首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Fungal and bacterial biomass were determined across a gradient from a forest to grassland in a sub-alpine region in central Taiwan. The respiration-inhibition and ergosterol methods for the evaluation of the microbial biomass were compared. Soil fungal and bacterial biomass both significantly decreased (P<0.05) with the shift of vegetation from forest to grassland. Fungal and bacterial respiration rates (evolved CO2) were, respectively, 89.1 μl CO2 g–1 soil h–1 and 55.1 μl CO2 g–1 soil h–1 in the forest and 36.7 μl CO2 g–1 soil h–1 and 35.7 μl CO2 g–1 soil h–1 in the grassland surface soils (0–10 cm). The fungal ergosterol content in the surface soil decreased from the forest zone (108 μg g–1) to the grassland zone (15.9 μg g–1). A good correlation (R 2=0.90) was exhibited between the soil fungal ergosterol content and soil fungal CO2 production (respiration) for all sampling sites. For the forest and grassland soil profiles, microbial biomass (respiration and ergosterol) declined dramatically with depth, ten- to 100-fold from the surface organic horizon to the deepest mineral horizon. With respect to fungal to bacterial ratios for the surface soil (0–10 cm), the forest zone had a significantly (P<0.05) higher ratio (1.65) than the grassland zone (1.05). However, there was no fungal to bacterial ratio trend from the surface horizon to the deeper mineral horizons of the soil profiles. Received: 30 March 2000  相似文献   

2.
 The critical S concentration and S requirement of the soil microbial biomass of a granitic regosol was examined. S was applied at the rate of 0, 5, 10, 20, 30 and 50 μg S as MgSO4·7H2O, together with either 3000 μg glucose-C or 3333 μg cellulose-C, 400 μg N, and 200 μg P g –1 soil and 200 μg K g–1 soil. Microbial biomass, inorganic SO4 2–-S, and CO2 emission were monitored over 30 days during incubation at 25  °C. Both glucose and cellulose decomposition rates responded positively to the S made available for microbial cell synthesis. The amounts of microbial biomass C and S increased with the level of applied S up to 10 μg S g–1 soil and 30 μg S g–1 soil in the glucose- and cellulose-amended soil, respectively, and then declined. Incorporated S was found to be concentrated within the microbial biomass or partially transformed into soil organic matter. The concentration of S in the microbial biomass was higher in the cellulose- (4.8–14.2 mg g–1) than in the glucose-amended soil (3.7–10.9 mg g–1). The microbial biomass C:S ratio was higher in the glucose- (46–142 : 1) than in the cellulose-amended soil (36–115 : 1). The critical S concentration in the microbial biomass (defined as that required to achieve 80% of the maximum synthesis of microbial biomass C) was estimated to be 5.1 mg g–1 in the glucose- and 10.9 mg g–1 in the cellulose-amended soil. The minimum requirement of SO4 2–-S for microbial biomass formation was estimated to be 11 μg S g–1 soil and 21 μg S g–1 soil for glucose- and cellulose-amended soil, respectively. The highest levels of activity of the microbial biomass were observed at the SO4 2–-S concentrations of 14 μg S g–1 soil and 17 μg S g–1 soil, for the glucose and cellulose amendments, respectively, and were approximately 31–54% higher during glucose than cellulose decomposition. Received: 20 October 1999  相似文献   

3.
 Soil microbial biomass and the emission of CO2 from the soil surface were measured in yellow soils (Ultisols) of the karst areas of southwest China. The soils are relatively weathered, leached and impoverished, and have a low input of plant residues. The measurements were made for a 1-year period and show a reciprocal relationship between microbial biomass and surface CO2 efflux. The highest (42.6±2.8 mg CO2-C m–2 h–1) and lowest (15.6±0.6 mg CO2-C m–2 h–1) CO2 effluxes are found in the summer and winter, respectively. The cumulative CO2 efflux is 0.24 kg CO2-C m–2 year–1. There is also a marked seasonal variation in the amount of soil microbial biomass carbon, but with the highest (644±71 μg C g–1 soil) and lowest (270±24 μg C g–1 soil) values occurring in the winter and summer, respectively. The cumulative loss of soil microbial biomass carbon in the top 10 cm of the soil was 608 μg C g–1 year–1 soil over 17 sampling times. The mean residence time of microbial biomass is estimated at 105 days, suggesting that the carbon in soil microbial biomass may act as a source of the CO2 released from soils. Received: 13 July 1999  相似文献   

