首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 500 毫秒
1.
郭晓颖 《农机化研究》2021,(2):89-93,98
为进一步实现用于农业果蔬采摘的机器人外形结构优化目标,结合当前三维可视化的艺术设计理念,针对其采摘装置结构参数与布局展开研究。考虑果蔬的物理学特性与作业周边环境光线特征,建立正确的采摘动作空间坐标,设计采摘机器人结构优化流程,从采摘臂杆的偏转角度、臂杆间距与角度阈值3个方面进行参数匹配,并综合协调各采摘关节的运动状态,形成结构组件的运动目标函数。采用ADAMS场景在视觉模块、行走模块、末端执行模块的配合实现结构布局与关节运动仿真,结果表明:采摘机器人单次采摘用时与理论运动模型控制采摘计算用时误差控制在1.0s范围内,采摘成功率控制在91.1%,验证了艺术理念下机构采摘运动设计的合理性,可为采摘机器人结构深度优化进提供设计改进方向,具有一定的参考意义。  相似文献   

2.
为了实现果蔬采摘的无损采摘和果蔬的准确识别,本文基于PLC技术设计了果蔬采摘装置的自适应调控系统。系统主要由信息采集模块、图像处理模块、运动控制模块、运动执行模块和PLC控制器组成。通过机械手进行设计,使其在抓取果蔬时的抓取位置、位移和作用力具有自适应能力;对图像进行自适应均衡化处理,提高图像识别。试验数据表明:采摘装置可以对果蔬精准定位,保证果蔬的无损采摘。  相似文献   

3.
为了提高果蔬采摘机器人机械手运动的精确性,提高机器人移动的效率,提出了一种基于遗传算法和RBF网络的机器人运动轨迹控制方法,并对果蔬机器人机械手的活动和整体的移动轨迹进行优化,有效地提高了果蔬采摘机器人的工作精度和作业效率。为了验证设计的采摘机器人的可靠性,在大棚内对机器人的采摘性能进行了测试,包括机器人移动路径规划和机械手路径规划。通过测试发现:使用RBF神经网络算法可以有效地控制机械手在三维空间内的运动;在遗传算法控制下,机器人可以通过较少的计算次数利用神经网络算法搜索得到最优路径,计算精度达到了99%以上。其计算精度及效率高,为高效果蔬采摘机器人的设计提供了较有价值的参考。  相似文献   

4.
针对采摘机器人对果蔬的位置定位不够准确、无法准确避障,导致采摘效率较低的问题基于深度双目视觉处理对智能采摘机器人进行了设计。智能采摘机器人的主要组成包括PLC控制器、视觉系统、移动平台、导航系统、机械臂、通信系统和电源。为了对采摘机器人的机械臂进行最优路径规划并避障,通过对采集的图像进行预处理后,利用双目视觉系统对果蔬进行精准定位,然后采用哈夫变换直线检测的方法进行最优路径的设计和选择,最终确定最优采摘路径。对采摘机器人进行运动轨迹精度试验和采摘试验,结果表明:采摘机器人对果蔬的采摘成功率较高,可以满足果农对于采摘机器人的要求。  相似文献   

5.
为了提高果蔬的采摘效率,对果蔬采摘机器人进行了改进,设计了一种新的多机械手的编码控制采摘机器人。通过对机器人功能和结构的设计,使机器人具有了利用机器视觉技术的图像边缘提取来划分每个机械手的作业区间的功能,并可以利用编码器对每个机械手进行编码,从而完成多机械手的协同作业。对机器人的采摘作业性能进行了测试,首先利用机器视觉模块完成了苹果采摘区间的划分,并预设了每个机械手的采摘作业轨迹,利用编码器对预设轨迹进行了追踪。通过测试发现:机器人多机械手的实际追踪轨迹和预设轨迹的误差很小,满足设计需求,多机械手的协同采摘平均速度可以达到80个/min以上,具有高效的果蔬采摘性能。  相似文献   

6.
果蔬采摘机器人系统的应用与发展   总被引:1,自引:0,他引:1  
尽管果蔬采摘机器人技术发展迅速,但果蔬采摘机器人商业化的程度不高,很多仍然处于研发阶段。本文针对现有的果蔬采摘机器人系统进行了介绍,并分别从采摘机械臂、末端执行器、移动机构、视觉系统和算法等方面对国内外采摘机器人的发展现状进行论述,分析和讨论了果蔬采摘机器人现阶段面临的挑战和潜在的发展趋势。  相似文献   

7.
新型城镇化建设不断加快和农村生产劳动力的不足,致使果蔬产业中人工成本占比较大。为此,研究果蔬采摘机器人以减少果蔬生产成本和降低劳动力的依赖性,具有十分重要的现实意义。课题组通过介绍果蔬采摘机器人的国内外研究现状,对目前果蔬采摘机器人作业时存在的问题进行了分析,提出了增强采摘机器人的可靠性、提高识别率和定位精度、扩展设备的通用性以及降低维护和生产成本等发展趋势,为果蔬采摘机器人的发展提供借鉴。  相似文献   

