首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 84-day feeding trial was conducted to study the effect of replacing dietary fishmeal with dried chicken viscera meal (CVM) on the growth (net biomass gain, specific growth rate, SGR), feed acceptability, feed conversion ratio (FCR), protein efficiency ratio (PER) and carcass composition of Clarias batrachus fingerlings. Triplicate groups of fingerlings with mean initial body weight of 13.35 g were fed on six iso-nitrogenous and iso-lipidic diets. The control diet (CVM0) used marine by-catch fishmeal as the sole source of animal protein. In the other five diets (CVM100–CVM500), 20–100% of fishmeal was substituted by dried CVM at 20% increments. The highest body weight gain, SGR and PER, and the lowest FCR were observed in fish fed a diet containing 300–500 g CVM kg−1. The fish accumulated increasing quantities of lipids and decreasing levels of ash in their carcasses with increasing levels of dietary CVM.  相似文献   

2.
A 16‐week experiment was conducted to determine the dietary riboflavin requirement of the fingerling Channa punctatus (6.7 ± 0.85 cm; 4.75 ± 0.72 g) by a feeding casein–gelatin‐based (450 g/kg crude protein; 18.39 kJ/g gross energy) purified diet containing graded levels of riboflavin (0, 2, 4, 6, 8, 10 and 12 mg/kg diet) to triplicate groups of fish near to satiation at 09:30 and 16:30 hr. Absolute weight gain (AWG), protein efficiency ratio (PER), specific growth rate (SGR, % per day), protein retention efficiency (PRE%) and RNA/DNA ratio were positively affected by increasing concentrations of dietary riboflavin to 6 mg riboflavin per kg diet. Feed conversion ratio (FCR) decreased up to 6 mg riboflavin per kg diet but did not decrease further with higher riboflavin supplementation. Hepatic thiobarbituric acid‐reactive substance (TBARS) concentration also supported the pattern of FCR, whereas superoxide dismutase and catalase activities increased with increasing concentrations of dietary riboflavin from 0 to 6 mg/kg. Liver riboflavin concentrations increased with increasing levels of riboflavin up to 8 mg/kg diet. Broken‐line regression analysis of AWG, PRE and liver riboflavin concentrations of fingerling C. punctatus with dietary riboflavin level indicated optimum growth and liver riboflavin saturation at 5.7, 6.1 and 7.7 mg riboflavin per kg diet, respectively.  相似文献   

3.
This study examined the effect of dietary protein and lipid levels on growth, feed utilization and body composition of Asian catfish Pangasius hypophthalmus reared in cages. Eight test diets were formulated at four protein (340, 380, 420 and 460 g kg−1 crude protein) and two lipid (50 and 90 g kg−1 crude lipid) levels. Fish (initial weight 4.7 g fish−1) were fed the test diets for 8 weeks. Final body weight, weight gain (WG), feed intake (FI), feed conversion ratio (FCR), contents of crude protein, lipid and energy in whole body were dependent on both dietary protein and lipid levels, while specific growth rate (SGR), hepatosomatic index and body moisture content were dependent on dietary lipid level. The WG and SGR increased with the increase in either dietary protein level (at the same lipid level) or lipid level (at the same protein level). The FI and FCR decreased with the increase in dietary protein level (at the same lipid level) or lipid level (at the same protein level). Protein sparing action occurred in case dietary lipid level increased. Fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid had the highest WG and SGR, but the lowest FI and FCR, among the diet treatments. There were no significant differences in the protein retention efficiency (PRE) and energy retention efficiency (ERE) among the diet treatments, although PRE and ERE were relatively high in fish fed the diet containing 453 g kg−1 crude protein and 86 g kg−1 lipid. At the end of the feeding trial, body protein content increased, while body lipid content decreased, with the increase in dietary protein content at the same lipid level. Our results suggest that dietary levels of 450 g kg−1 crude protein and 90 g kg−1 lipid are adequate to support fast growth of P. hypophthalmus reared in cages.  相似文献   

4.
An 8-week growth trial was conducted to assess the effect of dietary protein on growth, feed utilization, protein retention efficiency, and body composition of young Heteropneustes fossilis (10.02 ± 0.09 g; 9.93 ± 0.07 cm). Isocaloric (4.15 kcal g−1, GE) diets with varying levels of protein (25, 30, 35, 40, 45, and 50% of the diet) were fed near to satiation to triplicate groups of fish. Optimum dietary protein was determined by analyzing live weight gain (LWG%), feed conversion ratio (FCR), protein efficiency ratio (PER), specific growth rate (SGR%), and protein retention efficiency (PRE%) data. Maximum LWG% (167), best FCR (1.42), PER (1.75), SGR (1.76), and PRE (31.7%) were evident in fish fed 40% protein diet (Diet 4). Body protein data also supported the above level. However, second-degree polynomial regression analysis of the above data indicated that inclusion of dietary protein in the range of 40–43% is optimum for the growth of young H. fossilis.  相似文献   