4.
 A model describing the respiration curves of glucose-amended soils was applied to the characterization of microbial biomass. Both lag and exponential growth phases were simulated. Fitted parameters were used for the determination of the growing and sustaining fractions of the microbial biomass as well as its specific growth rate (μ max). These microbial biomass characteristics were measured periodically in a loamy silt and a sandy loam soil incubated under laboratory conditions. Less than 1% of the biomass oxidizing glucose was able to grow immediately due to the chronic starvation of the microbial populations in situ. Glucose applied at a rate of 0.5 mg C g–1 increased that portion to 4–10%. Both soils showed similar dynamics with a peak in the growing biomass at day 3 after initial glucose amendment, while the total (sustaining plus growing) biomass was maximum at day 7. The microorganisms in the loamy silt soil showed a larger growth potential, with the growing biomass increasing 16-fold after glucose application compared to a sevenfold increase in the sandy loam soil. The results gained by the applied kinetic approach were compared to those obtained by the substrate-induced respiration (SIR) technique for soil microbial biomass estimation, and with results from a simple exponential model used to describe the growth response. SIR proved to be only suitable for soils that contain a sustaining microbial biomass and no growing microbial biomass. The exponential model was unsuitable for situations where a growing microbial biomass was associated with a sustaining biomass. The kinetic model tested in this study (Panikov and Sizova 1996) proved to describe all situations in a meaningful, quantitative and statistically reliable way. Received: 19 July 1999  相似文献   

5.
In two layers of the humus horizons in soddy-podzolic soils of different biogeocenoses (Kostroma oblast) representing a succession series, the carbon content in the microbial biomass (Cmic) was determined using the method of substrate-induced respiration and the rate of microbial CO2 production (basal respiration, BR). The Cmic content was from 110 to 755 μg/g soil, and the BR was from 0.40 to 2.52 μg CO2-C/g/h. A gradual increase in the Cmic content and BR was found in the following sequence: cropland—fallow (7-year-old)—young (20- and 45-year-old) forests—secondary and native (primary) forests (90- and 450-year-old, respectively). In the litter, the Cmic content was higher in the 45-year-old forest than in the secondary and native forests: 10423, 6459, and 4258 μg C/g of substrate, respectively. The portion of Cmic in the soil organic carbon content in the upper layer of the soils studied varied from 1.3 to 5.4%; its highest value was in the soils under the secondary and native forests. The pool of microbial biomass carbon and the microbial CO2 production in the upper 25-cm layer of the soils were calculated.  相似文献   

6.
Ergosterol and microbial biomass C were measured in 26 arable, 16 grassland and 30 forest soils. The ergosterol content ranged from 0.75 to 12.94 g g-1 soil. The geometric mean ergosterol content of grassland and forest soils was around 5.5 g g-1, that of the arable soils 2.14 g g-1. The ergosterol was significantly correlated with biomass C in the entire group of soils, but not in the subgroups of grassland and forest soils. The geometric mean of the ergosterol: microbial biomass C ratio was 6.0 mg g-1, increasing in the order grassland (5.1), arable land (5.4) and woodland (7.2). The ergosterol:microbial biomass C ratio had a strong negative relationship with the decreasing cation exchange capacity and soil pH, indicating that the fungal part of the total microbial biomass in soils increased when the buffer capacity decreased. The average ergosterol concentration calculated from literature data was 5.1 mg g-1 fungal dry weight. Assuming that fungi contain 46% C, the conversion factor from micrograms ergosterol to micrograms fungal biomass C is 90. For soil samples, neither saponification of the extract nor the more effective direct saponification during extraction seems to be really necessary.  相似文献   