8.
针对采摘机器人在果蔬采摘时不能准确识别和精准采摘方面的问题,基于KVM技术对新一代采摘机器人进行了设计和研究。该采摘机器人的主要组成部分为硬件系统和软件系统。对采摘机器人的软件系统进行设计,包括采用静态和动态的果蔬识别方式、采用PID控制算法进行自动导航、采用人工势场的方法进行采摘时的避障,保证了果蔬的准确识别和精准采摘。为了验证采摘机器人的采摘性能,采用识别定位和采摘试验进行验证。结果表明:采摘机器人的识别和采摘性能良好,可以满足农户对于采摘机器人的性能要求。  相似文献   

9.
在现代农业生产中,果蔬采摘作业复杂而繁重,采摘机器人在作业过程中常常需要经历成千上万个果蔬采摘点,面对这样巨大的工作量,采摘机器人移动路径规划显得非常重要。为此,以采摘机器人运动轨迹为研究对象,以其运动轨迹总长最短为研究目标,针对机器人各关节机构运动速度变化情况及机器人运动特性,利用基本蚁群原理对六自由度采摘机器人的路径进行规划。实验结果表明:所设计的采摘机器人轨迹优化技术不但路径优化能力强、运动轨迹平滑,还具有可靠性强及稳定性好的优点。  相似文献   

10.
双闭环控制采摘机器人机械手设计——基于PLC和CAN总线   总被引:1,自引:0,他引:1  
何龙  陈晓龙 《农机化研究》2016,(12):242-246
采用双闭环控制系统,基于PLC运动控制器和CAN总线,提出了一种新的采摘机器人机械手关节分布式控制方案,并采用模块化思想设计了机器人关节电机控制系统、CAN模块及PLC控制器。采摘机器人机械手的关节采用谐波减速器进行调节,利用霍尔传感器和红外线传感器及光电编码器进行图像、转速和障碍物触碰的信号采集,采集信号利用A/D转换器将数据传输给PLC控制器。机械手的执行末端采用CAN总线控制,并利用变频器传递的通信信号,实现了末端执行器的并行控制,使多机械手处于最佳动作状态。最后,在双闭环控制方案的基础上加入了前馈控制环境,利用前馈控制环节可以实现对系统的实时控制,改善了系统的静态性能,实现了机械手对实际采摘位置的有效追踪。实验和仿真模拟表明:位移时间曲线平滑无突变,表明机器人在运行过程中平稳、无振动,机器人工作的可靠性较高,对路径的追踪精度较高。  相似文献   

11.
番茄采摘机器人系统设计与试验   总被引:3,自引:0,他引:3  
为了提高鲜食番茄采收的自动化水平,减轻人工采摘劳动强度,设计了一种番茄智能采摘机器人。该采摘机器人包括视觉定位单元、采摘手爪、控制系统及承载平台,并基于各部件工作原理制定了采摘机器人的工作流程。基于HIS色彩模型进行图像分割,提高了果实识别的准确度;通过气囊夹持方式确保果实采摘过程中对果实的柔性夹持。试验结果表明:视觉定位、采摘手爪等模块运转良好,采摘单果番茄耗时约24s,成功率可达8 3.9%以上。  相似文献   

12.
采摘机器人开放式控制系统设计   总被引:10,自引:4,他引:6  
在采摘机器人控制系统设计中引入开放式控制思想,采用分层控制作为控制系统的体系结构。硬件平台由PC104工控机和PMAC2—104多轴运动控制卡构成。控制软件划分为任务层、系统层和伺服层。在6自由度机器人平台上,以腕关节的旋转自由度为例,进行初步测试。测试结果表明,当比例增益为34000,微分增益为4200、速度前馈增益为680、加速度前馈增益为1000时,系统具有良好瞬态响应特性、定位精度和速度控制性能。  相似文献   

13.
丘陵果园除草机器人底盘系统设计与试验   总被引:1,自引:0,他引:1  
针对丘陵果园环境非结构化且复杂多变,常规的除草方式效率低等问题,设计了一种果园除草机器人底盘系统。根据果园丘陵地形地貌环境,确定车体控制方式和除草机器人底盘的总体结构方案,主要包括液压传动系统、电气控制系统等。设计配套的除草车电气控制系统和遥控接收、车载主控和导航功能的CAN通信协议。以运动控制为核心,采用角度传感器、电机驱动、车载主控、导航模块,构成闭环控制。使用自抗扰控制算法,以油阀控制电机为对象应用Simulink仿真,仿真结果显示自抗扰控制相比PID控制调节时间减少0.42s,超调幅度减小11.5%,稳定时间缩短0.14s。田间试验表明,运用自抗扰控制、结合导航功能的除草机器人行走速度均值为6.2km/h,均方差0.037km/h,作业效率0.51hm2/h,有效除草率均值97.46%,可在25°斜面上正常行走,对导航路径的跟踪误差标准差为4.732cm,运动控制响应及时,能够提高除草作业安全性和准确性。  相似文献   

