首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The influence of dietary protein/lipid levels on growth and survival in juvenile crayfish (Procambarus acanthophorus) was evaluated during a 12‐week nutritional trial. Twenty experimental diets were formulated containing different protein (200, 250, 300, 350 and 400 g kg?1) and lipid (60, 80, 100 and 120 g kg?1) levels. A bifactorial model (5 × 4) was used with three replicates and 15 crayfish (0.014±0.006 g) per replicate, in a recirculation system with 60–15 L rectangular tanks and a biological filter, the culture conditions were a photoperiod of 12:12 h L:D and temperature 24.7±1.0 °C. Total survival ranged from 66.6% to 86.6%, with no differences attributed to treatments. Dietary protein levels had a significant effect on growth gain and nutritional efficiency; in contrast, lipid levels had no effect on juvenile performance. The 250/120 (protein/lipid) treatment promoted the most efficient growth (final weight: 3.09 g, weight gain: 21 995%, specific growth rate: 3.35% day?1); the less efficient growth was observed in juveniles fed with 400 g kg?1 protein diets. The quadratic regression model indicated 279 g kg?1 as the optimal protein level for crayfish growth, while levels between 211 and 232 g kg?1 could minimize the feeding costs without affecting growth.  相似文献   

2.
We evaluated the effect of dietary protein and lipid on growth and body composition in juvenile red swamp crayfish (Procambarus clarkii). Nine groups of crayfish were fed nine experimental diets containing three levels of protein (24, 27, and 30 %) and three levels of lipid (4, 7, and 10 %) for 8 weeks. We used a 3 × 3 factorial model with four replicates and 12 crayfish (initial average weight, 2.52 ± 0.04 g) per replicate. We measured weight gain ratio (WG), specific growth rate (SGR), and body composition. WG and SGR were significantly (P < 0.05) affected by dietary lipid but not significantly (P < 0.05) affected by dietary protein. When grouped by lipid levels, the WG of crayfish fed diets containing 7 % lipid was higher than that of crayfish fed diets containing 4 or 10 % lipid. The diet containing 30 % protein and 7 % lipid promoted the most efficient growth (WG: 483.38 %, SGR: 3.14 % day?1). Dietary protein and lipid had no effect on condition factor or the viscous content (VC). Dietary protein, but not lipid, had a significant (P = 0.038) effect on the muscle content (MC). Crayfish fed a diet containing 27 % protein and 4 % lipid had the highest (P < 0.05) MC (16.16 %). Dietary protein levels also had a significant (P = 0.04) effect on the shell content (SC). SC was higher in crayfish fed a 30 % protein diet than in those fed 24 or 27 % protein. Proximate analysis suggested that crayfish fed a diet containing 27 % protein had a significantly higher nutritive composition than fish fed 24 or 30 % protein. Dietary protein also affected both whole body and muscle dry matter (DM) content. Similarly, both dietary protein and lipid affected whole-body crude lipid. Hepatopancreas DM, lipid content, and protein content were affected by dietary lipid. In conclusion, a diet containing 4–7 % lipid and 27 % protein with a protein to digestible energy ratio of 17–21 g protein·MJ?1 appeared optimal.  相似文献   

3.
The effects of dietary calcium chloride (CaCl2) concentration on the growth, survival, moulting and body composition of Astacus leptodactylus were studied. Diets were prepared using supplementation of 0 (control), 30, 60 and 120 g kg?1 calcium chloride commercial trout larvae diet containing 50% protein and 12% lipid. Astacus leptodactylus larvae with an average total length of 22.0 ± 0.05 mm (TL) and weight of 0.53 ± 0.01 g obtained from eighteen ovigerous females collected from Seydisehir Sugla Dam lake in Konya, Turkey, were stocked in 0.2‐m2 aquariums at a rate of 50 crayfish m?2 and reared for 90 days. The experiments included four treatments (diets) with three replicates each. Calcium chloride exerted positive effects on growth, moulting frequency, feed efficiency and survival of narrow‐clawed crayfish. Crayfish fed with 60 g calcium kg?1 calcium chloride‐supplemented diet exhibited the highest weight gain and specific growth rate (SGR) but the lowest survival rate (63.3%) (P < 0.05). There were no significant differences (P > 0.05) in mean moisture (803.5 g kg?1) and protein content (177.0 g kg?1) in crayfish tail meat. However, lipid values were between 3.8 and 11.6 g kg?1 and significantly different among the diets (P < 0.05). Diet with 60 g kg?1 calcium chloride is recommended for the best growth of freshwater crayfish.  相似文献   