7.
The need to identify microbial community parameters that predict microbial activity is becoming more urgent, due to the desire to manage microbial communities for ecosystem services as well as the desire to incorporate microbial community parameters within ecosystem models. In dryland agroecosystems, microbial biomass C (MBC) can be increased by adopting alternative management strategies that increase crop residue retention, nutrient reserves, improve soil structure and result in greater water retention. Changes in MBC could subsequently affect microbial activities related to decomposition, C stabilization and sequestration. We hypothesized that MBC and potential microbial activities that broadly relate to decomposition (basal and substrate-induced respiration, N mineralization, and β-glucosidase and arylsulfatase enzyme activities) would be similarly affected by no-till, dryland winter wheat rotations distributed along a potential evapotranspiration (PET) gradient in eastern Colorado. Microbial biomass was smaller in March 2004 than in November 2003 (417 vs. 231 μg g−1 soil), and consistently smaller in soils from the high PET soil (191 μg g−1) than in the medium and low PET soils (379 and 398 μg g−1, respectively). Among treatments, MBC was largest under perennial grass (398 μg g−1). Potential microbial activities did not consistently follow the same trends as MBC, and the only activities significantly correlated with MBC were β-glucosidase (r = 0.61) and substrate-induced respiration (r = 0.27). In contrast to MBC, specific microbial activities (expressed on a per MBC basis) were greatest in the high PET soils. Specific but not total activities were correlated with microbial community structure, which was determined in a previous study. High specific activity in low biomass, high PET soils may be due to higher microbial maintenance requirements, as well as to the unique microbial community structure (lower bacterial-to-fungal fatty acid ratio and lower 17:0 cy-to-16:1ω7c stress ratio) associated with these soils. In conclusion, microbial biomass should not be utilized as the sole predictor of microbial activity when comparing soils with different community structures and levels of physiological stress, due to the influence of these factors on specific activity.  相似文献   

8.
 This study was carried out to investigate the effect of very high cadmium concentrations (50 and 500 μg Cd g–1 soil) on some biochemical and microbiological measurements under laboratory conditions involving daily soil samplings. The data for both DTPA- and water-soluble Cd showed two distinctive patterns during soil incubation; from 0 to 4 days, values were about 50–500 and 1–100 μg g–1 dry weight soil, whereas they decreased markedly after 7 days. Both daily respiration and the ATP content but not the microbial biomass C determined by the fumigation–extraction method were lowered by high DTPA- and water-soluble Cd concentrations. Dehydrogenase and phosphatase activities as well as both enzyme activity : microbial biomass ratios were decreased by the high DTPA- and water-soluble Cd concentrations. In the first 2 days of incubation, the metabolic quotient (qCO2) was also decreased by the highest values of available Cd. The early (after 6 h) mineralization of l- but not d-glutamic acid to CO2 was inhibited during the 0–4 day incubation period by the highest Cd concentration. Possibly the l-enantiomer was used by a larger fraction of soil microorganisms than the d-enantiomer or, if they were used by the same fraction of soil microorganisms, the d-enantiomer was mineralized at a lower rate. The l- : d-glutamic acid respiration ratio was decreased by the high available Cd content because under polluted conditions soil microorganisms probably discriminated less between the two stereoisomers of glutamic acid. Received: 13 July 1999  相似文献   

9.
Summary Fifteen- and forty-year-old cropfields developed from a dry tropical forest were examined for soil organic C and total N and soil microbial C and N. The 15-year-old field had never been manured while the 40-year-old field had been fertilized with farmyard manure every year. The native forest soil was also examined. The results indicated that the native forest soil lost about 57% and 62% organic C and total N, respectively, in the 0–10 cm layer after 15 years of cultivation. The microbial C and N contents of the forest soil were greater than those of the cultivated soils. Application of farmyard manure increased the biomass-C and -N levels in the cultivated soil but the values were still markedly lower than in the forest soil. There was an appreciable seasonal variation in biomass C and N, the values being highest in summer and lowest in the rainy season. During an annual cycle, biomass-C contents varied from 180 to 727 g g–1 and N from 20 to 80 g g–1 dry soil, and both were linearly related. Microbial biomass C represented 1.6%–3.6% of total soil organic C and microbial biomass N represented 1.7% 1–4.4% of soil organic N.  相似文献   