5.
An 8‐week feeding experiment was conducted to quantify the dietary isoleucine requirement of fingerling Indian major carp, Labeo rohita (3.50 ± 0.04 cm; 0.40 ± 0.02 g) using amino acid test diets (400 g kg−1 crude protein; 17.90 kJ g−1 gross energy) containing casein, gelatin and l ‐crystalline amino acids. Six dietary treatments supplemented with graded levels of isoleucine (7.5, 10.0, 12.5, 15.0, 17.5 and 20.0 g kg−1), in gradations of 2.5 g kg−1 diet, were fed to triplicate groups of fingerlings to apparent satiation divided over two feedings at 07:00 and 17:30 h. Performance of the fish was evaluated on the basis of live weight gain, feed conversion ratio (FCR), protein efficiency ratio (PER), specific growth rate (SGR) and protein productive value (PPV). Statistical analysis of live weight gain, FCR, PER, SGR and PPV reflected significant differences among treatments. Live weight gain and conversion efficiencies were best with isoleucine at 15.0 g kg−1 of diet. Live weight gain, FCR, PER, SGR and PPV data were also analysed using second‐degree polynomial regression analysis to obtain more accurate isoleucine requirement estimate which was found to be at 15.9, 15.3, 15.2, 15.8 and 15.7 g kg−1 of dry diet, corresponding to 39.8, 38.3, 38.0, 39.5 and 39.3 g kg−1 of dietary protein respectively. Based on the quadratic regression analysis of the live weight gain, FCR, PER, SGR and PPV, the optimum level of isoleucine for fingerling L. rohita is in the range of 15.2–15.9 g kg−1 of dry diet, corresponding to 38.0–39.8 g kg−1 of dietary protein. Maximum body protein, minimum moisture and fat were noted at 15.0 g kg−1 of dietary isoleucine while the body ash remained constant among all the treatment levels. No mortality was recorded during the duration of the experiment.  相似文献   

6.
《Aquaculture Research》2017,48(4):1759-1766
A shrimp protein hydrolysate (SPH) containing 894.2 g kg−1 crude protein (CP) and 54.3 g kg−1 total lipids was tested as a partial replacement for fish meal (FM) in diets of juvenile cobia. The effects of increasing dietary levels of SPH on the survival, weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), nitrogen retention efficiency (NRE) and daily feed intake (DFI) of cobia with initial body weight of 11.9 g were evaluated. Four isoproteic (from 431.1 to 439.7 g kg−1) and isoenergetic (20 825–21 347 MJ kg−1) diets were formulated to contain 0 (Control), 120, 240 or 360 g kg−1 of dietary CP derived from SPH. Survival, WG, SGR, FCR, NRE and DFI ranged from 90 to 100%, 40.2–56.5 g, 4.7–6.1% day−1, 1.04–1.54, 26.3–44.0% and 4.7–6.0% fish−1 day−1 respectively. Survival and DFI were not affected by the dietary treatments. On the other hand, fish fed the control diet and the one containing 120 g kg−1 SPH had higher WG, SGR and FCR. Nitrogen retention efficiency was significantly higher for fish fed diets 0 and 120. It is concluded that up to 120 g kg−1 of SPH in cobia diets can be used with no significant effects on feed utilization and fish performance.  相似文献   

7.
An 15 week two set of feeding experiments were conducted to determine the dietary niacin requirement of Indian major carp fingerlings Labeo rohita and Cirrhinus mrigala, using casein gelatin–based diet. In both experiments, six isonitrogenous (40%) and isoenergetic (15.35 kJ g−1) test diet, with graded levels of niacin (0–50 mg kg−1 dry diet) in gradation of 10 mg kg−1 dry diet, were formulated. In first experiment, fingerling of L. rohita (4.20 ± 1.22 cm; 0.632 ± 0.67 gm) were randomly stocked, in triplicate groups, in 55-L indoor polyvinyl flow-through system (1.5 L min−1) and fed experimental diet at 0800 and 1600 h. Maximum live weight gain (1214%), feed conversion ratio (1.55) and protein efficiency ratio (1.60) were recorded at 30 mg dietary niacin diet. In second experiment, C. mrigala (4.50 ± 1.25 cm, 0.665 ± 0.88) were stocked in same setup. At the end of experiments, maximum live weight gain (1248%), FCR (1.47) and PER (1.70) occurred at 30 mg dietary niacin diet. However, the weight gain, FCR and PER data were analyzed by polynomial regression analysis indicating the requirement of niacin for L. rohita at 36.69, 33.06 and 32.0 mg kg−1, respectively, and for C. mrigala at 35.19, 28.69 and 27.70 mg kg−1 of dry diet, respectively. Whole body composition also showed significant (P < 0.05) differences among each other. On the basis of regression analysis of growth data, it is recommended that the diet for fingerlings should contain niacin at 33 and 30 mg kg−1 dry diet for L. rohita and C. mrigala, respectively.  相似文献   