4.
A 126‐day experiment was carried out under controlled conditions to compare the effects of five levels (0.5, 1.0, 1.5, 2.0 and 2.5 g kg?1) of dietary nucleotide (Vannagen®) on the growth performance and biological indices of juvenile crayfish (8.25 ± 0.39 g). The protein efficiency ratio (PER, 1.69–2.17), lipid efficiency ratio (LER, 2.29–3.00), energy efficiency ratio (EER, 2.68–3.65), protein productive value (PPV, 57.01–68.95%), lipid productive value (LPV, 63.02–75.15%) and energy productive value (EPV, 68.20–88.15%) increased significantly (P < 0.05) as linear response to increased dietary nucleotide from 0.5 to 2.5 g kg?1 in the feed. With an increase in the dietary nucleotide, the uricase activity (654.29–827.63 U g?1) and lactobacillus count to total count ratio (1.21–2.17) of crayfish fed the experimental diets increased significantly (P < 0.05). Crayfish fed the diets containing different levels of nucleotide (from 0.5 to 2.5 g kg?1) had higher phenoloxidase activity (1.57–2.11 U min?1) than that of control after air exposure challenge. At the levels tested, 2 g kg?1 nucleotide in the diet was considered optimum for growth performance, digestibility and immune responses. It can be concluded that dietary nucleotide exerted positive effects on growth performance, feed utilization and accelerate crayfish immune response against air exposure challenge.  相似文献   

5.
This study determined the effect of different dietary protein and lipid levels on growth and survival of juvenile redclaw Cherax quadricarinatus. Nine practical test diets were formulated to contain three crude protein (CP) levels [260, 310 and 360 g kg?1, equivalent to 225, 260 and 296 g kg?1 digestible protein (DP) respectively] at three crude lipid (CL) levels (40, 80 and 120 g kg?1, equivalent to 38, 67 and 103 digestible lipids respectively), with digestible protein : digestible energy (DP : DE) ranging from 14.6 to 22.6 mg protein kJ g?1. Three replicate groups of 15 crayfish (initial weight mean ± SD, 0.71 ± 0.13 g) per diet treatment were stocked in 40 L tanks, at 28 °C for 60 days. The highest mean weight, specific growth rate and biomass, with values of 7.0 g, 3.67% day?1, and 370.2 g m?2, respectively, were achieved by feeding a diet with P : L = 310 : 80 (P < 0.05). The treatments resulted in a survival rate of 80–91%, feed conversion ratio of 1.08–1.61 and protein efficiency ratio of 2.24–3.08. Results indicated that a diet containing 270 g kg?1 DP (equivalent to 320 g kg?1 CP), 75 g kg?1 digestible lipid (DL) with a DP/DE of 18.4 mg protein kJ?1, and 0.031 g protein per animal per day was optimum for juvenile C. quadricarinatus under the tested experimental conditions.  相似文献   

6.
The influence of dietary lipid level was evaluated on growth, survival, and molting of yearling narrow clawed crayfish, Astacus leptodactylus. Yearling crayfish were fed five isonitrogenous diets (35% protein), formulated to contain 4%, 7%, 10%, 13%, or 16% lipid. Crayfish (10.1 ± 1.6 g) were reared for 56 days in 60-L fiberglass tanks at 23 ± 1.7 °C, with flow-through water and continuous aeration. At the end of the trial, crayfish fed 13% lipid had the highest weight gain and specific growth rate, significantly different from crayfish fed 4% and 7% lipid (p < 0.05). Crayfish fed 13% lipid had a significantly higher survival rate (86.7%) than the animals fed 4% lipid (71%) (p < 0.05). Molting was not affected by lipid level (p > 0.05). We recommend 13% dietary lipid level for optimum growth and survival of Astacus leptodactylus in intensive cultivation.  相似文献   

