首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inoculation of tomato seeds with the plant growth-promoting bacterium Azospirillum brasilense, or spraying tomato foliage with A. brasilense, streptomycin sulfate, or commercial copper bactericides, separately, before or after inoculation with Pseudomonas syringae pv. tomato, the casual agent of bacterial speck of tomato, had no lasting effect on disease severity or on plant height and dry weight. Seed inoculation with A. brasilense combined with a single streptomycin foliar treatment and two foliar bactericide applications at 5-day intervals (a third or less of the recommended commercial dose) reduced disease severity in tomato seedlings by over 90% after 4 weeks, and significantly slowed disease development under mist conditions. A. brasilense did not induce significant systemic resistance against the pathogen although the level of salicylic acid increased in inoculated plants. Treatment of tomato seeds that were artificially inoculated with P. syringae pv. tomato, with a combination of mild chemo-thermal treatment, A. brasilense seed inoculation, and later, a single foliar application of a copper bactericide, nearly eliminated bacterial leaf speck even when the plants were grown under mist for 6 weeks. This study shows that a combination of otherwise ineffective disease management tactics, when applied in concert, can reduce bacterial speck intensity in tomatoes under mist conditions.  相似文献   

2.
Avena storigosa Schereb. (bristle oat) is used as a green manure in crop rotations and as an antagonist of nematodes in Nagano Prefecture, Japan. In 2011, necrotic, brown, water-soaked lesions were observed on young bristle oat plants. A pathogenic bacterium was isolated from symptomatic leaves of infected plants and produced the same symptoms after inoculation. Bacteriological properties of the bacterial isolates from bristle oat matched those of Pseudomonas syringae pathovars. The host range of the bristle oat isolates was identical to that of P. syringae pv. alisalensis. This is the first report of bristle oat disease caused by P. syringae pv. alisalensis.  相似文献   

3.
There are relatively few bacterial diseases of roots, in comparison to those of aerial plant tissues. Numerous species and pathovars of Pseudomonas,Erwinia and Xanthomonas are important pathogens of leaf and stem tissue on dozens of plant families but these bacterial genera only infrequently attack roots or other underground plant structures. In contrast, there is a growing list of Streptomyces species that are very effective root pathogens. These filamentous, Gram-positive bacteria can cause scab, rot and gall diseases of plant roots and other underground plant structures. The best known pathogenic Streptomyces species is S. scabiei. Horizontal transfer of pathogenicity genes among diverse scab-causing streptomycetes appears to explain the emergence of several new plant pathogens over the last half century. It is proposed that the ability to penetrate plant tissue is essential for successful root infection as there are few natural openings in roots. In contrast, leaves have many natural openings that allow bacteria access to the interior tissues. Thaxtomin, a phytotoxin produced by many plant pathogenic streptomycetes, appears to aid penetration of developing plant tissues by inhibiting primary cell wall development.  相似文献   

4.
Bacterial canker is a major disease of stone fruits and is a critical limiting factor to sweet cherry (Prunus avium) production worldwide. One important strategy for disease control is the development of resistant varieties. Partial varietal resistance in sweet cherry is discernible using shoot or whole tree inoculations; however, these quantitative differences in resistance are not evident in detached leaf assays. To identify novel sources of resistance to canker, we used a rapid leaf pathogenicity test to screen a range of wild cherry, ornamental Prunus species and sweet cherry × ornamental cherry hybrids with the canker pathogens, Pseudomonas syringae pvs syringae, morsprunorum races 1 and 2, and avii. Several Prunus accessions exhibited limited symptom development following inoculation with each of the pathogens, and this resistance extended to 16 P. syringae strains pathogenic on sweet cherry and plum. Resistance was associated with reduced bacterial multiplication after inoculation, a phenotype similar to that of commercial sweet cherry towards nonhost strains of P. syringae. Progeny resulting from a cross of a resistant ornamental species Prunus incisa with susceptible sweet cherry (P. avium) exhibited resistance indicating it is an inherited trait. Identification of accessions with resistance to the major bacterial canker pathogens is the first step towards characterizing the underlying genetic mechanisms of resistance and introducing these traits into commercial germplasm.  相似文献   