10.
We characterized soil cation, carbon (C) and nitrogen (N) transformations within a variety of land use types in the karst region of the northeastern Dominican Republic. We examined a range of soil pools and fluxes during the wet and dry seasons in undisturbed forest, regenerating forest and active agricultural sites within and directly adjacent to Los Haitises National Park. Soil moisture, soil organic matter (SOM), soil cations, leaf litter C and pH were significantly greater in regenerating forest sites than agricultural sites, while bulk density was greater in active agricultural sites. Potential denitrification, microbial biomass C and N, and microbial respiration g−1 dry soil were significantly greater in the regenerating forest sites than in the active agricultural sites. However, net mineralization, net nitrification, microbial biomass C, and microbial respiration were all significantly greater in the agricultural sites on g−1 SOM basis. These results suggest that land use is indirectly affecting microbial activity and C storage through its effect on SOM quality and quantity. While agriculture can significantly decrease soil fertility, it appears that the trend can begin to rapidly reverse with the abandonment of agriculture and the subsequent regeneration of forest. The regenerating forest soils were taken out of agricultural use only 5-7 years before our study and already have soil properties and processes similar to an undisturbed old forest site. Compared to undisturbed mogote forest sites, regenerating sites had smaller amounts of SOM and microbial biomass N, as well as lower rates of microbial respiration, mineralization and nitrification g−1 SOM. Initial recovery of soil pools and processes appeared to be rapid, but additional research must be done to address the long-term rate of recovery in these forest stands.  相似文献   

11.
In the soudano–sahelian zone of Burkina Faso, the short-term fallow effect on the soil chemical and microbial properties was evaluated. In four farm experiments, two types of fallows were compared with cultivated fields: a natural vegetation fallow and a fallow enriched with Andropogon gayanus. After 5 to 7 years of experiments, soil chemical and microbial characteristics were determined in laboratory for 0–10 cm soil depth. Soil organic carbon (+64%), nitrogen (+35%), microbial biomass (+76%), basal respiration (+141%), and β-glucosidase activity (+86%) were significantly higher in fallows plots than in cultivated fields. The metabolic quotient was not significantly different on fallows compared to the cropped plots. Also, no significant difference was highlighted between natural vegetation fallows and the A. gayanus-enriched one.  相似文献   

12.
We investigated Cd, Zn, and Cd + Zn toxicity to soil microbial biomass and activity, and indigenous Rhizobium leguminosarum biovar trifolii, in two near neutral pH clay loam soils, under long-term arable and grassland management, in a 6-month laboratory incubation, with a view to determining the causative metal. Both soils were amended with Cd- or Zn-enriched sewage sludge, to produce soils with total Cd concentrations at four times (12 mg Cd g−1 soil), and total Zn concentrations (300 mg Zn kg−1 soil) at the EU upper permitted limit. The additive effects of Cd plus Zn at these soil concentrations were also investigated. There were no significant differences in microbial biomass C (B C), biomass ninhydrin N (B N), ATP, or microbial respiration between the different treatments. Microbial metabolic quotient (defined as qCO2 = units of CO2–C evolved unit−1 biomass C unit−1 time) also did not differ significantly between treatments. However, the microbial maintenance energy (in this study defined as qCO2-to-μ ratio value, where μ is the growth rate) indicated that more energy was required for microbial synthesis in metal-rich sludge-treated soils (especially Zn) than in control sludge-treated soils. Indigenous R. leguminosarum bv. trifolii numbers were not significantly different between untreated and sludge-treated grassland soils after 24 weeks regardless of metal or metal concentrations. However, rhizobial numbers in the arable soils treated with metal-contaminated sludges decreased significantly (P < 0.05) compared to the untreated control and uncontaminated sludge-treated soils after 24 weeks. The order of decreasing toxicity to rhizobia in the arable soils was Zn > Cd > Cd + Zn.  相似文献   

