首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
选用低温竹炭为原料、氢氧化钾为活化剂,制备不同炭碱比和不同活化时间的竹活性炭。运用傅立叶红外光谱议(FTIR)、比表面积测定仪(BET)等仪器对竹活性炭表面官能团、比表面积和孔径结构及比电容进行了测试和分析。结果表明,炭碱比1:4、活化温度700℃、活化时间3h条件下制备的竹活性炭,比表面积为2897.7m2/g,总孔容为1.340cm3/g,平均孔径为2.59nm,亚甲基蓝吸附值为27.7ml/0.1g,碘吸附值为1920mg/g,作为超级电容器(EDLC)的电极,其比电容为114.4F/g。  相似文献   

2.
以毛竹为炭前驱体,KOH作活化剂,制备具有高比表面积的活性炭(HSAAC)材料,考察了KOH与竹炭的质量比(碱炭比)对活性炭孔结构、吸附性能和电容性能的影响。结果表明:随着碱炭比值的增加,活性炭的比表面积、中孔容积和总孔容增大,微孔孔容先增大后减小;碘吸附值、亚甲基蓝吸附值均呈现先增大后减小的趋势,碱炭比值为4时达到最大,分别为2 168和569 mg/g。当碱炭比值为4时,可制得比表面积为2 610 m2/g、总孔容为1.24 cm3/g(其中微孔孔容0.81 cm3/g,中孔孔容0.382 cm3/g)的活性炭材料。以其为电极材料组装的电容器在30%H2SO4电解液中的比电容为206 F/g。  相似文献   

3.
油茶果壳基活性炭的制备及其中孔结构调控研究   总被引:2,自引:0,他引:2  
研究了油茶果壳经水蒸气活化后,浸渍磷酸再活化对活性炭中孔结构调控的影响,制备出中孔丰富的活性炭。实验结果显示:820℃下制备的水蒸气法油茶果壳活性炭以微孔为主,BET比表面积1 076 m2/g,总孔容积0.81 cm3/g,微孔率63%,中孔率33%,亚甲基蓝吸附值180 mg/g,碘吸附值1 012 mg/g;水蒸气法油茶果壳活性炭经800℃下磷酸再活化后,可明显增加BET比表面积(1 608 m2/g)和总孔容积(1.17 cm3/g),尤其对中孔率(61%)的发展更有效,同时保留一定比例的微孔(37%),显示出更高的亚甲基蓝吸附值(330 mg/g)和碘吸附值(1 326 mg/g)。  相似文献   

4.
杉木屑制备高丁烷工作容量颗粒活性炭   总被引:3,自引:0,他引:3  
研究提出了一种简单的高丁烷工作容量(BWC)颗粒活性炭(GAC)的制备方法.在磷酸法制备活性炭的工艺中通过添加浓硫酸作为助催化剂,以杉木屑为原料制备了BWC高达165g/L的产品,其表观密度为241g/L,比表面积、总孔容、微孔孔容和平均孔径分别为2 627 m2/g 1.574cm3/g、0.941 cm3/g和2....  相似文献   

5.
选择了水蒸气活化椰壳活性炭(AC-11、AC-12、AC-13),磷酸活化粉末状活性炭(AC-21、AC-22),以及KOH活化石油焦高比表面积活性炭(AC-31、AC-32)7种以常见方法制备的,比表面积在800~3 500 m2/g范围的活性炭,研究了2种I2/KI质量比对活性炭碘吸附值测定结果的影响,并分析了活性炭比表面积和孔隙结构对碘吸附值的影响。研究结果显示:活性炭的比表面积越大、中孔越发达、中孔分布越宽,I2/KI质量比对活性炭碘吸附值的影响就越大,m(I2)∶m(KI)为1∶1.5下测试样品AC-31的碘吸附值与其在m(I2)∶m(KI)为1∶2条件下的差值能达到140 mg/g;对于碘吸附值在800 mg/g左右的微孔型活性炭AC-13,2种比例测试得到的差值几乎可以忽略不计,也就是说旧版和新版的木质和煤质活性炭标准得到的活性炭碘吸附值差别很小。在活性炭碘吸附值测试条件下,吸附碘有效孔隙主要集中在0.8~1.5 nm之间。对于椰壳活性炭等微孔型活性炭,其比表面积...  相似文献   