7.
Triplicate groups of juvenile American eel, Anguilla rostrata, initial weight 8.2 ± 0.24 g, were fed to satiation herring meal based diets formulated with digestible protein/digestible energy (DP/DE) ratios of 19, 20, 21, 22 and 23 g DP MJ DE?1 (as‐fed basis) for 84 days. Data were collected to determine the effect of dietary DP/DE ratio on feed intake (FI), mean weight (MW), specific growth rate (SGR), feed conversion ratio (FCR), apparent digestibility (AD) of major nutrients, rate of phosphate excretion (RPE) and nutrient retention efficiency (RE). Highest MW, SGR and lowest FCR (P < 0.05) were achieved by feeding 22 g DP MJ DE?1 with values (mean ± SE) of 22.9 ± 0.07 g fish?1, 1.23 ± 0.033% day?1 and 0.91 ± 0.075 g feed g gain?1, respectively. With exception of lipid, digestibility of all nutrients were the same (P > 0.05) with mean AD coefficients for organic matter, protein, energy and phosphorous of 86.3, 94.1, 89.2 and 34.7%, respectively. Lipid AD was significantly higher (P < 0.05) when DP/DE ratio was 21, 22 or 23 g DP MJ DE?1 at 92.3% as opposed to when DP/DE ratio was 19 or 20 g DP MJ DE?1 at 90.3%. The DP/DE ratio had no significant effect (P > 0.05) on RPE and it averaged 0.05 ± 0.002 g phosphate kg fish?1 day?1. Nitrogen retention efficiency (NRE) significantly (P < 0.05) increased as DP/DE ratio increased to 21 g DP MJ DE?1 and was similar thereafter (P > 0.05) at an average of 31.6 ± 0.67%. Energy retention efficiency (ERE) significantly (P < 0.05) increased to 42.9 ± 1.24% as DP/DE ratio increased to 22 g DP MJ DE?1 and thereafter significantly (P < 0.05) decreased. Lipid retention efficiency (LRE) increased significantly (P < 0.05) to 75.7 ± 0.85% as dietary DP/DE ratio increased to 23 g DP MJ DE?1. Non‐linear quadratic regression of ERE against dietary DP/DE ratio yielded an estimated optimum DP/DE ratio for juvenile American eel of 22.1 g DP MJ DE?1.  相似文献   

8.
A growth experiment was conducted to investigate effect of dietary protein to energy ratios on growth and body composition of juvenile Myxocyprinus asiaticus (initial mean weight: 10.04 ± 0.53 g, mean ± SD). Nine practical diets were formulated to contain three protein levels (340, 390 and 440 g kg?1), each with three lipid levels (60, 100 and 140 g kg?1), in order to produce a range of P/E ratios (from 22.4 to 32.8 mg protein kJ?1). Each diet was randomly assigned to triplicate groups of 20 fish in 400‐L indoors flow‐through circular fibre glass tanks provided with sand‐filtered aerated freshwater. The results showed that the growth was significantly affected by dietary P/E ratio (P < 0.05). Fish fed the diets with 440 g kg?1 protein (100 and 140 g kg?1 lipid, P/E ratio of 31.43 and 29.22 mg protein kJ?1) had the highest specific growth rates (SGR) (2.16 and 2.27% day?1, respectively). However, fish fed the diet with 390 g kg?1 protein and 140 g kg?1 lipid showed comparable growth (2.01% day?1), and had higher protein efficiency ratio (PER), protein productive value (PPV) and energy retention (ER) than other groups (P < 0.05). No significant differences in survival were found among dietary treatments. Carcass lipid content was positively correlated with dietary lipid level, but irrespective of protein level and inversely correlated with carcass moisture content. Carcass protein contents increased with increasing dietary lipid at each protein level. The white muscle and liver composition showed that lipid increased with increasing dietary lipid level (P < 0.05). Dietary protein concentrations had significant effect on condition factor (CF), hepatosomatic index (HSI) and viscerosomatic index (VSI) (P < 0.05). However, dietary lipid concentrations had no significant effect on CF, HSI (P > 0.05). Based on these observations, 440 g kg?1 protein with lipid from 100 to 140 g kg?1 (P/E ratio of 29.22 to 31.43 mg protein kJ?1) seemed to meet minimum requirement for optimal growth and feed utilization, and lipid could cause protein‐sparing effect in diets for juvenile Chinese sucker.  相似文献   

