首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron microprobe studies on soil samples with varying heavy metal contamination. 2. Contents of heavy metals and other elements in aggregations of humic substances, litter residues and charcoal particles EMA point analysis show that the organic matter constituents of heavy metal contaminated soils are highly enriched with heavy metals. The maximal trace element accumulation were for Cu up to 13,000 mg/kg, for Zn up to 48,000 mg/kg, for Cd up to 2,100 mg/kg and for Pb up to 193,000 mg/kg. The affinity for the accumulation of the different heavy metals in aggregations of humic substances can be described by the sequence Cu > Pb ? Cd > Zn ? Ni > Co. In very strongly acidified humic top soil horizons the Pb and Cd accumulation in the organic matter constituents is in competition with the accumulation in Fe and Mn oxides. The heavy metal contents (especially of Cu) of the organic matter are often correlated with the content of organically bound calcium. The EMA results also show that high heavy metal amounts occur in combination with Ca-accumulations in the epidermis and the outer bark parenchym of decayed roots. EMA point analysis of the interior of fungus sclerotias show that sclerotias can contain high amounts of heavy metals, in particular lead (up to 49,700 mg Pb/kg). From statistical results of EMA point analysis follows that lead and other heavy metals attached to humic substances are not only bound as metal organic complexes but also as organic metal phosphate complexes. Also charcoal particles of polluted soils contain high amounts of heay metals. The accumulation affinity is quite similar to that of humic substances.  相似文献   

2.
The distribution of zinc, manganese, copper, cobalt, and nickel in Andosols was investigated. Sixty nine soil samples were collected from different horizons of an Andosols profile in Miyakonojo Basin in south Kyushu, Japan, The total contents of heavy metals were determined by digestion and four extraction solutions, 1 M NH4Ac (ammonium acetate) pH 4.5, 0.1 M HCl, 0.01 M EDTA (ethylenediaminetetraacetic acid) pH 6.5, and 0.005 M DTPA (diethylenetri-aminepentaacetic acid) pH 7.3 were used to determine the contents of available Zn, Mn, Cu, Co, and Ni in Andosols in relation to the organic carbon content. The results of the extraction analysis showed that by the use of 0.1 M H Cl high value of extracted heavy metals in the upper layers of the humus horizons were obtained while EDTA extraction yielded a large amount of the above mentioned metals in the high humus horizons. The extractable heavy metals contents were high and these metals closely related to the organic carbon content mostly in the humus horizons in the profile. Where, biocycling process may play an important role in the concentration of heavy metals. Based on the study, it was found that the total content of Zn increased towards the C horizons or pumice layers in the soil profile. Such a trend was also found in the case of the Mn content. While the Cu content in the humus horizons was much higher in the upper part of each humus horizon. According to this study the distribution of heavy metals, Cu (organic matter complexes) in the Andosols profile was more stable than that of Zn (organic matter complexes) in soils. It was shown that Zn in the surface humus horizon was enriched but that some amount was leached under buried conditions. The same phenomenon was also observed in the distribution of Mn in the profile. The movement of Co and Ni in the soil profile was limited, as evidenced by the sharp reduction in the concentrations of these two metals in buried soils.

Hence, it is concluded that the distribution of Zn, Mn, Cu, Co, and Ni was considerably higher in the humus horizons of the Andosols profiles.  相似文献   