5.
This study focuses on the differential induction of extracellular phenolic amides that accumulate in potato cell suspensions during the first few hours of the interaction between these plant cells and either bacterial pathogens or pathogen-related elicitors. Using suspension cells of Solanum tuberosum we identified 4 hydroxycinnamic acid amides that accumulate in the extracellular environment. Treatment of the suspension cells with pathovars of the plant pathogens Pseudomonas syringae or Ralstonia solanacearum or with pathogen-related elicitors changed the composition of the extracellular phenolic amides within hours and the composition differed for each treatment. Some of the phenolic amides were sensitive to oxidative stress; when suspension cells were treated with bacterial strains or elicitors that triggered an oxidative burst, the phenolics were oxidized and depleted for the duration of the burst. Other critical parameters that affected the qualitative and quantitative makeup of these phenolic amides were plant cell age and density.  相似文献   

6.
ROPs (also called RACs) are RHO-like monomeric G-proteins of plants, well-known as molecular switches in plant signal transduction processes, which are involved in plant development and a variety of biotic and abiotic stress responses. The barley (Hordeum vulgare) ROPs RACB, RAC1 and RAC3 have been shown to be involved in cellular growth, polarity and in susceptibility to the biotrophic barley powdery mildew fungus Blumeria graminis f.sp. hordei. We produced transgenic tobacco (Nicotiana tabacum) plants expressing constitutively activated (CA) mutants of the barley ROPs RACB and RAC3 to monitor the impact of heterologous ROP expression on cell polarity and disease susceptibility of tobacco. CA HvROPs influenced leaf texture, disturbed root hair polarity and induced cell expansion in tobacco. Both barley ROPs induced super-susceptibility to the compatible powdery mildew fungus Golovinomyces cichoracearum but only CA HvRAC3 induced super-susceptibility to the bacterial leaf pathogen Pseudomonas syringae pv. tabaci. Data suggest involvements of ROPs in tobacco cell expansion, polar growth and in response to bacterial and fungal leaf pathogens.  相似文献   

7.
Bacterial leaf spot incited by Xanthomonas campestris pv. mori is a devastating foliar disease of mulberry reported globally. Host plant resistance is the most sustainable and economic control measure but so far unexplored. Highly heterozygous plant behaviour and scant genetic information of bacterial leaf spot resistance limits a targetted breeding approach in mulberry. In the present research eight pseudo-F2(F1)full-sib progenies derived from selected resistant and susceptible sources were evaluated symptomatically for bacterial leaf spot resistance under natural disease occurrence in 2008 and 2009. Significant variation for bacterial leaf spot resistance was observed in the parents and progenies. Broad sense heritability estimate (0.9) indicates that selection of resistant genotypes can be useful for exploitation in future advanced breeding programs for mulberry. High narrow sense heritability estimates (0.76)[2008] and (0.79)[2009] suggest additive gene effects for the disease resistant trait. The continuous frequency distribution of diseases severity across the progenies indicates that bacterial leaf spot resistance in mulberry may be inherited quantitatively.  相似文献   

8.
Acibenzolar-S-methyl (ASM), a plant activator known to induce plant resistance, has been used as foliar sprays to manage several plant diseases including bacterial spot on tomato caused by four distinct Xanthomonas species. This study aimed to investigate the effects of soil application rates of ASM on bacterial spot of tomato and the expression levels of the two pathogenesis-related (PR) genes, PR1a and PR1b, in leaf tissues. Tomato seedlings were leaf-applied with ASM at 18.8 mg/l corresponding to the labeled rate, soil-applied with ASM at 0.84 and 10 mg/l, and sprayed with water served as an untreated control. The soil application of ASM at 10 mg/l consistently reduced the final disease severity and disease progress compared to the untreated control in four growth chamber experiments, whereas the soil application of ASM at 0.84 mg/l and foliar spray of ASM significantly reduced the final disease severity and area under disease progress curve (AUDPC) in three out of the four experiments. The expression levels of PR1a and PR1b in the leaf tissues were significantly induced by both soil and foliar applications of ASM. In addition, field trial results suggested that the soil applications of ASM at 10 mg/l markedly reduced disease progress compared to the control and copper standard. Although the control efficiency of soil applications of ASM depends on rates used, this study suggests that ASM can be used as soil applications to induce tomato resistance against bacterial spot.  相似文献   