9.
A 30‐day feeding experiment was conducted in blue tanks (70 × 50 × 60 cm, water volume 180 L) to determine the effects of dietary lipid levels on the survival, growth and body composition of large yellow croaker (Pseudosciaena crocea) larvae (12 days after hatchery, with initial average weight 1.93 ± 0.11 mg). Five practical microdiets, containing 83 g kg?1 (Diet 1), 126 g kg?1 (Diet 2), 164 g kg?1 (Diet 3), 204 g kg?1 (Diet 4) and 248 g kg?1 lipid (Diet 5), were formulated. Live feeds (Artemia sinicia nauplii and live copepods) were used as the control diet (Diet 6). Each diet was randomly assigned to triplicate groups of tanks, and each tank was stocked with 3500 larvae. During the experiment, water temperature was maintained at 23(±1) °C, pH 8.0 (±0.2) and salinity 25 (±2) g L?1. The results showed that dietary lipid significantly influenced the survival and growth of large yellow croaker larvae. Survival increased with the increase of dietary lipid from 83 to 164 g kg?1, and then decreased. The survival of larvae fed the diet with 83 g kg?1 lipid (16.1%) was significantly lower than that of larvae fed other diets. However, the survival in larvae fed the diet with 16.4 g kg?1 lipid was the highest compared with other artificial microdiets. Specific growth rate (SGR) significantly increased with increasing dietary lipid level from 83 to 164 g kg?1 (P < 0.05), and then decreased. The SGR in larvae fed the diet with 164 g kg?1 lipid (10.0% per day) was comparable with 204 g kg?1 lipid (9.6% per day), but were significantly higher than other microdiets (P < 0.05). On the basis of survival and SGR, the optimum dietary lipid level was estimated to be 172 and 177 g kg?1 of diet using second‐order polynomial regression analysis respectively.  相似文献   

10.
A feeding trial was conducted using isoenergetic practical diets to evaluate the effects of the dietary protein level on growth performance, feed utilization and digestive enzyme activity of the Chinese mitten crab, Eriocheir sinensis. Four experimental diets were formulated containing 250, 300, 350 and 400 g kg?1 protein and 16 kJ g?1 gross energy. Each diet was randomly assigned to triplicate groups of juvenile crab with mean initial body weight 3.56 ± 0.16 g and mean shell width 15.31 ± 0.06 mm. Juvenile crab were reared in indoor flow‐through system consisting of 12 plastic tanks (1.0 m × 0.6 m × 0.5 m) and fed diets twice daily at 6–8% of body weight for 12 weeks. Performance was judged on the basis of growth (specific growth rate of weight, SGRG; specific growth rate of shell width, SGRSW), feed conversion ratio (FCR) and protein efficiency ratio (PER). A decreased FCR was observed with increasing dietary protein levels. Both SGRG and SGRSW significantly increased with increasing dietary protein levels up to 350 g kg?1, whereas there were no significant differences for protein levels from 350–400 g kg?1. Application of broken line regression analysis to SGRG provided an estimate of 347.8 g kg?1 dietary protein for maximal growth. The highest PER was observed in crab fed the diet containing 350 g kg?1 protein (P < 0.05). The percent survival was not affected (P > 0.05) by the different dietary treatments. No significant differences were observed in the apparent digestibility coefficients of crude lipid and dry matter among dietary treatments (P > 0.05). However, the apparent digestibility coefficients of crude protein and energy in crab fed different protein levels significantly increased with increasing dietary protein level (P < 0.05). Both amylase and protease activities in the intestine of E. sinensis were studied. The amylase activity decreased significantly (P < 0.05) with increased dietary protein level and protease activity increased. Regression analysis showed a negative effect of inclusion of dietary protein level on amylase activity (P < 0.05). However, protease activities were found to be positively correlated (P < 0.05) with dietary protein level. The protein content of the crab significantly increased with dietary protein levels up to 350 g kg?1 (P < 0.05), but no significant differences (P > 0.05) were founded with protein levels higher than 350 g kg?1.  相似文献   

