± 0.7 score; 43.7 ± 15.5 minutes) than in treatment XKS (2.8 ± 0.6 score; 32.0 ± 13.3 minutes). TLRR, DR and RCT did not differ significantly (p > 0.05) between treatment XKT (2.1 ± 0.8, 65.8 ± 17.0 and 13.2 ± 6.7 minutes) and treatment XKS (2.1 ± 1.3, 58.0 ± 14.8 and 10.3 ± 5.6 minutes). Physiological measurements did not differ between the treatments.Conclusion and clinical relevanceTramadol improved the quality of anaesthetic induction and increased the duration of antinociception in xylazine–ketamine anaesthetized young pigs without increasing duration of anaesthesia, nor causing additional depression of the physiological parameters measured.  相似文献   

10.
ObjectiveTo evaluate quality of anaesthetic induction and cardiorespiratory effects following rapid intravenous (IV) injection of propofol or alfaxalone.Study designProspective, randomised, blinded clinical study.AnimalsSixty healthy dogs (ASA I/II) anaesthetized for elective surgery or diagnostic procedures.MethodsPremedication was intramuscular acepromazine (0.03 mg kg?1) and meperidine (pethidine) (3 mg kg?1). For anaesthetic induction dogs received either 3 mg kg?1 propofol (Group P) or 1.5 mg kg?1 alfaxalone (Group A) by rapid IV injection. Heart rate (HR), respiratory rate (fR) and oscillometric arterial pressures were recorded prior to induction, at endotracheal intubation and at 3 and 5 minutes post-intubation. The occurrence of post-induction apnoea or hypotension was recorded. Pre-induction sedation and aspects of induction quality were scored using 4 point scales. Data were analysed using Chi-squared tests, two sample t-tests and general linear model mixed effect anova (p < 0.05).ResultsThere were no significant differences between groups with respect to sex, age, body weight, fR, post-induction apnoea, arterial pressures, hypotension, SpO2, sedation score or quality of induction scores. Groups behaved differently over time with respect to HR. On induction HR decreased in Group P (?2 ± 28 beats minute?1) but increased in Group A (14 ± 33 beats minute?1) the difference being significant (p = 0.047). However HR change following premedication also differed between groups (p = 0.006). Arterial pressures decreased significantly over time in both groups and transient hypotension occurred in eight dogs (five in Group P, three in Group A). Post-induction apnoea occurred in 31 dogs (17 in Group P, 14 in Group A). Additional drug was required to achieve endotracheal intubation in two dogs.Conclusions and Clinical relevanceRapid IV injection of propofol or alfaxalone provided suitable conditions for endotracheal intubation in healthy dogs but post-induction apnoea was observed commonly.  相似文献   

11.
12.
ObjectiveTo describe the anesthetic and adverse effects of an injectable anesthetic protocol in dogs as part of a high-volume sterilization program under field conditions in Belize.Study designProspective, observational, field study.AnimalsA total of 23 female and eight male dogs (14.2 ± 7.7 kg; age ≥ 8 weeks).MethodsUsing a volume per kg-based dose chart, dogs were administered ketamine (4.5 mg kg−1), medetomidine (0.04 mg kg−1) and hydromorphone (0.09 mg kg−1) intramuscularly. After induction of anesthesia, an endotracheal tube was inserted and dogs were allowed spontaneous breathing in room air. Monitoring included peripheral oxygen saturation (SpO2), mean arterial pressure (MAP), heart rate (HR), respiratory rate, rectal temperature and end-tidal carbon dioxide (Pe′CO2). Meloxicam (0.2 mg kg−1) was administered subcutaneously after surgery. Data were analyzed with linear models and chi-square tests (p < 0.05).ResultsOnset of lateral recumbency (3.4 ± 2 minutes) was rapid. Desaturation (SpO2 < 90%) was observed at least once in 64.5% of dogs and was more frequent in large dogs (p = 0.019). Hypercapnia (Pe′CO2 ≥ 50 mmHg; 6.7 kPa) was observed in 48.4% of dogs. MAP was 111 ± 19 mmHg, mean ± standard deviation. Hypertension (MAP ≥ 120 mmHg), bradycardia (HR ≤ 60 beats minute−1) and tachycardia (HR ≥ 140 beats minute−1) were observed in 45.2%, 16.1% and 3.3% of dogs, respectively. Hypotension and hypothermia were not observed. Sex was not significantly associated with any complication. Return of swallowing reflex and time to standing were 71 ± 23 and 152 ± 50 minutes after injection, respectively. Return of swallowing was significantly longer in large dogs.Conclusions and clinical relevanceAt the doses used, ketamine–medetomidine–hydromorphone was effective in dogs for high-volume sterilization. In this field setting, adverse effects included hypoventilation, hypoxemia and prolonged recovery.  相似文献   