6.
以稻秆为原料,通过磷酸法活化制备得到了中孔活性炭,并采用氮气吸附、元素分析和扫描电镜对其进行了表征分析。实验结果表明:稻秆制备活性炭的工艺条件为10 g稻秆,浸渍比3∶1(质量比),在140℃下预活化60 min,活化温度450℃,活化时间60 min。在此条件下制备得到的活性炭得率为25%,亚甲基蓝吸附值215 mg/g,碘吸附值835 mg/g,A法焦糖值110%,灰分3.03%,其比表面积为967.7 m2/g,总孔容为1.12 cm3/g,平均孔径为4.6 nm,中孔率可以达到84.8%。  相似文献   

7.
以杉木屑为原料,在传统磷酸法工艺过程中添加辅助催化剂浓硫酸,制备超高比表面积颗粒活性炭。研究浓硫酸添加量、浸渍时间以及浸渍比对颗粒活性炭比表面积的影响。结果表明,浓硫酸添加量和浸渍时间在磷酸法制备超高比表面积颗粒活性炭中发挥着重要的作用,当浸渍时间为15 h、浓硫酸添加量为6%、浸渍比为2.1∶1和浸渍时间为5 h、浓硫酸添加量为3%、浸渍比为2.1∶1时,分别制备出比表面积为2 825、2 811 m2/g的颗粒活性炭、总孔容分别为1.60、1.59 cm3/g,丁烷工作容量分别为154.8、157.3 g/L。  相似文献   

8.
稻壳与脱硅稻壳活性炭特性及对有机物吸附   总被引:1,自引:0,他引:1  
以稻壳为原料,同时制备脱硅稻壳,采用ZnCl2-CuCl2复合活化剂制备活性炭,并对所制备的稻壳活性炭(RAC)与脱硅稻壳活性炭(FAC)的孔结构和表面化学性质进行了分析,而后将其应用于对水中有机物的去除,同时研究了其吸附特性。结果表明:所制得的稻壳活性炭比表面积达到了1 924 m2/g,而稻壳经过脱硅处理制得的活性炭比表面积达到了2 433 m2/g。脱硅稻壳表面具有更多种类的官能团存在。稻壳与脱硅稻壳活性炭在碱性条件下有利于品红的吸附,并且适用于高盐度条件下品红的吸附;在初始pH值为7,初始质量浓度为400 mg/L,投加量为0.8 mg/g时,稻壳活性炭和脱硅稻壳活性炭对有机物的吸附量分别达到439和483 mg/g;吸附等温模型符合Langmuir等温式;吸附动力学以及脱附研究显示稻壳与脱硅稻壳活性炭对品红的吸附过程主要由化学吸附控制。  相似文献   

9.
以油茶壳为原料,磷酸为活化剂制备活性炭。以碘吸附值及产率为指标,探究加热温度、加热时间、浸渍比、浸渍时间、升温速率对油茶壳活性炭吸附性能的影响,并采用正交法优化活性炭制备条件,采用比表面积孔隙分析、FT-IR、XRD、SEM进行表征。结果表明:油茶壳活性炭较佳的制备工艺为加热温度400℃、加热时间140 min、浸渍比3∶1、浸渍时间6 h,此条件下制得的活性炭碘吸附值为1694 mg/g,比表面积1872 m^(2)/g,平均孔径1.36 nm,总孔容积为1.269 cm^(3)/g,微孔孔容占总孔容的56.26%,表面具有丰富的孔结构。  相似文献   

10.
高比表面积竹质活性炭的制备与性能研究   总被引:6,自引:3,他引:3  
以竹子为原料、磷酸为活化剂,在不同条件下制备竹基活性炭,考察浸渍比、活化温度、活化时间、升温速率等因素对竹质活性炭产品吸附性能的影响,得到亚甲基蓝吸附值最高达200 mL/g、焦糖脱色率最高达120%的高吸附性能竹质活性炭。研究结果表明最佳工艺条件为:浸渍比3∶1(g∶g),活化温度400℃,升温速率10℃/m in,活化时间40 m in。对所制得的竹质活性炭产品进行扫描电镜(SEM)分析、N2吸附分析,结果表明所制得活性炭具有较高的BET比表面积(2 103 m2/g)和发达的孔结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号