3.
水稻子实对不同形态重金属的累积差异及其影响因素分析   总被引:3,自引:0,他引:3  
在分析成都平原核心区土壤重金属(Cd、Cr、Pb、Cu、Zn)全量、各形态含量及相应点位种植的水稻子实重金属含量的基础上,通过统计分析、空间插值及线性回归方程的模拟,研究了土壤Cd、Cr、Pb、Cu、Zn全量的空间分布状况、各形态重金属含量统计特征,以及水稻子实对重金属各形态的累积差异及其影响因素。结果表明,成都平原水稻土重金属污染较轻,除Cd外,均低于国家土壤环境质量二级标准。土壤中重金属的可交换态含量均较低,Cd主要以铁锰氧化态存在,Cr、Cu、Zn、Pb主要以残渣态存在。水稻子实对5种重金属的累积效应顺序为:Cd>Zn>Cu>Pb>Cr。与水稻重金属累积关系密切的重金属活性形态(可交换态、碳酸盐结合态、铁锰氧化物结合态和有机物结合态)主要有:Cd的碳酸盐结合态、Cr的可交换态、Pb的有机物结合态和Cu的碳酸盐结合态含量;Zn各活性形态对水稻子实含量的影响不明显。土壤理化性质对不同活性形态重金属元素的影响效应各不相同。活性态Cd主要受有机质、pH和容重的影响;活性态Cr与pH、有机质、CEC和容重密切相关;活性态Pb与有机质、容重、中细粉粒、砂粒等均有密切的关系;Cu的活性主要受粘粒、有机质含量的影响;Zn的有效性主要受pH、有机质、砂粒、容重的影响。总的看来,对土壤Cd、Cr、Pb、Cu、Zn各活性形态含量影响效应较强的是有机质、pH、容重,而与土壤吸附性能密切相关的颗粒组成、CEC的影响不甚明显。  相似文献   

4.
The solution phase forms of Cu, Mn, Ni, and Zn in digested sewage sludge and a soil/sludge mixture were investigated. Gel filtration chromatographic analysis indicated that Cu and possibly Ni were maintained in solution by association with a soluble, high molecular weight organic fraction; Mn solubility was due to the presence of unbound inorganic species and soluble Zn was distributed equally between the two forms. Speciation of the metals in the solution phase of the soil/sludge mixture generally reflected that of the sludge. However, the total amount of soluble Mn in the soil/sludge mixture was approximately 25 times greater than in the sludge and was attributed to heavy metal induced release of indigenous soil Mn. Increases in the quantities of soluble Ni and Zn in both the sludge and the soil/sludge mixture following equilibration with 40 mg L?1 NTA were due to conversion of solid phase forms to soluble metal-NTA complexes. The preferential complexation of NTA with Cu already present in soluble organic forms resulted in a change in speciation without a corresponding increase in solubility. The importance of changes in speciation with regard to potential metal mobility and bioavailability within sludge-amended soil is discussed.  相似文献   

5.
Tillage practices may reduce the organic matter content in near-surface soil horizons causing crust formation. Surface conditions may cause an increase in surface run-off, thus enhancing contaminant transfer of heavy metals or an acceleration in nutrient loss. This study examines the effect of applying crop residues to the surface of tilled soils on heavy metal losses by run-off. Losses in iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu) were analysed. Run-off and sediment yield were measured on 1 m2 plots using a rainfall simulator with a constant 65 mm/h intensity. Four successive rainfall applications were performed, the first three at 25 mm each and the last at 65 mm. Added corn straw varied between 0 and 4 t/ha in the five studied treatments. After 140 mm cumulative rainfall, total heavy metal losses were as follows: Fe from 137 to 950 mg/L, Mn from 2.3 to 12.83 mg/L, Cu from 0.09 to 0.72 mg/L and Zn from 0.31 to 2.46 mg/L. Dissolved fractions were as follows: Fe from 0.014 to 0.229 mg/L, Mn from 0.034 to 1.45 mg/L, Cu from 0.002 to 0.013 mg/L and Zn from 0.02 to 0.12 mg/L. Total concentrations of the studied elements decreased exponentially due to the effect of corn straw on soil loss. However, dissolved contents of Fe and Cu scarcely varied. Significant positive linear correlations were observed between total heavy metal content and soil and sediment loss by run-off. It is concluded that the addition of straw to a soil of low fertility prevents heavy metal loss.  相似文献   