13.
ObjectiveTo determine the possible additive effect of midazolam, a GABAA agonist, on the end-tidal concentration of isoflurane that prevents movement (MACNM) in response to noxious stimulation.Study designRandomized cross-over experimental study.AnimalsSix healthy, adult intact male, mixed-breed dogs.MethodsAfter baseline isoflurane MACNM (MACNM-B) determination, midazolam was administered as a low (LDS), medium (MDS) or high (HDS) dose series of midazolam. Each series consisted of two dose levels, low and high. The LDS was a loading dose (Ld) of 0.2 mg kg?1 and constant rate infusion (CRI) (2.5 μg kg?1 minute?1) (LDL), followed by an Ld (0.4 mg kg?1) and CRI (5 μg kg?1 minute?1) (LDH). The MDS was an Ld (0.8 mg kg?1) and CRI (10 μg kg?1 minute?1) (MDL) followed by an Ld (1.6 mg kg?1) and CRI (20 μg kg?1 minute?1) (MDH). The HDS was an Ld (3.2 mg kg?1) and CRI (40 μg kg?1 minute?1) (HDL) followed by an Ld (6.4 mg kg?1) and CRI (80 μg kg?1 minute?1) (HDH). MACNM was re-determined after each dose in each series (MACNM-T).ResultsThe median MACNM-B was 1.42. MACNM-B did not differ among groups (p >0.05). Percentage reduction in MACNM was significantly less in the LDS (11 ± 5%) compared with MDS (30 ± 5%) and HDS (32 ± 5%). There was a weak correlation between the plasma midazolam concentration and percentage MACNM reduction (r = 0.36).Conclusion and clinical relevanceMidazolam doses in the range of 10–80 μg kg?1 minute?1 significantly reduced the isoflurane MACNM. However, doses greater than 10 μg kg?1 minute?1 did not further decrease MACNM indicating a ceiling effect.  相似文献   

14.
ObjectiveTo describe ketamine–propofol total intravenous anaesthesia (TIVA) following premedication with acepromazine and either medetomidine, midazolam or morphine in rabbits.Study designRandomized, crossover experimental study.AnimalsA total of six healthy female New Zealand White rabbits (2.2 ± 0.3 kg).MethodsRabbits were anaesthetized on four occasions, each separated by 7 days: an intramuscular injection of saline alone (treatment Saline) or acepromazine (0.5 mg kg–1) in combination with medetomidine (0.1 mg kg–1), midazolam (1 mg kg–1) or morphine (1 mg kg–1), treatments AME, AMI or AMO, respectively, in random order. Anaesthesia was induced and maintained with a mixture containing ketamine (5 mg mL–1) and propofol (5 mg mL–1) (ketofol). Each trachea was intubated and the rabbit administered oxygen during spontaneous ventilation. Ketofol infusion rate was initially 0.4 mg kg–1 minute–1 (0.2 mg kg–1 minute–1 of each drug) and was adjusted to maintain adequate anaesthetic depth based on clinical assessment. Ketofol dose and physiological variables were recorded every 5 minutes. Quality of sedation, intubation and recovery times were recorded.ResultsKetofol induction doses decreased significantly in treatments AME (7.9 ± 2.3) and AMI (8.9 ± 4.0) compared with treatment Saline (16.8 ± 3.2 mg kg–1) (p < 0.05). The total ketofol dose to maintain anaesthesia was significantly lower in treatments AME, AMI and AMO (0.6 ± 0.1, 0.6 ± 0.2 and 0.6 ± 0.1 mg kg–1 minute–1, respectively) than in treatment Saline (1.2 ± 0.2 mg kg–1 minute–1) (p < 0.05). Cardiovascular variables remained at clinically acceptable values, but all treatments caused some degree of hypoventilation.Conclusions and clinical relevancePremedication with AME, AMI and AMO, at the doses studied, significantly decreased the maintenance dose of ketofol infusion in rabbits. Ketofol was determined to be a clinically acceptable combination for TIVA in premedicated rabbits.  相似文献   