11.
Nine isoenergetic (18.5 kJ g?1) diets were formulated in a 3 × 3 factorial design to contain three protein levels (350, 400 and 450 g kg?1) for each of three lipid levels (65, 90 and 115 g kg?1), respectively, and fed twice daily for 8 weeks to fish of mean initial weight 3.34 ± 0.02 g reared in a re‐circulatory water system. Temperature, pH and dissolved oxygen (DO) were maintained within the range 28–30 °C, 5.6–6.8 and 4.82–6.65 mg L?1 respectively throughout. Results show that fish survival was better in the groups fed 65 g kg?1 lipid while growth performance (% weight gain, WG; specific growth rate, SGR) and nutrient utilization (feed conversion ratio, FCR; protein efficiency ratio, PER; protein intake, PI) in the 65/450 and 90/450 g kg?1 treatments were similar and significantly (P < 0.05) higher than in fish fed the other lipid/protein ratio combinations. The body indices monitored (Hepatosomatic index, HSI and viscerosomatic index, VSI) were similar among the treatments whereas intestinal lipase activity was not significantly (P < 0.05) affected by increase in dietary lipid and protein levels. Carcass composition showed that dietary protein level affected body protein content positively in the 65 and 90 g kg?1 lipid treatments, but dietary lipid level did not affect body lipid content. A lipid/protein ratio of 65/450 g kg?1 is considered adequate for good growth performance and survival of Channa striatus fry.  相似文献   

12.
An 8‐week feeding experiment was conducted in a water flow‐through system (26–28 °C) to determine the dietary threonine requirement of fingerling Labeo rohita (3.90±0.03 cm; 0.58±0.02 g). Growth, feed utilization and body composition of fish fed test diets (40% crude protein; 17.9 kJ g?1 gross energy) with graded levels of l ‐threonine (0.75%, 1.0%, 1.25%, 1.50%, 1.75% and 2.0% dry diet) to apparent satiation were response variables used to assess threonine adequacy. Diets were made isonitrogenous and isoenergetic by adjusting the levels of glycine and dextrin. The amino acid profiles of the test diets were formulated to that of 40% whole chicken egg protein except for threonine. The performance of fish fed experimental diets was evaluated using calculated values for weight gain (g fish?1), feed conversion ratio (FCR), protein efficiency ratio (PER) and protein productive value (PPV) data. Maximum weight gain (g fish?1) (1.79), lowest FCR (1.39), highest PER (1.76) and PPV (0.33) were recorded at 1.50 g per 100 g dietary threonine. Statistical analysis of weight gain, FCR, PER and PPV data reflected significant differences (P<0.05) among treatments. Except for reduced growth performance in fish fed threonine‐deficient diets, no deficiency signs were noted. Weight gain, FCR, PER and PPV data were also analysed using second‐degree polynomial regression analysis to obtain a more accurate threonine requirement estimate, which was found, using each response variable, to be at 1.70, 1.63, 1.65 and 1.51 g per 100 g of dry diet, corresponding to 4.2, 4.07, 4.12 and 3.77 g per 100 g of dietary protein respectively. Based on the second‐degree polynomial regression analysis of the live weight gain, FCR, PER and PPV data, the optimum dietary level of threonine for fingerling L. rohita was found to be in the range of 1.51–1.70 g per 100 g of the dry diet, corresponding to 3.77–4.2 g per 100 g of dietary protein.  相似文献   

13.
A 18‐week feeding trial was carried out under controlled conditions to compare the effects of onion powder (OP) at six levels (5, 10, 20, 30, 40 and 50 g/kg) on the growth performance, nutritional efficiency indices, hemolymph indices and fillet organoleptic properties of juvenile (5.62 ± 0.39 g) crayfish. The significantly (< .05) highest values of final weight (71.30 g) and SGR (2.02% per day) and the lowest FCR (1.03) were observed in the juvenile crayfish fed the diet containing 40 g OP/kg. The juvenile crayfish fed the diet containing 40 g OP/kg had the significantly (< .05) highest THC (105.27 × 105 cell/ml), HC (98.33 × 105 cell/ml), SGC (38.54 × 105 cell/ml) and LGC (49.51 × 105 cell/ml). The crayfish fed the levels of dietary OP higher than 30 g/kg showed the significantly (< .05) higher values of SOD (4.07–4.30 U/min) and LYZ (6.73–7.20 U/min) compared with those fed 5, 10, 20 and 30 g of dietary OP/kg and control. Polynomial regression of SGR, FCR, PPV and PER suggested that the optimum dietary OP level could be higher than 30 and <50 mg/kg in crayfish reared in culture conditions.  相似文献   