13.
Surface (0–15 cm) soil samples were collected from a semi-arid, sandy grassland in Keerqin Sandy Lands, Northeast China to study changes in soil microbial and chemical properties after five consecutive years of nitrogen (N) and phosphorus (P) additions. Nitrogen and P additions and their interactions negligibly affected soil organic carbon and total N contents, while P addition significantly increased soil total P content. Soil pH was significantly decreased by N addition, which significantly increased net nitrification rate, whereas it did not affect net N mineralization rate. No significant effects of N and P additions and their interactions on basal respiration were detected. In addition, N addition significantly decreased microbial biomass C (MBC) and N, and thus microbial quotient, but increased dissolved organic C and microbial metabolic quotient due to the significant decrease of MBC. Our results suggest that in the mid-term the addition of N, but not P, can change soil microbial properties, with a possible decline in soil quality of semi-arid, sandy grasslands.  相似文献   

14.
The soil microbial biomass and activity were estimated for seven field (intensive and extensive management), grassland (dry and wet), and forest (beech, dry and wet alder) sites. Three of the sites (wet grassland, dry and wet alder) are located on a lakeshore and are influenced by lake water and groundwater. Four different methods were selected to measure and characterize the microbial biomass. Values of microbial biomass (weight basis) and total microbial biomass per upper horizon and hectare (volume basis) were compared for each site.Fumigation-extraction and substrate-induced respiration results were correlated but dit not give the same absolute values for microbial biomass content. When using the original conversion factors, substrate-induced respiration gave higher values in field and dry grassland soils, and fumigation-extraction higher values in soils with low pH and high water levels (high organic content). Results from dimethylsulfoxide reduction and arginine ammonification, two methods for estimating microbial activity, were not correlated with microbial biomass values determined by fumigation-extraction or substrate-induced respiration in all soils examined. In alder forest soils dimethylsulfoxide reduction and arginine ammonification gave higher values on the wet site than on the dry site, contrary to the values estimated by fumigation-extraction and substrate-induced respiration. These microbial activities were correlated with microbial biomass values only in field and dry grassland soils. Based on soil dry weight, microbial biomass values increased in the order intensive field, beech forest, extensive field, dry grassland, alder forest, wet grassland. However, microbial biomass values per upper horizon and hectare (related to soil volume) increased in agricultural soils in the order intensive field, dry grassland, extensive field, wet grassland and in forest soils in the order beech, wet alder, dry alder. We conclude that use of the original conversion factors with the soils in the present study for fumigation-extraction and substrate-induced respiration measurements does not give the same values for the microbial biomass. Furthermore, dimethylsulfoxide reduction and arginine ammonification principally characterize specific microbial activities and can be correlated with microbial biomass values under specific soil conditions. Further improvements in microbial biomass estimates, particularly in waterlogged soils, may be obtained by direct counts of organisms, ATP estimate, and the use of 14C-labelled organic substrates. From the ecological viewpoint, data should also be expressed per horizon and hectare (related to soil volume) to assist in the comparison of different sites.  相似文献   

15.
 The seasonal responses of soil microbial biomass C to changes in atmospheric temperature, soil moisture and soluble organic C were studied in soils from the karst areas of southwest China. These soils are relatively weathered, leached and impoverished, and have a low input of plant residues. Over 1 year, an inverse relationship between soil microbial biomass C and atmospheric temperature was found. The highest microbial biomass C occurred in winter and the lowest in summer, and ranged from 231–723 μg g–1 dry soil. Although there was no obvious relationship between microbial biomass C and soil moisture, a negative correlation existed between microbial biomass C and soluble organic C. In the ecosystem studied, the marked changes in soil microbial biomass C at above 20  °C were ascribed to fluctuations of soil moisture, which were controlled by climatic factors and geomorphic conditions. The patterns of soluble organic C turnover were similar to those of soluble carbohydrate C, both of which were controlled by soil drying-rewetting cycles. It was concluded that the lowest amounts of soil microbial biomass C, measured in the summer, resulted in increases in soluble organic C due to higher turnover rates of the former at warmer air temperatures. Thus, there was a marked seasonal change in soil microbial biomass C. Received: 1 November 1998  相似文献   