6.
Solubility control of Cu, Zn, Cd and Pb in contaminated soils   总被引:21,自引:0,他引:21  
We developed a semiempirical equation from metal complextion theory which relates the metal activity of soil solutions to the soil's pH, organic matter content (OM) and total metal content (MT). The equation has the general form: where pM is the negative logarithm (to base 10) of the metal activity, and a, b and c are constants. The equation successfully predicted free Cu2+ activity in soils with a wide range of properties, including soils previously treated with sewage sludge. The significant correlation of pCu to these measured soil properties in long-contaminated soils suggests that copper activity is controlled by adsorption on organic matter under steady state conditions. An attempt was made from separate published data to correlate total soluble Cu, Zn, Cd and Pb in soils to soil pH, organic matter content and total metal content. For Cu, the total Cu content of the soil was most highly correlated with total soluble Cu. Similarly, total soluble Zn and Cd were correlated with total metal content, but were more strongly related to soil pH than was soluble Cu. Smaller metal solubility in response to higher soil pH was most marked for Zn and Cd, metals that tend not to complex strongly with soluble organics. The organic matter content was often, but not always, a statistically significant variable in predicting metal solubility from soil properties. The solubility of Pb was less satisfactorily predicted from measured soil properties than solubility of the other metals. It seems that for Cu at least, solid organic matter limits free metal activity, whilst dissolved organic matter promotes metal solubility, in soils well-aged with respect to the metal pollutant. Although total metal content alone is not generally a good predictor of metal solubility or activity, it assumes great importance when comparing metal solubility in soils having similar pH and organic matter content.  相似文献   

7.
Abstract

Environmental changes and management practices which alter soil properties may affect the capacity of soils to sorb trace metals, such as copper (Cu), zinc (Zn), and cadmium (Cd), and thus influence the bioavailability and leach ability of the metals. Two agricultural soils were treated to partially oxidize organic matter and to decrease soil pH for evaluating the effects of acidification and organic matter oxidation on trace metal sorption onto soils. For the one soil with a pH value of 6.74 and organic carbon (C) content of 46.9 g‐kg‐1, loss of 11% of its organic matter reduced by 97, 72, and 62% the original sorption capacity for Cu, Zn, and Cd, respectively, while the corresponding values caused by acidifying the soil one pH‐unit were 32, 16, and 29%. For the another soil with a pH of 4.69 and organic C content of 16.3 g‐kg‐1, a decrease in pH by one unit resulted in a loss of 43, 21, and 52% of the sorption capacity for Cu, Zn, and Cd, respectively.  相似文献   

8.
A combination of the pH-dependent leaching test CEN/TS 14429 and geochemical modelling (LeachXS©-ORCHESTRA) was used to evaluate the partitioning of major, minor and trace elements in relation to their phosphorus retention capability, the release of non-nutrient constituents, their reduction of soil acidity and their organic matter retention. One Australian soil sample and two different soil amendments (Red Lime and Alkaloam) were studied. The pH-dependent leaching test showed that the acid neutralization capacity and the phosphorus retention of the soil were improved, respectively, by a factor of two to five and by a factor of two to ten after addition of these amendments. The amendments improved retention of dissolved organic matter (by a factor of 3–10) and did not increase leachability of undesired contaminants. The partitioning as obtained from modelling between free and dissolved organic-carbon-bound metals provides insight into the potential for uptake (bioavailability). This partitioning is very pH-dependent and therefore testing and associated chemical speciation modelling provide valuable information for judging traditional soil improvers and soil amendments, including the waste-derived soil amendments Alkaloam and Red Lime.  相似文献   