9.
Bacterial pathogens of onion (Allium cepa) plants and their undetected presence in seed can cause substantial losses to onion producers. In this study, 23 Pseudomonas syringae strains were isolated from five onion plants and 18 onion seeds. The symptoms on leaves and seed stalks were irregular lesions with necrotic centres and water soaked margins. The aim of the study was to characterize these P. syringae strains using Biolog GN III carbon source utilization, multilocus sequence typing (MLST) based on partial sequences of four housekeeping genes (cts, gapA, gyrB and rpoD), and to determine whether or not the strains were pathogenic on onion (cv. Granex 33), chive (Allium schoenoprasum cv. Grasiue), leek (Allium porrum cv. Giant Italian) and spring onion (Allium fistulosum cv. Salotte) plants. Both Biolog analysis and MLST analysis separated onion strains into two clusters, one supporting the existence of a new pathovar of P. syringae, and the other corresponding to P. syringae pv. porri. Pseudomonas syringae strains belonging to the new pathovar we pathogenic only on onion plants of the Allium spp. tested. The results of this study revealed that bacterial blight of onion in South Africa is caused by two pathovars of P. syringae sensu lato, namely, the newly described pathovar, allii, and P. syringae pv. porri. The symptoms caused by these two pathovars in the field were indistinguishable.  相似文献   

10.
Coffee is a very important crop for several tropical countries across different continents. The diseases bacterial halo blight (BHB), bacterial leaf spot (BLS), bacterial leaf blight (BLB) and coffee leaf scorch (CLS), caused by the bacterial pathogens Pseudomonas syringae pv. garcae (Psgc), P. syringae pv. tabaci (Psta), Pseudomonas cichorii (Pch) and Xylella fastidiosa subsp. pauca (Xfp), respectively, cause significant reductions in coffee production, although other minor bacterial diseases have also been reported in some countries. Little research progress has been made on aspects that are relevant for control and management of these diseases. In all cases, there is an urgent need to develop rapid and more reliable methods for early detection of the pathogens in order to minimize their negative impact on coffee production. Because of the high rate of intra- and intersubspecific recombination occurring in X. fastidiosa, a permanent revision of the detection methods is necessary. Greater efforts should be made to understand the genetic and virulence diversity of Psgc, Psta and Pch populations. Early studies reported the identification of potential sources of resistance against Psgc and Psta, but, to date, no resistance gene has been isolated. Little effort has been made to understand the biology and molecular mechanisms underlying the interaction between Coffea spp. and these pathogenic bacteria. This review discusses the recent progress on the molecular mechanisms used by these bacteria to cause diseases on other plant species, in order to provide a guideline for the establishment of future research programmes.  相似文献   

11.
Bacterial canker is a major disease of Prunus avium (cherry), Prunus domestica (plum) and other stone fruits. It is caused by pathovars within the Pseudomonas syringae species complex including P. syringae pv. morsprunorum (Psm) race 1 (R1), Psm race 2 (R2) and P. syringae pv. syringae (Pss). Psm R1 and Psm R2 were originally designated as the same pathovar; however, phylogenetic analysis revealed them to be distantly related, falling into phylogroups 3 and 1, respectively. This study characterized the pathogenicity of 18 newly genome‐sequenced P. syringae strains on cherry and plum, in the field and laboratory. The field experiment confirmed that the cherry cultivar Merton Glory exhibited a broad resistance to all clades. Psm R1 contained strains with differential specificity on cherry and plum. The ability of tractable laboratory‐based assays to reproduce assessments on whole trees was examined. Good correlations were achieved with assays using cut shoots or leaves, although only the cut shoot assay was able to reliably discriminate cultivar differences seen in the field. Measuring bacterial multiplication in detached leaves differentiated pathogens from nonpathogens and was therefore suitable for routine testing. In cherry leaves, symptom appearance discriminated Psm races from nonpathogens, which triggered a hypersensitive reaction. Pathogenic strains of Pss rapidly induced disease lesions in all tissues and exhibited a more necrotrophic lifestyle than hemibiotrophic Psm. This in‐depth study of pathogenic interactions, identification of host resistance and optimization of laboratory assays provides a framework for future genetic dissection of host–pathogen interactions in the canker disease.  相似文献   