14.
A 360‐day feeding trial was conducted to observe the influence of varying levels of dietary protein on growth, reproductive performance, body and egg composition of rohu, Labeo rohita. Twenty fish (40.4 ± 0.24 cm; 852 ± 4.9 g), stocked in outdoor concrete tanks (200 m2), in duplicate, were fed diets with varying levels (200, 250, 300, 350 and 400 g kg?1) of crude protein exchanged with carbohydrate to apparent satiation, twice daily, at 09:00 and 17:00 h. Higher (P < 0.05) weight increment was discernible in fish fed dietary protein ≥300 g kg?1. Gonadosomatic index was comparable (P > 0.05) among fish of different dietary groups except those fed 200 g kg?1 protein diet which produced least values. Egg diameter remained unaffected (P > 0.05) by variations in levels of dietary protein. Relative fecundity was maximum (P < 0.05) in fish fed 250 and 300 g kg?1 protein diets. With the exception of fish fed 200 g kg?1 protein diet, fertilizability (%) remained unaffected (P > 0.05) by variations in dietary protein level. Hatchability (%) followed the trend of variations almost similar to that of fertilizability. Proximate composition of muscle and eggs varied significantly (P < 0.05) with dietary protein levels. For broodstock L. rohita, a dietary protein level of 250 g kg?1 was found optimum with regard to its reproductive performance, egg quality and composition.  相似文献   

15.
A 12‐week feeding trial was conducted to evaluate the effects of fish oil replacement by soybean oil, on lipid distribution and liver histology of two commercially important finfish species: rainbow trout (Oncorhynchus mykiss) and European sea bass (Dicentrarchus labrax). Sea bass (16.2 ± 0.5 g; mean ± SD) and rainbow trout (52.1 ± 0.5 g) juveniles were fed one of three isonitrogenous (500 g kg?1 CP) and isoenergetic (19 kJ g?1) diets, containing 0% (control, diet A), 25% (diet B) and 50% (diet C) soybean oil. At the end of the experiment, lipid deposition was evaluated in muscle, liver and viscera. Cholesterol and triglycerides levels were also determined in plasma. Tissue total, neutral and polar lipid composition (g kg?1 total lipids) showed no significant differences within species, regardless the dietary treatment. The same trend was observed for plasma parameters (P > 0.05). Viscera were the preferential tissue of lipid deposition, with 252–276 and 469–513 g kg?1 total lipid content in trout and sea bass, respectively. Dietary fish oil replacement had no effect on either hepatic lipid droplets accumulation or degree and pattern of vacuolization in the observed liver sections. These data suggest that both sea bass and trout can be fed diets containing up to 50% soybean oil without adverse effects on tissue lipid composition or liver histology.  相似文献   

16.
Quantitative l-lysine requirement of juvenile grouper Epinephelus coioides   总被引:3,自引:0,他引:3  
An 8‐week feeding trial was conducted to determine the quantitative lysine requirement of juvenile grouper Epinephelus coioides (initial mean weight: 15.84 ± 0.23 g, mean ± SD) in eighteen 500‐L indoors flow‐through circular fibreglass tanks provided with sand‐filtered aerated seawater by feeding diets containing six levels of l ‐lysine ranging from 19.2 to 39.5 g kg?1 dry diet in 4 g kg?1 increments. The diets, in which 250 g crude protein kg?1 diet came from fish meal and soybean protein concentrate, and 230 g kg?1 from crystalline amino acids, were formulated to simulate the amino acid profile of 480 g kg?1 whole chicken egg protein except for lysine. Each diet was assigned to three tanks in a completely randomized design. Grouper were fed to apparent satiation twice daily during the week and once daily on weekends. Weight gain and specific growth rate increased with increasing levels of dietary lysine up to 27.2 g kg?1 (P < 0.05) and remained nearly the same thereafter (P > 0.05). Feed efficiency was the poorest for fish fed the lowest lysine diet (P < 0.05) and showed no significant differences among other treatments (P > 0.05). Survival could not be related to dietary treatments. Body composition remained relatively constant except for lipid contents in muscle and liver. Total essential amino acid contents in liver increased with dietary lysine level although there was a slight decline for fish fed the highest lysine level of diet. Plasma protein content increased with increasing dietary lysine level (P < 0.05), but cholesterol, triacylglycerol and glucose contents were more variable and could not be related to dietary treatments. Dietary lysine level significantly influenced morphometrical parameters (condition factor, hepatosomatic index and intraperitoneal fat ratio) of juvenile grouper (P > 0.05). Broken‐line analysis of weight gain indicated the dietary lysine requirement of juvenile grouper to be 28.3 g kg?1 diet or 55.6 g kg?1 dietary protein.  相似文献   