9.
Street sediment collected in Sault Ste. Marie, Ontario was examined for trace element composition (As, Cd, Cr, Cu, Fe, Pb, Hg, Ni and Zn) and the metal partitioning to various sediment properties was determined by sequential extraction. Total Ni, Cu, Zn and Pb concentrations exceeded the lowest effect levels specified in the Ontario Provincial Sediment Quality Guidelines for Metals (Environment Ontario, 1992) and derived from bioassay studies. According to these Guidelines, the disposal of such sediment has to be guided by environmental considerations. A significant fraction of these metals was extractable in 0.5 N HCl over a 12-hour period and considered as potentially bioavailable. The major accumulative phases of toxic metals in this sediment are exchangeable, carbonate, Fe/Mn oxides and organic matter but the relative importance of each phase varied for individual metals. Approximately 20% of the total extractable Cd is found in each of these four fractions. Pb, Zn and Mn are predominantly bound to carbonates, Fe/Mn oxides and organic matter. Cu shows a high affinity for organic matter and to a lesser extent for carbonates. Elevated levels of Cd, Pb, Cu, Zn, Mn and Cr in the exchangeable and/or soluble phase suggest that sediment associated metals, mobilised from streets in Sault Ste. Marie during runoff and snowmelt, would adversely impact water quality in the receiving waters. However, large fractions of the total metal load are associated with coarser particles which are unlikely to be transported through the drainage system into receiving waters.  相似文献   

10.
Abstract

The effect of bacterial inoculation of Rhizobium fredii HN01 on the immobilization and speciation of Cu, Zn, and Cd was studied in Red and Cinnamon soil which are typical Chinese soils. The soil was mixed with bacterial suspension for one week followed by an immobilization of each heavy metal for another week. The total binding and fractionation of heavy metals in soils were analyzed. As compared with the control, the retention of total Cu, Zn, and Cd in Red soil increased by 28, 16, and 28%, respectively, in the presence of rhizobia. The amount of exchangeable, NH4OAc-extractable, Mn oxides-bound and organic matter-bound Cu increased by 23–123%. There were significant decrease of exchangeable Cu and marked increases of NH4OAc-extractable and Mn oxide-bound Cu in Cinnamon soil with the presence of rhizobial cells, although no changes for the total retention of Cu were observed. The amount of exchangeable Zn in Red soil-rhizobia composite was 20% greater than that of the no-rhizobia soil. Addition of rhizobia also increased exchangeable Cd and specifically-adsorbed Cd by 25 and 93%, respectively, in Red soil. No considerable differences were found for the total immobilization of Zn and Cd as well as their distribution in various solid fractions of Cinnamon soil in the absence and presence of rhizobial cells. In terms of soil components, it is assumed that bacterial biomass had a relatively less impact on the species of heavy metals bound with Fe oxides. Results suggested that the retention and speciation of heavy metals in soil are governed largely by the interactions of bacteria with various inorganic and organic soil constituents. The data are useful in understanding the impact of microorganisms on the behavior, mobility and transformation of heavy metals in soil environments.  相似文献   

11.
Soil/solution partitioning of trace metals (TM: Cd, Co, Cr, Cu, Ni, Sb, Pb and Zn) has been investigated in six French forest sites that have been subjected to TM atmospheric inputs. Soil profiles have been sampled and analysed for major soil properties, and CaCl2‐extractable and total metal content. Metal concentrations (expressed on a molar basis) in soil (total), in CaCl2 extracts and soil solution collected monthly from fresh soil by centrifugation, were in the order: Cr > Zn > Ni > Cu > Pb > Co > Sb > Cd , Zn > Cu > Pb = Ni > Co > Cd > Cr and Zn > Ni > Cu > Pb > Co > Cr > Cd > Sb , respectively. Metal extractability and solubility were predicted by using soil properties. Soil pH was the most significant property in predicting metal partitioning, but TM behaviour differed between acid and non‐acid soils. TM extractability was predicted significantly by soil pH for pH < 6, and by soil pH and Fe content for all soil conditions. Total metal concentration in soil solution was predicted well by soil pH and organic carbon content for Cd, Co, Cr, Ni and Zn, by Fe content for Cu, Cr, Ni, Pb and Sb and total soil metal content for Cu, Cr, Ni, Pb and Sb, with a better prediction for acidic conditions (pH < 6). At more alkaline pH conditions, solute concentrations of Cu, Cr, Sb and Pb were larger than predicted by the pH relationship, as a consequence of association with Fe colloids and complexing with dissolved organic carbon. Metal speciation in soil solutions determined by WHAM‐VI indicated that free metal ion (FMI) concentration was significantly related to soil pH for all pH conditions. The FMI concentrations of Cu and Zn were well predicted by pH alone, Pb by pH and Fe content and Cd, Co and Ni by soil pH and organic carbon content. Differences between soluble total metal and FMI concentrations were particularly large for pH < 6. This should be taken into account for risk and critical load assessment in the case of terrestrial ecosystems.  相似文献   