12.
Phytohormones are involved in the regulation of plant responses to biotic stress. How a limited number of hormones differentially regulate defence responses and influence the outcome of plant–biotic interactions is not fully understood. In recent years, cytokinin (CK) was shown to induce plant resistance against several pathogens. In the present study, we investigated the effect of CK in inducing tomato resistance against the hemibiotrophic pathogenic bacteria Xanthomonas campestris pv. vesicatoria (Xcv) and Pseudomonas syringae pv. tomato (Pst). We demonstrate that CK enhances tomato resistance to Xcv and Pst through a process that relies on salicylic acid and ethylene signalling. CK did not directly affect the growth or biofilm formation ability of these pathogens in vitro. Overall, our work provides insight into the underlying mechanisms of CK-induced immune responses against bacterial pathogens in tomato.  相似文献   

13.
 The root endophytic fungus Heteroconium chaetospira isolate OGR-3 was tested for its ability to induce systemic resistance in Chinese cabbage against bacterial leaf spot caused by Pseudomonas syringae pv. maculicola and Alternaria leaf spot caused by Alternaria brassicae of the foliar diseases. Chinese cabbage seedlings planted in soil infested with an isolate of H. chaetospira were incubated in a growth chamber for 32 days. The first to fourth true leaves of the seedlings were challenge-inoculated with P. syringae pv. maculicola or A. brassicae. Chinese cabbage planted in soil infested with H. chaetospira showed significant decreases in the number of lesions of bacterial leaf spot or Alternaria leaf spot when compared to the control plants not treated with H. chaetospira. The results indicated that colonization of roots by H. chaetospira could induce systemic resistance in Chinese cabbage and reduce the incidence of bacterial leaf spot and Alternaria leaf spot. Received: April 24, 2002 / Accepted: August 9, 2002  相似文献   

14.
Molecular diagnostics of plant pathogens are crucial to prevent disease spread and to enhance food quality and security. A comparative genomics approach using genomes of different Xanthomonas species and pathovars was applied to identify highly specific targets in the genome of Xanthomonas fragariae, the causal agent of angular leaf spot of strawberry, listed under quarantine regulations in Europe. A reliable and sensitive loop‐mediated isothermal amplification (LAMP) assay was designed using a unique marker, providing a highly specific and rapid detection technique, convenient for on‐site detection. Specificity of the designed assay was tested on 37 strains from a culture collection of X. fragariae, 82 strains of other Xanthomonas species and pathovars and 11 strains of other bacterial genera isolated from strawberry leaves. A detection limit of 102 fg was achieved, approximating to 20 genome copies per reaction. When performing analyses with crude plant material, a consistent lower detection efficiency of 102 CFU mL?1 was achieved. The LAMP assay designed in this study was adapted to work on crude plant material without any prior extensive extraction steps or incubation period; moreover, it does not require advanced analytical knowledge or a fully equipped laboratory. Results were produced within 7–20 min, depending on the pathogen concentration, thus providing a high‐throughput and user‐friendly method for detection and screening of plant material in support of quarantine regulations.  相似文献   