15.
ObjectiveTo report serum cardiac troponin I (cTnI) and C-reactive protein (CRP) concentrations in dogs anesthetized for elective surgery using two anesthetic protocols.Study designProspective, randomized clinical study.AnimalsTwenty client-owned dogs presenting for elective ovariohysterectomy or castration.MethodsThe dogs were randomized into two groups. All dogs were premedicated with glycopyrrolate (0.011 mg kg?1) and hydromorphone (0.1 mg kg?1) IM approximately 30 minutes prior to induction of anesthesia. Anesthesia in dogs in group 1 was induced with propofol (6 mg kg?1) IV to effect and in dogs in group 2 with diazepam (0.2 mg kg?1) IV followed by etomidate (2 mg kg?1) IV to effect. For maintenance of anesthesia, group 1 received sevoflurane (adjustable vaporizer setting 0.5–4%) and group 2 received a combination of fentanyl (0.8 μg kg?1 minute?1) and midazolam (8.0 μg kg?1 minute?1) IV plus sevoflurane (adjustable vaporizer setting 0.5–4%) to maintain anesthesia. Serum cTnI and CRP concentrations were measured at baseline and 6, 18, and 24 hours post-anesthetic induction. Biochemical analysis was performed at baseline. Lactate was obtained at baseline and 6 hours post-anesthetic induction. Heart rate and mean arterial blood pressure were measured intra-operatively.ResultsBaseline serum cTnI and CRP concentrations were comparable between groups. A significant difference in serum cTnI or CRP concentrations was not detected post-operatively between groups at any time point. Serum CRP concentrations were significantly increased post-anesthetic induction in both groups, which was attributed to surgical trauma.Conclusions and clinical relevanceThere was no significant difference in serum cTnI and CRP concentrations between anesthetic protocols. Further investigation in a larger number of dogs is necessary to confirm the current findings.  相似文献   

16.

Objective

To compare incidence and duration of postinduction apnoea in dogs after premedication with methadone and acepromazine (MA) or methadone and dexmedetomidine (MD) followed by induction with propofol (P) or alfaxalone (A).

Study design

Prospective, randomized clinical trial.

Animals

A total of 32 American Society of Anesthesiologists class I dogs (15 females, 17 males), aged between 4 months and 4 years, weighing between 3 and 46 kg.

Methods

Dogs were randomly allocated to be administered MA+P, MA+A, MD+P or MD+A (methadone 0.5 mg kg?1 and acepromazine 0.05 mg kg?1 or dexmedetomidine 5 μg kg?1). Induction agents were administered intravenously via syringe driver (P at 4 mg kg?1 minute?1 or A at 2 mg kg?1 minute?1) until successful endotracheal intubation and the endotracheal tube connected to a circle system with oxygen flow at 2 L minute?1. Oxygen saturation of haemoglobin (SpO2), end tidal partial pressure of carbon dioxide and respiratory rate were monitored continuously. If apnoea (≥ 30 seconds without breathing) occurred, the duration until first spontaneous breath was measured. If SpO2 decreased below 90% the experiment was stopped and manual ventilation initiated. Data were analysed with general linear models with significance set at p ≤ 0.05.

Results

There was no statistical difference in the incidence (11 of 16 dogs in A groups and 12 of 16 dogs in P groups), or mean ± standard deviation duration (A groups 125 ± 113 seconds, P groups 119 ± 109 seconds) of apnoea. The SpO2 of one dog in the MD+P group decreased below 90% during the apnoeic period.