16.
The chemical, physical and biological conditions of a New Zealand Gley Soil was examined on matched sites under long-term permanent pasture or used to grow blackcurrants (Ribes nigrum) for 2, 8, 10 or 20 years. The chemical and physical conditions of topsoils (0–10 cm) were assessed by soil pH, Olsen P, total C, total N, mineralisable N, cation exchange, bulk density, porosity and moisture release characteristics. The biological conditions were assessed from the microbial biomass, soil respiration, catabolic evenness and numbers and diversity of the soil nematode populations. The ability of the soil populations to degrade the triazine herbicide simazine was tested. The particle size distribution confirmed all the sites were very well matched, within 2%, in terms of percentage clay, silt and sand contents, which were 36.5–40.5% clay and 59.5–62.5% silt. Compared with the soil under pasture, that under horticultural use for 2, 8, 10 and 20 years had lower total C and N, lower mineralisable N, lower cation exchange and lower porosity but higher bulk density and particle density. The differences were greater the longer the plots had been under blackcurrant production. Olsen P content was greatest (58 μg P cm−3) under the 20-year blackcurrant plots. Changes in biological characteristics were greater than in physical or chemical characteristics. Microbial biomass was 1.73 mg C cm−3 under pasture and decreased to 0.87 mg C cm−3 after 20 years of blackcurrants. Total nematode populations deceased from 3.89 million m−2 under pasture to 0.36 million m−2 after 2 years of blackcurrant production and to 108 000 m−2 after 20 years. There were similar proportional decreases in bacterial-feeding, fungal-feeding, plant-feeding and omnivore nematodes; however, there was comparatively little change in nematode diversity (Shannon–Weiner) or in microbial catabolic diversity or soil respiration. Despite the decreased microbial biomass, the microbial community under blackcurrant production had enhanced capacity to degrade simazine, as compared with the pasture soil. That capacity to degrade simazine was similar in soils that had grown blackcurrants for 2, 8, 10 or 20 years. Yield of blackcurrants had been maintained in the longer-term sites, despite the marked changes in soil chemical, physical and biological conditions.  相似文献   

17.
 Gross N mineralization and nitrification rates and their relationships to microbial biomass C and N and enzyme (protease, deaminase and urease) activities were determined in soils treated with dairy shed effluent (DSE) or NH4 + fertilizer (NH4Cl) at a rate equivalent to 200 kg N ha–1 at three water potentials (0, –10 and –80 kPa) at 20  °C using a closed incubation technique. After 8, 16, 30, 45, 60 and 90 days of incubation, sub-samples of soil were removed to determine gross N mineralization and nitrification rates, enzyme activities, microbial biomass C and N, and NH4 + and NO3 concentrations. The addition of DSE to the soil resulted in significantly higher gross N mineralization rates (7.0–1.7 μg N g–1 soil day–1) than in the control (3.8–1.2 μg N g–1 soil day–1), particularly during the first 16 days of incubation. This increase in gross mineralization rate occurred because of the presence of readily mineralizable organic substrates with low C : N ratios, and stimulated soil microbial and enzymatic activities by the organic C and nutrients in the DSE. The addition of NH4Cl did not increase the gross N mineralization rate, probably because of the lack of readily available organic C and/or a possible adverse effect of the high NH4 + concentration on microbial activity. However, nitrification rates were highest in the NH4Cl-treated soil, followed by DSE-treated soil and then the control. Soil microbial biomass, protease, deaminase and urease activities were significantly increased immediately after the addition of DSE and then declined gradually with time. The increased soil microbial biomass was probably due to the increased available C substrate and nutrients stimulating soil microbial growth, and this in turn resulted in higher enzyme activities. NH4Cl had a minimal impact on the soil microbial biomass and enzyme activities, possibly because of the lack of readily available C substrates. The optimum soil water potential for gross N mineralization and nitrification rates, microbial and enzyme activities was –10 kPa compared with –80 kPa and 0 kPa. Gross N mineralization rates were positively correlated with soil microbial biomass N and protease and urease activities in the DSE-treated soil, but no such correlations were found in the NH4Cl-treated soil. The enzyme activities were also positively correlated with each other and with soil microbial biomass C and N. The forms of N and the different water potentials had a significant effect on the correlation coefficients. Stepwise regression analysis showed that protease was the variable that most frequently accounted for the variations of gross N mineralization rate when included in the equation, and has the potential to be used as one of the predictors for N mineralization. Received: 10 March 1998  相似文献   