17.
The approximate levels of dietary protein and energy that would sustain good growth and survival of the mangrove red snapper Lutjanus argentimaculatus (Forsskal) were determined in two feeding experiments. In the preliminary experiment, six fish meal‐based diets were formulated to contain three protein levels (35%, 42.5% and 50%) and two lipid levels (6% and 12%) for each protein, with dietary energy ranging from 14.6 MJ kg?1 to 20.5 MJ kg?1. The protein to energy (P/E) ratios of diets ranged from 20.6 mg protein kJ?1 to 27.5 mg protein kJ?1. Diets were fed for 100 days to triplicate groups of snappers with an average initial weight of 24.8 ± 0.4 g. No significant interaction between different levels of protein and lipid was observed. Survival rates (93.8% to 100%), feed conversion ratios (FCR) (2.61–3.06) and condition factors (K) were not affected by different dietary treatments. Regardless of lipid level, fish fed 50% protein diets had a significantly higher specific growth rate (SGR) than fish fed the 35% protein diets, but not compared with the 42.5% diets (P < 0.05). Increasing lipid to 12% in all protein levels resulted in no improvement in growth over the 6% level. Fish body moisture did not vary while lipid levels based on dry matter were high (27.9% to 33.7%). Snapper appear to require more than 40% dietary protein and a high dietary energy level for good growth. In the second experiment, fish (21.1 ± 0.1 g) in four replicate groups were fed for 94 days with three diets (39%, 44% and 49% protein with P/E ratios of 21.1, 23.3 and 25.5 mg protein kJ?1 respectively) containing similar dietary energy levels of about 19 MJ kg?1. Average final weight, SGR and FCR were significantly higher in diets containing 44% and 49% protein diets (P > 0.05). There were no differences in survival rates, protein efficiency ratio (PER) and nutrient composition of snapper flesh. All fish had fatty livers. Results indicated that the diet containing 44% protein with a P/E ratio of 23.3 mg protein kJ?1 was optimum for snapper growth under the experimental conditions used in the study.  相似文献   

18.
An 8‐week comparative slaughter experiment was carried out to determine the effect of dietary protein and lipid on growth, apparent digestibility (AD) and nutrient retention of polka dot grouper Cromileptes altivelis. Fingerlings were fed diets that varied in crude protein (CP) at 55 g kg?1 increments between 410 and 630 g kg?1 dry matter (DM) and at either a moderate (150 g kg?1 DM) or high (240 g kg?1DM) lipid concentration. Each diet was fed to satiety twice daily to four replicate tanks (110 L) of fish. One replicate block of tanks comprised 150 fish of mean (±SD) initial weight of 9.6 ± 0.29 g, which were distributed equally to 10 tanks. The other three replicate blocks of tanks comprised 300 fish of 12.6 ± 0.45 g, which were distributed equally to 30 tanks. Tanks were provided with filtered and heated (29 ± 0.5 °C) seawater in a flow‐through system within a laboratory where photoperiod was maintained at 12 : 12 h light–dark cycle. Voluntary food intake was not significantly affected by either the CP or lipid concentration of the diet (mean ± SD of 1.93 ± 0.146 g week?1) but there was a trend for intake to be higher on the moderate compared with the high lipid diets (mean ± SEM of 1.97 versus 1.89 ± 0.033 gweek?1, respectively). Daily growth coefficient (DGC) and food conversion ratio (FCR) improved linearly (P < 0.01) with increasing dietary CP (from 0.94 to 1.35% day?1 for DGC and 1.58 to 1.00 g DM g?1 wet gain for FCR) and these responses were almost coincident for each of the lipid series. The AD of CP increased linearly with increasing dietary CP (from 46.8 to 74.1%) and was independent of dietary lipid. Apparent digestibility of energy increased curvilinearly with increasing dietary CP, with the quadratic component being more prominent for the high‐lipid series. Increasing the amount of lipid in the diet markedly increased the lipid content of the fish from an initial composition (mean ± SD) of 173 ± 7.3 g kg?1 to a final composition (mean ± SEM) of either 217 or 250 ± 5.9 g kg?1 for moderate and high‐lipid series, respectively. Total body lipid content tended to increase linearly with increasing dietary CP for the high‐lipid series but with an opposite effect for the moderate‐lipid series. The retention of digestible nitrogen decreased linearly with increasing dietary CP but at a steeper rate for the moderate, compared with the high, lipid series (from 62.7 to 35.7%, slope ?0.115 for moderate‐lipid and 54.6 to 41.9%, slope ?0.050 for high‐lipid). A quadratic function of dietary CP concentration best explained the retention of digestible energy with the curvilinearity being more marked for the high, compared with the moderate, lipid diet series. While there was some indication that ingested lipid spared dietary protein, the results showed a far greater propensity of polka dot grouper fingerlings to use protein as the prime dietary energy source. Diets for juvenile polka dot grouper should contain not less than 440 g digestible protein kg?1 DM and at least 150 g lipid kg?1 DM.  相似文献   