Conclusions and clinical relevance

Propofol and alfaxalone both cause postinduction apnoea and the incidence and duration of apnoea is not influenced by the use of acepromazine or dexmedetomidine in premedication. Monitoring of respiration is recommended when using these premedication and induction agent combinations.  相似文献   

17.
ObjectiveTo evaluate the effects of medetomidine, midazolam and ketamine (MMK) in captive gorillas after premedication with oral zuclopenthixol.Study designCase series.AnimalsSix gorillas, two males and four females, aged 9–52 years and weighing 63–155 kg.MethodsThe gorillas were given zuclopenthixol dihydrochloride 0.2 ± 0.05 mg kg?1 per os twice daily for 3 days for premedication. On the day of anaesthesia the dose of zuclopenthixol was increased to 0.27 mg kg?1 and given once early in the morning. Anaesthesia was induced with medetomidine 0.04 ± 0.004 mg kg?1, midazolam 0.048 ± 0.003 mg kg?1 and ketamine 4.9 ± 0.4 mg kg?1 intramuscularly (IM). Upon recumbency, the trachea was intubated and anaesthesia was maintained on 1–2% isoflurane in oxygen. Physiological parameters were monitored every 10 minutes and arterial blood gas analysis was performed once 30–50 minutes after initial darting. At the end of the procedure, 42–115 minutes after initial darting, immobilisation was antagonized with atipamezole 0.21 ± 0.03 mg kg?1 and sarmazenil 5 ± 0.4 μg kg?1 IM.ResultsRecumbency was reached within 10 minutes in five out of six animals. One animal required two additional darts before intubation was feasible. Heart rate ranged from 60 to 85 beats minute?1, respiratory rate from 17 to 46 breaths minute?1 and temperature from 36.9 to 38.3 °C. No spontaneous recoveries were observed and anaesthetic level was stable. Blood gas analyses revealed mild respiratory acidosis, and mean PaO2 was 24.87 ± 17.16 kPa (187 ± 129 mmHg) with all values being above 13.4 kPa (101 mmHg). Recovery was smooth and gorillas were sitting within 25 minutes.Conclusion and clinical relevanceThe drug combination proved to be effective in anaesthetizing captive gorillas of various ages and both sexes, with minimal cardio-respiratory changes.  相似文献   

18.
Propofol is a potentially useful intravenous anesthetic agent for total intravenous anesthesia (TIVA) in horses. The purpose of this study was to compare the anesthetic and cardiorespiratory effects of TIVA following the administration of propofol alone(P–TIVA) and ketamine–medetomidine–propofol (KM–P–TIVA) in adult horses. The carotid artery was translocated to a subcutaneous position during TIVA with P–TIVA (n = 6) or KM–P–TIVA (n = 6). All horses were premedicated with medetomidine [0.005 mg kg–1, intravenously (IV)]. Anesthesia was induced with midazolam (0.04 mg kg–1 IV) and ketamine (2.5 mg kg IV). All horses were orotracheally intubated and breathed 100% oxygen. The KM drug combination (ketamine 40 mg mL–1 and medetomidine 0.05 mg mL–1) was infused at a rate of 0.025 mL kg–1 hour–1. Subsequently, a loading dose of propofol (0.5 mg kg–1, bolus IV) was administered to all horses; surgical anesthesia (determined by horse response to incision and surgical manipulation, positive response being purposeful or spontaneous movement of limbs or head) was maintained by varying the propofol infusion rate as needed. Arterial blood pressure and HR were also monitored. Both methods of producing TIVA provided excellent general anesthesia for the surgical procedure. Anesthesia time was 115 ± 17 (mean ± SD) and 112 ± 11 minutes in horses anesthetized with KM–P–TIVA and P–TIVA, respectively. The infusion rate of propofol required to maintain surgical anesthesia with KM–P–TIVA was significantly less than for P–TIVA (mean infusion rate of propofol during anesthesia; KM–P–TIVA 0.15 0.02 P–TIVA 0.23 ± 0.03 mg kg–1 minute–1, p = 0.004). Apnea occurred in all horses lasting 1–2 minutes and intermittent positive pressure ventilation was started. Cardiovascular function was maintained during both methods of producing TIVA. There were no differences in the time to standing after the cessation of anesthesia (KM–P–TIVA 62 ± 10 minutes versus P–TIVA 87 ± 36 minutes, p = 0.150). The quality of recovery was good in KM–P–TIVA and satisfactory in P–TIVA. KM–P–TIVA and P–TIVA produced clinically useful general anesthesia with minimum cardiovascular depression. Positive pressure ventilation was required to treat respiratory depression. Respiratory depression and apnea must be considered prior to the use of propofol in the horse.  相似文献   