14.
黄瓜采摘机器人远近景组合闭环定位方法   总被引:5,自引:0,他引:5  
针对黄瓜采摘机器人远景定位精度不高,以致切伤果实和茎蔓的问题,设计了一种基于机器视觉具有空间位置反馈功能的末端执行器。对温室环境下黄瓜果实采摘区域图像信息获取方法加以研究,综合HIS色彩空间H、S分量进行阈值分割,结合RGB色彩空间G通道边缘分布特征以及黄瓜形状特征,提取黄瓜采摘区域。基于摄像机线性透视模型,研究了采摘切割点空间定位方法,最终向采摘机械臂控制器反馈位置微调信息。采用远近景组合闭环定位方法,对采摘目标进行闭环定位,有效地解决了采摘机器人一次远景定位误差较大的问题。试验结果表明,排除温室复杂光照情况,机器人末端执行器定位精度达到2mm,满足采摘作业要求。  相似文献   

15.
采摘机器人视觉伺服控制系统设计   总被引:5,自引:0,他引:5  
分析了采摘机器人目标位置与机器人关节角度之间的运动学关系,给出了两者之间的坐标变换公式.根据伺服控制特点,在机器人伺服控制中引入模糊PID控制方法,利用模糊控制策略在线自适应整定PID参数,提高了控制系统的动、静态性能.仿真和实验结果验证了设计的合理性和有效性.  相似文献   

16.
孙承庭  胡平 《农机化研究》2016,(11):219-223
采摘机器人拥有自主收集信息并进行有效判断的能力,可以独立完成对果实的采摘作业,对满足水果种植需求、减小水果种植的劳动力投入及降低生产成本有着很重要的实际应用价值。为此,以嵌入式ARM智控系统为基础平台,设计了采摘机器人视觉测量与避障控制系统。该系统集机器视觉、视觉传感感知、伺服电机驱动和ARM智控模块于一体,建立了采摘机器人采摘运动学的数学模型,并通过BP网络神经型迭代学习算法测量果实的距离和球心坐标,对成熟果实进行精准识别和定位采摘。试验结果表明:采摘机器人能准确地进行自主采摘,成功率比较高,躲避障碍物的能力很强,更适合在复杂未知的果园中进行收获作业。  相似文献   

17.
伍坪 《农机化研究》2017,(10):228-232
为了提高采摘机器人的智能化程度,降低设计和制造成本,提高机器人的通信能力,提出了一种基于HPI接口和DSP系统的新型采摘机器人。该机器人将嵌入式DSP系统和ARM控制器利用HPI接口有效地结合起来,利用图像DSP系统对采集图像进行处理,实现目标的定位,从而提高了嵌入式系统的运算能力;利用ARM控制器对执行末端进行控制,实现了机械臂的准确定位和控制;使用滤波器对通信过程的干扰信号进行降噪处理,从而提高了整个系统的稳定性和可靠性。最后,对采摘机器人的通信能力进行了测试,结果表明:IIR滤波器可以有效的滤除干扰信号,通信较为稳定,从而验证了嵌入式DSP系统和HPI通信接口在采摘机器人设计上使用的可行性。  相似文献   

18.
随着我国农业生产规模的扩大,日益增长的劳动力需求和落后的传统农业生产方式之间的矛盾越来越突出。采摘作业是农业生产中较为普遍的环节,为克服传统采摘作业效率低、安全隐患大等问题,设计了基于PLC的采摘机器人平台,完成了机器人平台的结构设计。同时,通过建立机器人的动力学模型,求解了各关节机构与采摘目标之间的运动关系,通过硬件选型和硬件设计,确定了合理可靠的功能模块,并完成各个模块与PLC控制器输入输出接口的外部接线设计,最后完成了机器人平台的软件流程设计。生产实践表明:该采摘机器人平台结构简单、控制精度高,具有较高的安全性和稳定性,有较大的推广价值。  相似文献   

19.
根据目前农业机器人应用的实际情况,采用开放式结构的思想,设计了基于ARM的农用机器人开放式控制器.在控制器体系结构上采用了分层式和模块化,并分别介绍了各层的特点、任务及其实现方法.由于采用了硬件抽象层和总控模块层,使设备驱动程序和操作系统都具有硬件无关性,并使设计的控制器满足开放式结构的要求,具有可移植性、可扩展性以及硬件设备的可互换性.uCOS-Ⅱ操作系统的使用,使该控制器具有可靠的实时性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号