19.
Feeding trials with five levels of crude protein (CP) (22%, 27%, 33%, 39%, and 45%) and digestible energy ranging from 14.32 to 15.21 kJ g?1 were carried out to determine optimum dietary protein for the growth and production of pre‐adult freshwater crayfish Cherax quadricarinatus. Triplicate groups of males (ω=23.1±0.58 g) and females (ω=21.8±0.33 g) were fed diets for 70 days in monosex culture. Optimal digestible protein (DP) was estimated for males by fitting mean weight gain to a quadratic model (y=27.86+0.839x–0.0216x2, r2=0.945), and a linear model for females (y=32.84–0.0745x, r2=0.959). Optimal male growth occurred with 25.6% CP, equivalent to 19.4% DP. Male crayfish attained significantly higher final weights and absolute growth rate than females fed the 22%, 27%, and 33% CP diets. The results indicated that a 19.4% DP diet, with a P/E ratio of 11.4 mg kJ?1, produces an optimum growth response for pre‐adult C. quadricarinatus under experimental conditions.  相似文献   

20.
The results of a 56‐day experiment on juvenile Murray cod, Maccullochella peelii peelii, an Australian native fish with a high aquaculture potential, of mean weight 14.9 ± 0.04 g, fed with five experimental diets, one a series of 40% protein content and lipid levels of 10, 17 and 24% (P40L10, P40L17 and P40L24), and another of 50% protein and 17 and 24% (P50L17 and P50L24) lipid are presented. The specific growth rate (SGR) (% day?1) of fish maintained on different diets ranged from 1.18 to 1.41, and was not significantly different between dietary treatments, except P40L10 and the rest. However, there was a general tendency for SGR to increase with increasing dietary lipid content at both protein levels. The food conversion ratio (FCR) for the 40% protein series diets were poorer compared with those of the 50% protein diets, and the best FCR of 1.14 was observed with the P50L17 diet. The protein efficiency ratio (PER), however, was better in fish reared on low protein diets. The net protein utilization (NPU) also did not differ significantly (P > 0.05) in relation to dietary treatment. As in the case of PER the highest NPU was observed in Murray cod reared on diet P40L24 and the lowest in fish fed with diet P50L24. The carcass lipid content reflected that of the diets, when significant increases in the lipid content was observed in relation to dietary lipid content at both protein levels. However, body muscle lipid content did not increase with increasing dietary lipid content, and was significantly lower than in the whole body. The fatty acids found in highest concentration amongst the saturates, monoenes and polyunsaturates (PUFAs) were 16 : 0, 18 : 1n‐9 and 22 : 6n‐3, respectively, and each of these accounted for more than 60% of each of the group's total. The muscle fatty acid content was affected by the dietary lipid content; for example the total amount (in μg mg?1 lipid) of monoenes ranged from 72 ± 5.1 (P40L10) to 112 ± 10 (P40L24) and 112 ± 2.8 (P50L17) to 132 ± 11.8 (P50L24) and the n‐6 series fatty acids increased with increasing dietary lipid content, although not always significant. Most notably, 18 : 2n‐6 increased with the dietary lipid level in both series of diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号