15.
The hypersensitive response (HR) displayed by resistance plants against invading pathogens is a prominent feature of an incompatible plant pathogen interaction. It has been shown that tobacco cell cultures transgenic for a plant ferredoxin-like protein (PFLP) that functions as an electron acceptor of Photosystem I increased harpin-mediate HR. In this work we report increased bacterial disease resistance of pflp transgenic tobacco. Compared to the controls, four distinctive characteristics were found in the pflp-transgenics after inoculation with virulent bacterial cells Erwinia carotovora subsp. carotovora and Pseudomonas syringae pv. tabaci: (i) instead of typical disease symptoms, an HR-like necrosis was observed; (ii) the proliferation of the virulent pathogen was highly retarded; (iii) the expression of hsr203j, an HR marker gene, was apparently induced; (iv)H2O2 accumulation was induced immediately. Together, those results demonstrate that enhanced production of PFLP in the transgenic plant conditions the induction of a hypersensitive response during compatible pathogen attack.  相似文献   

16.
Previous studies of this model system involving plant cell suspensions inoculated with bacteria, have documented that interactions with incompatible pathogens, which cause a hypersensitive response on whole plants, will cause a transient increase in oxygen uptake 2–4 h after inoculation. The initial objective of this study was to determine whether this oxygen uptake burst was a result of increased bacterial multiplication, possibly due to nutrient leakage from plant cells. The adaptation of flow cytometry and the use of fluorescent nucleic acid stains provided the precision needed to monitor bacterial concentrations in tobacco suspension cells inoculated with pathogenic and non-pathogenic Pseudomonas species. Surprisingly, there was a transient decrease in the planktonic, or free-living, bacteria in cell suspensions inoculated with isolate Pseudomonas syringae pv. syringae WT (HR+), an incompatible pathogen of tobacco. This decrease in planktonic numbers was followed by an apparent increase in bacterial multiplication. Examination of the samples with fluorescent microscopy revealed the formation of bacterial aggregates in the extracellular fluid of the Pss WT (HR+) inoculated plant cells. The size of the aggregates increased at the onset of the oxygen uptake response, and contained increasing numbers of bacterial cells. These aggregated bacterial cells appear to be removed along with plant cells, as a result of filtration during sample preparation, causing the apparent decrease in planktonic bacteria detected by flow cytometry. This bacterial aggregation was also observed with the compatible Pseudomonas tabaci pathogen, which does not induce a noticeable oxygen uptake burst. No aggregation was observed with suspension inoculated with Pseudomonas fluorescens, a saprophyte, or Pss B7 (HR−), a Tn5 mutant of P. s. syringae. This aggregation response was rapid, once initiated, and appeared similar to reports of adhesion involving Hrp pili.  相似文献   

17.
Trees and woody plants can be attacked by many pests and pathogens either individually or as polymicrobial infections. In particular, infections caused by tree-specific bacterial pathogens have become more common during the last decade, causing serious concern for important tree and woody plant species in horticulture, urban environments, and forests. For example, Xylella and Pseudomonas bacteria are causing significant economic and ecological devastation throughout Europe in olive, cherry, and other stone fruits, mainly because of lack of efficient control methods and the emergence of bacterial resistance to traditional antimicrobial compounds such as copper and antibiotics. Hence, there is an urgent need for innovative approaches to tackle bacterial plant diseases. One way to achieve this could be through the application of biological control, which offers a more environmentally friendly and targeted approach for pathogen management. This review will explore recent advances in use of pathogen-specific viruses, bacteriophages (or phages), for the biocontrol of bacterial tree diseases. Phages are an important component of plant microbiomes and are increasingly studied in plant pathogen control due to their highly specific host ranges and ability to selectively kill only the target pathogenic bacteria. However, their use still poses several challenges and limitations, especially in terms of managing the bacterial diseases of long-lived trees. A particular insight will be given into phage research focusing on controlling Pseudomonas syringae pathovars, Erwinia amylovora, Xanthomonas species, Ralstonia solanacearum, and Agrobacterium tumefaciens. Recent milestones, current challenges, and future avenues for phage therapy in the management of tree diseases are discussed.  相似文献   