12.
Toxic trace metals may percolate to the ground water from sewage sludge disposed onto land. Analyses are presented of the soil solution from a slightly acid loamy soil treated 7 years earlier with single applications of digested sewage sludge in amounts equivalent to 0, 150 & 330 t dry matter ha−1
These very heavy dressings correspond to 2 & 4.5 times the recommended 30–year limit. Samples of soil and soil solution from four depths to 80 cm were analysed for Al, B, Ba, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, S, Sr, V, Zn, together with the OM of the soil, and the pH, alkalinity, dissolved organic carbon, and absorbance at 350 nm of the solutions.
These very heavy sludge applications were apparently still releasing substantial quantities of NO3, and some SO4 even after 7 years. Nitrate, SO4, Mg, Ca, Sr, B, and possibly Ba are still moving through the profile, possibly to the ground water. Solution concentrations of Cu and Zn are considerably higher at all depths than those in the untreated plot, but they fall off sharply with depth. It is unlikely that any Cu or Zn is now reaching the ground water.
The paper also presents a set of published solution analyses for soils, sludge–treated soils and digested sludge, as a basis for further studies.  相似文献   

13.
Purpose

The effect of Cu, Zn, and Pb high rates on the physical properties and organic matter of Haplic Chernozem (Clayic) (A1 horizon 0–20 cm) under model experimental conditions was studied.

Materials and methods

In a model experiment, soil samples of Haplic Chernozem (Clayic) were artificially contaminated with 2000 mg/kg of Cu, Zn, and Pb acetates added separately. The particle-size fraction, the microaggregates distribution, the structural status, the total content and fractional and group composition of organic matter, physico-mechanical properties were determined in soil without metals and soil contaminated with metals.

Results and discussion

At the soil contamination with Cu, Zn, and Pb, the content of organo-mineral colloids increased, which results to the increasing of the clay fraction content by 4.5% compared to the control. The analysis of the microaggregate size composition of the studied soil shows that the content of coarser aggregates (1–0.25 mm) increases and the content of finer (0.05–0.001 mm) aggregates decreases after the addition of HMs and correspond to the HMs series: Cu → Zn → Pb. A significant decrease in the coefficient of water stability in the control from 3.0 to 1.4–1.5 in the contaminated treatments. The structural status (estimated from total agronomically valuable aggregates) changes from excellent to good. The addition of Cu, Zn, and Pb to the soil affects the quantitative composition of organic matter. The contents of free and sesquioxide-bound humic acids and free fulvic acids increased. The contamination with Zn and Pb causes the aliphatization of organic matter.

Conclusions

Under conditions of model experiment, the contamination of Haplic Chernozem (Clayic) with high rates of Cu, Zn, and Pb leads to changes of the microaggregates distribution, the structural status, and the qualitative composition of organic matter.

  相似文献   

14.
施用碱稳定固体的酸性土壤的Cu和Zn的形态分布   总被引:2,自引:1,他引:2  
LUO Yong-Ming 《土壤圈》2002,12(2):165-170
Fractionation of metals in a granite-derived acid sandy loam soil amended with alkaline-stabilised sewagesIudge biosolids was conducted in order to assess metal bioavailability and environmental mobility soil solution was extracted by a centrifugation and filtration technique. Metal speciation in the soil solution wasdetermined by a cation exchange resin method. Acetic acid and EDTA extracting solutions were used forextraction of metals in soil solid surfaces. Metal distribution in different fractions of soil solid phase was determined using a three-step sequential extraction scheme. The results show that the metals in the soilsolution existed in different fractions with variable lability and metals in the soil solid phase were also presentin various chemical forms with potentially different bioavail ability and environmental mobility Alkaline-stabilised biosolids could elevate solubility of Cu and proportion of Cu in organically complexed fractionsboth in soil liquid and solid phases, and may therefore increase Cu mobility. In contrast, the biosolids lowered the concentrations of water-soluble Zn (labile fraction) and exchangeable Zn and may hence decrease bioavailability and mobility of Zn. However, Fe and Mn oxides bound and organic matter bound fractions are likely to be Zn pools in the sludge-amended soil. These consequences possibly result from the liming effect and metal speciation of the sludge product and the difference in the chemistry between the metals in soil.  相似文献   