19.
ObjectiveTo report the cardiovascular variables, anaesthetic effects and recovery quality of an anaesthesia technique using variable rate infusion propofol combined with constant rate infusion fentanyl in dogs undergoing elective surgery.Study designProspective clinical trial.AnimalsA total of 27 dogs, aged 2.7 ± 2.65 years and weighing 24 ± 11 kg.MethodsFollowing intramuscular acepromazine (0.03 or 0.05 mg kg?1) and subcutaneous carprofen (4 mg kg?1) pre-medication, anaesthesia was induced with propofol (4.0 ± 0.5 mg kg?1) intravenously (IV). All dogs were ventilated with 100% oxygen to maintain normocapnia. Propofol was infused at 0.4 mg kg?1 minute?1 for 20 minutes and then at 0.3 mg kg?1minute?1. If mean arterial blood pressure (MAP) decreased below 70 mmHg, propofol infusion was reduced by 0.1 mg kg?1 minute?1. Five minutes after induction of anaesthesia, fentanyl was administered (2 μg kg?1) IV followed by the infusion at 0.5 μg kg?1 minute?1 and atropine (40 μg kg?1) IV. Heart rate, MAP, respiratory rate, tidal volume, end-tidal carbon dioxide, presence of reflexes, movements and recovery times and quality were recorded.ResultsMean anaesthetic duration was 131 ± 38.5 minutes. Mean heart rate peaked 10 minutes after atropine injection and gradually declined, reaching pre-anaesthetic values at 55 minutes. MAP easily was maintained above 70 mmHg. Mean times to return of spontaneous ventilation, extubation, head lift and sternal recumbency were 21 ± 10.1, 33 ± 14.6, 43 ± 19.7 and 65 ± 23.4 minutes, respectively. Recovery was smooth and quiet. The time to sternal recumbency was significantly correlated with the duration of anaesthesia and total dose of propofol; time to extubation was correlated to total dose of propofol.Conclusion and clinical relevancePropofol and fentanyl infusions provided stable cardiovascular function and satisfactory conditions for surgery. Some modifications of infusion rates are required to improve the long-recovery times.  相似文献   

20.
ObjectiveTo compare the cardiorespiratory, anesthetic-sparing effects and quality of anesthetic recovery after epidural and constant rate intravenous (IV) infusion of dexmedetomidine (DEX) in cats given a low dose of epidural lidocaine under propofol-isoflurane anesthesia and submitted to elective ovariohysterectomy.Study designRandomized, blinded clinical trial.AnimalsTwenty-one adult female cats (mean body weight: 3.1 ± 0.4 kg).MethodsCats received DEX (4 μg kg?1, IM). Fifteen minutes later, anesthesia was induced with propofol and maintained with isoflurane. Cats were divided into three groups. In GI cats received epidural lidocaine (1 mg kg?1, n = 7), in GII cats were given epidural lidocaine (1 mg kg?1) + DEX (4 μg kg?1, n = 7), and in GIII cats were given epidural lidocaine (1 mg kg?1) + IV constant rate infusion (CRI) of DEX (0.25 μg kg?1 minute?1, n = 7). Variables evaluated included heart rate (HR), respiratory rate (fR), systemic arterial pressures, rectal temperature (RT), end-tidal CO2, end-tidal isoflurane concentration (e′ISO), arterial blood gases, and muscle tone. Anesthetic recovery was compared among groups by evaluation of times to recovery, HR, fR, RT, and degree of analgesia. A paired t-test was used to evaluate pre-medication variables and blood gases within groups. anova was used to compare parametric data, whereas Friedman test was used to compare muscle relaxation.ResultsEpidural and CRI of DEX reduced HR during anesthesia maintenance. Mean ± SD e′ISO ranged from 0.86 ± 0.28% to 1.91 ± 0.63% in GI, from 0.70 ± 0.12% to 0.97 ± 0.20% in GII, and from 0.69 ± 0.12% to 1.17 ± 0.25% in GIII. Cats in GII and GIII had longer recovery periods than in GI.Conclusions and clinical relevanceEpidural and CRI of DEX significantly decreased isoflurane consumption and resulted in recovery of better quality and longer duration, despite bradycardia, without changes in systemic blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号