18.
Significance of earthworms in stimulating soil microbial activity   总被引:9,自引:0,他引:9  
 The stimulatory effect of earthworms (Lumbricus terrestris L.) on soil microbial activity was studied under microcosm-controlled conditions. The hypothesis was tested that microbial stimulation observed in the presence of a soil invertebrate would be due to the utilization of additional nutritive substances (secretion and excretion products) that it provides. Changes in microbial activity were monitored by measuring simultaneously CO2 release and protozoan population density. The increase in CO2 released in the presence of earthworms was found to result from both earthworm respiration and enhanced microbial respiration. The stimulation of microbial activity was confirmed by a significant increase in protozoan population density, which was 3–19 times greater in the presence of earthworms. The respiratory rate of L. terrestris was estimated to be 53 μl O2 g–1 h–1. Earthworm respiration significantly correlated with individual earthworm weight, but there was no correlation between the increase in microbial respiration and earthworm weight. This finding does not support the hypothesis given above that enhanced microbial respiration is due to utilization of earthworm excreta. A new hypothesis that relationships between microbial activity and earthworms are not based on trophic links alone but also on catalytic mechanisms is proposed and discussed. Received: 26 August 1997  相似文献   

19.
Land‐use patterns affect the quantity and quality of soil nutrients as well as microbial biomass and respiration in soil. However, few studies have been done to assess the influence of land‐use on soil and microbial characteristics of the alpine region on the northeastern Tibetan plateau. In order to understand the effect of land‐use management, we examined the chemical properties and microbial biomass of soils under three land‐use types including natural grassland, crop‐field (50 + y of biennial cropping and fallow) and abandoned old‐field (10 y) in the area. The results showed that the losses of soil organic carbon (SOC) and total nitrogen (TN) were about 45 and 43 per cent, respectively, due to cultivation for more than 50 y comparing with natural grassland. Because of the abandonment of cultivation for about a decade, SOC and TN were increased by 27 and 23 per cent, respectively, in comparison with the crop field. Microbial carbon (ranging from 357·5 to 761·6 mg kg−1 soil) in the old‐field was intermediate between the crop field and grassland. Microbial nitrogen (ranging from 29·9 to 106·7 mg kg−1 soil) and respiration (ranging from 60·4 to 96·4 mg CO2‐C g−1 Cmic d−1) were not significantly lower in the old‐field than those in the grassland. Thus it could be concluded that cultivation decreased the organic matter and microbial biomass in soils, while the adoption of abandonment has achieved some targets of grassland restoration in the alpine region of Gansu Province on the northeastern Tibetan plateau. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Elevated nitrogen (N) deposition in humid tropical regions may aggravate phosphorus (P) deficiency in forest on old weathered soil found in these regions. From January 2007 to August 2009, we studied the responses of soil microbial biomass and community composition to P addition (in two monthly portions at level of 15 g P m?2 yr?1) in three tropical forests in southern China. The forests were an old-growth forest and two disturbed forests (mixed species and pine dominated). The objective was to test the hypothesis that P addition would increase microbial biomass and change the composition of the microbial community, and that the old-growth forests would be more sensitive to P addition due to its higher soil N availability. Microbial biomass C (MBC) was estimated twice a year and the microbial community structure was quantified by phospholipid fatty acid (PLFA) analysis at the end of the experiment. Addition of P significantly increased the microbial biomass and altered the microbial community composition in the old-growth forest, suggesting that P availability is one of the limiting factors for microbial growth. This was also reflected by significant increases in soil respiration after P addition. In contrast, P addition had no effect on the microbial biomass and the microbial community composition in the pine forests. Also in the mixed forest, the microbial biomass did not significantly respond to P addition, but soil respiration and the ratio of fungal-to-bacteria was significantly increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号