18.
Crop plants exhibit reduced levels of disease resistance, but little is known about the specific resistance mechanisms that are affected by breeding for increased yields. We investigated basal and chemically induced resistance of two wild accessions and four cultivars (including one landrace and three ??modern??, yield-improved cultivars that have been produced by hybridisation and pedigree breeding) of common bean (Phaseolus vulgaris) under greenhouse and field conditions. After treatment with benzothiadiazole, a widely used inducer of systemic acquired resistance, plants were challenged with one of two bacterial pathogens (Pseudomonas syringae pv. syringae and Enterobacter sp. strain FCB1). Basal resistance to Pseudomonas in the wild accessions was significantly higher than in the cultivars. Moreover, benzothiadiazole-treatment elevated resistance to the same pathogen in a wild accession and the landrace, but not in the yield-improved cultivars. Similarly, benzothiadiazole-induced resistance to Enterobacter FCB1 was detected in both wild accessions and the landrace, whereas the same treatment enhanced susceptibility to Enterobacter FCB1 in two of the yield-improved cultivars. Basal resistance to Pseudomonas was highly (but negatively) correlated to induced resistance over all accessions, and basal and inducible resistance to Enterobacter FCB1 were negatively correlated for the cultivars, but not when considering all six accessions. Benzothiadiazole-treatment increased growth rates under pathogen pressure of the wild accessions but not the cultivars. Apparently, the yield-improved cultivars investigated here have lost a considerable part of the basal and induced broad-spectrum disease resistance that characterises their wild relatives and to some degree also the landrace. Two of the yield-improved cultivars even became highly susceptible to infection by an Enterobacter strain that has not yet been described as a pathogen of bean and that is likely to represent a common environmental or phyllosphere bacterium. Future studies should disentangle the effects of domestication on the various layers of plant resistance to pathogens and consider the potential of wild accessions and landraces for future breeding programmes.  相似文献   

19.
Pseudomonas syringae pv. actinidiae, the causal bacterium of kiwifruit canker, induces the formation of chlorotic halo lesions on infected leaves and inhibits the growth of Escherichia coli. The inhibition ofE. coli growth was shown to be reversed by L -arginine or L -citrulline, but not by L -glutamine, suggesting that the pathogen produces a toxin similar to phaseolotoxin, which inhibits ornithine carbamoyltransferase. The toxin was purified from culture broth of P. syringae pv. actinidiae strain Kw11, and was shown by nuclear magnetic resonance to be identical to phaseolotoxin. Assays based on inhibition of E. coli growth and on amplification of a phaseolotoxin fatty acid desaturase gene (ptx) fragment revealed that, among the plant pathogenic bacteria examined, the production of phaseolotoxin is restricted to strains of P. syringae pv. phaseolicola and pv.actinidiae . A non-toxigenic mutant of strain Kw11 generated by disruption of the ptx gene induced the formation of necrotic lesions on kiwifruit leaves; however, the lesions were not surrounded by a chlorotic halo as were those induced by the parent strain. The growth rate of the non-toxigenic mutant in leaf tissue was similar to that of the parent strain. These results suggest that phaseolotoxin production contributes to the formation of chlorotic halo lesions in kiwifruit canker but is not required for multiplication of the pathogenic bacterium during infection.  相似文献   

20.
In October 2010, a bacterial disease produced flecks and spots on leaves of Chinese cabbage, cabbage and Japanese radish in Nagano Prefecture, Japan. The symptoms started on the abaxial surface of leaves as angular, water-soaked flecks of 1–2 mm in diameter with a yellow halo of 3–4 mm width. These flecks then became visible on both leaf surfaces, enlarged and coalesced into large blight lesions. The symptoms were similar to bacterial leaf spot caused by Pseudomonas syringae pv. maculicola. The bacterium isolated from leaf lesions formed a white colony and produced polysaccharides on YP agar. The isolates were identified as P. syringae group by LOPAT tests and the 16S rDNA sequence. Moreover, the results of pathogenicity on cruciferous plants, bacteriological characteristics, rep-PCR and the sequences of rpoD and gyrB showed that the isolates should be identified as P. cannabina pv. alisalensis (recently transferred from P. syringae pv. alisalensis). This is the first report of P. cannabina pv. alisalensis isolated from diseased crucifers in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号