15.
This study investigated the effect of different farming practices over long time periods on the sorption‐desorption behavior of Cu, Cd, and Zn in soils. Various amendments in a long‐term field experiment over 44 y altered the chemical and physical properties of the soil. Adsorption isotherms obtained from batch sorption experiments with Cu, Cd, and Zn were well described by Freundlich equations for adsorption and desorption. The data showed that Cu was adsorbed in high amounts, followed by Zn and Cd. In most treatments, Cd ions were more weakly sorbed than Cu or Zn. Generally, adsorption coefficients KF increased among the investigated farming practices in the following order: sewage sludge ≤ fallow < inorganic fertilizer without N ≈ green manure < peat < Ca(NO3)2 < animal manure ≤ grassland/extensive pasture. The impact of different soil management on the sorption properties of agricultural soils for trace metals was quantified. Results demonstrated that the soil pH was the main factor controlling the behavior of heavy metals in soil altered through management. Furthermore, the constants KF and n of isotherms obtained from the experiments significantly correlated with the amount of solid and water‐soluble organic carbon (WSOC) in the soils. Higher soil pH and higher contents of soil organic carbon led to higher adsorption. Carboxyl and carbonyl groups as well as WSOC significantly influenced the sorption behavior of heavy metals in soils with similar mineral soil constituents.  相似文献   

16.
Metal availability in soils is strongly related with sorption processes and the possible association of the metal ions with a particular particle-size fraction. Therefore, studies of metal retention by a soil will be aided if retention by different size fractions is also studied. Sorption of copper on a calcareous soil and its textural fractions was studied in batch assays. The soil was amended over 3 years with two agroindustrial residues, a composted olive mill sludge and vinasse. Sorption of Cu on the calcareous soil was very large (110 mmol kg−1) and was enhanced by both amendments. Metal retention by the clay fraction of the unamended soil was less than that of the whole soil, but increased dramatically after amendment with olive mill sludge. This was caused by the larger calcite content in this fraction as well as the increase in organic matter content. The amount of Cu sorbed was very large in the silt fraction, again because of the carbonate content of this fraction (300–460 g kg−1). Copper sorption decreased dramatically after removal of carbonate. Copper retention tended to be enhanced by organic amendments. This was particularly evident in the silt fraction, as a consequence of the organic matter accumulation in this fraction.
Copper sorption on the calcareous soil and its silt fractions (unamended and amended) was irreversible. By contrast, desorption was measurable from all the carbonate-free samples (both whole soil and textural fractions), although in all cases a large hysteresis was observed. We conclude that carbonate was the main component responsible for the lack of reversibility.  相似文献   

17.
The reactions of Ni, Zn and Cd with goethite were studied over a range of initial metal concentrations (10−6 to 10−4M), pH values (4 to 8), reaction times (2h to 42d) and temperatures (5 to 35°C). The adsorption of metals increased with pH, reaction time and temperature. Adsorption of Ni increased relative to Zn and Cd with increasing time and temperature. The initially rapid adsorption of metals within a few hours was followed by a much slower reaction linearly related to time1/2, interpreted as diffusion–controlled penetration of goethite. The pH–dependent relative diffusion rates (Ni > Zn > Cd) were influenced by both affinity for goethite surfaces and by ionic radius. Diffusion coefficients of the three metals ranged from about 10−19to 10−20cm2s−1. The corresponding activation energies of diffusion were also calculated (Ni 35, Cd 55, Zn 90 kJ mol−1). Our view about the reactions of heavy metals with goethite involves (i) adsorption of metals on external surfaces, (ii) solid–state diffusion of metals from external to internal binding sites, and (iii) metal binding and fixation at positions inside the goethite particles. The general parameters of these processes are related to the hydrolytic properties (p K values) and the ionic radii of the metals. The results show that goethite may be an efficient sink for trace metals.  相似文献   

18.
The stabilization of organic matter in soil by interaction with aluminium (Al) or allophane is important in maintaining soil quality, and in retarding the decomposition of soil organic matter. Complexation of Al by soil organic matter may also ameliorate Al toxicity. Here we use 13C-NMR spectroscopy to assess the interaction of soil organic matter with both Al and allophane in two poorly drained podzols containing only trace amounts of iron. The 13C-NMR spectrum of the subsoil of the allophane-rich One Tree Point podzol shows an intense peak at 179 p.p.m., assigned to carbon in carboxylic acids. This peak shifts to 177 p.p.m. after removal of allophane (11% of the soil mass) by treatment with HF. We infer that the carboxyl groups in the organic matter are bonded to structural Al on the surface of allophane spherules. In the non-allophanic Te Kopuru podzol, on the other hand, the organic matter apparently interacts with Al ions in the soil solution. This soil also has more aromatic carbon and fewer carbons in carboxyl and carbohydrate structures than the allophanic sample. There is an indication that allophane stabilizes carbohydrate groups as well as carboxyl groups.  相似文献   

19.
An indicator to evaluate the proportion of exogenous organic matter (EOM) remaining in soils over the long-term after application has been developed. A database was constructed with analytical data corresponding to 83 EOMs, including sludges, composts, animal wastes, mulches, plant materials and fertilizers. The data included results of proximal analysis (soluble, SOL, hemicellulose-, HEM, cellulose-, CEL, and lignin-like, LIC, fractions, in g kg−1 total organic matter) and of carbon (C) mineralization during long-term incubations under laboratory conditions (in g kg−1 exogenous organic C, EOC). The potential residual organic C after EOM application to soil was assessed from the extrapolation of the incubation results. Then, partial least square regression was used to relate EOM characteristics to the proportion of potentially residual organic C previously determined from the incubations. The biochemical fractions of EOM were not predictive enough to develop the indicator. The proportion of organic C mineralized during 3 days of incubation (C3d) was cumulated and appeared to be the most predictive variable of residual organic C. The proposed indicator of residual organic carbon in soils (expressed as g EOC kg−1) was IROC = 445 + 0.5 SOL – 0.2 CEL + 0.7 LIC – 2.3 C3d. The indicator was calculated for the main types of EOM applied to soils. When compared with the few field data of residual C measured in long-term field experiments, the values provided by the indicator seemed to be over-estimated (i.e. EOC degradation could be faster under field conditions than during laboratory incubations).  相似文献   

20.
We studied the properties of the soluble and dispersed compounds of Cu, Mn, Co, Ni, Pb, Zn, and Cd formed by the action of aerobically decomposing plant matter on the respective metal oxides. The metals were mobilized partly in association with colloidal humified organic matter, and partly in true solution as complexes that seemed to be anionic. In the presence of a clay soil there was no net mobilization of colloidally bound Cu, but the dialysable Cu complex was not appreciably sorbed by the mineral colloids and was leached from the reaction mixture. The metals were not precipitated under alkaline conditions from the dialysable complex forms. Material with similar complexing properties was found in the dialysable fractions of a soil organic matter extract, of water squeezed from a raw peat, and of laboratory lysimeter solutions from a podzol under Calluna. Below about pH 6 the exchange of Cu on a soil clay was not affected by the presence of colloidal decomposition products of lucerne. With Co, Ni, and Zn the corresponding pH value was about 4, and the critical value for Cu in the presence of colloidal soil organic matter was also about 4. Below these values the metal and organic matter sorption curves were diametrically opposed so that under these conditions Cu is apparently not strongly bonded to colloidal organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号