8.
Dietary arginine requirement of Heteropneustes fossilis fry (3.0 ± 0.5 cm; 5.1 ± 0.3 g) was determined by feeding casein‐gelatin‐based isonitrogenous (400 g kg?1 crude protein) and isocaloric (17.97 kJ g?1) amino acid test diets containing graded levels of l ‐arginine (15, 17, 19, 21, 23 and 25 g kg?1 dry diet) for 12 weeks. Maximum absolute weight gain (AWG) (44.4), best feed conversion ratio (FCR) (1.22), highest protein retention efficiency (PRE%) (41%), energy retention efficiency (ERE%) (75%), best condition factor, hepatosomatic index and viscerosomatic index were noted at 21 g kg?1 arginine of the dry diet. Maximum body protein (189.8 g kg?1) was also obtained in fish fed above diet. Highest haematocrit value (35%), Hb concentration (9.54 g dL?1), RBC count (3.44 × 109 mL?1) and lowest Erythrocyte sedimentation rate (ESR) (1.93 mm h?1) were obtained at the above level of arginine in the diet. AWG, FCR, PRE% and ERE% data were analysed using broken‐line and an exponential fit to obtain more precise dietary arginine requirement. On the basis of broken‐line and exponential analyses of AWG, FCR, PRE and ERE data, inclusion of dietary arginine in the range of 20.4–22.6 g kg?1 dry diet, corresponding to 51–56.5 g kg?1 dietary protein, is recommended for formulating arginine‐balanced feeds for rearing H. fossilis fry.  相似文献   

9.
The effects of ration levels on growth, conversion efficiencies and body composition of fingerling Heteropneustes fossilis (6.8 ± 0.04 cm, 5.0 ± 0.02 g) were studied by feeding isonitrogenous (40% crude protein) and isocaloric (19.06 MJ kg−1 gross energy) diets representing 1, 3, 5, 7 and 9% of the body weight (BW) day−1 to triplicate groups of fish . Growth performance of the fish fed at the various ration levels was evaluated on the basis of live weight gain percentage (LWG%), feed conversion ratio (FCR), specific growth rate percentage (SGR%), protein retention efficiency (PRE%) and energy retention efficiency (ERE%) data. Maximum LWG% and SGR were obtained at a feeding rate of 7% BW day−1, whereas best FCR (1.6), PRE% and ERE% were recorded at a feeding rate of 5% BW day−1. Maximum body protein was also obtained for the group receiving the diet representing 5% of their body weight. However, a linear increase in fat content was noted with the increase in ration levels up to 7% BW day−1. The SGR, FCR, PRE and ERE data were also analyzed using second-degree polynomial regression analysis to obtain more precise information on ration level, with the results showing that the optimal ration for these parameters was 6.8, 6.1, 5.9 and 6.2% BW day−1, respectively. Based on the above second-degree polynomial regression analysis, the optimum ration level for better growth, conversion efficiencies and body composition of fingerling H. fossilis was found to be in the range of 5.9–6.8% of the BW day−1, corresponding to 2.36–2.72 g protein and 88.20–101.66 MJ digestible energy kg−1 diet day−1.  相似文献   

10.
An 84‐day feeding trial was conducted to study the effect of different levels of dietary protein, 250 (P25), 300 (P30), 350 (P35), 400 (P40) and 450 g (P45) kg?1 dry matter (DM) on growth, feed intake, feed utilization and carcass composition of bagrid catfish Horabagrus brachysoma fingerlings. Triplicate groups of fingerlings with mean initial body weight of 2.2 g were fed the experimental diets twice daily, till satiation, in 150‐L tanks supplied with flow‐through freshwater. Daily dry matter intake by the fingerlings decreased significantly (P < 0.05) when fed P25 diet, containing 250 g protein kg?1. The highest body weight gain, specific growth rate (SGR) and protein efficiency ratio (PER), and the lowest feed conversion ratio (FCR) were observed in fish fed 350 g protein kg?1 diet. The fish fed with P45 diet had the lowest (P < 0.05) carcass lipid content. The polynomial regression analysis indicates that H. brachysoma fingerlings require 391 g dietary crude protein kg?1 diet.  相似文献   

11.
The effect of feeding graded levels of vitamin E (E0, E20, E40, E60, E100, E140, E180, E220, E260) in nine casein–gelatin‐based isonitrogenous (450 g kg?1 crude protein) and isoenergetic (17.97 kJ g?1 gross energy) experimental diets was evaluated in fingerling Channa punctatus for 12 weeks. Growth, nutritional and haematological parameters were studied. Hepatic lipid peroxidation as thiobarbituric acid‐reactive substances (TBARS) was also assayed. The maximum absolute weight gain (AWG g/fish, 55), best feed conversion ratio (FCR, 1.32), protein retention efficiency (PRE, 40%) and energy retention efficiency (ERE, 76%) were achieved in fish fed on a diet supplemented with 140 mg vitamin E kg?1 diet (E140). A consistent decline in the hepatic TBARS concentration and an improvement in haematocrit (Hct) and haemoglobin (Hb) were displayed in fish fed on diets with increasing concentrations of vitamin E up to 140 mg kg?1 (E0–E140), beyond which (E180–E260) a reverse trend in these parameters was evident. Based on the broken‐line regression and exponential analyses of AWG, FCR, PRE, ERE, Hb and Hct data, diets for fingerling C. punctatus should contain vitamin E in the range of 140–169 mg kg?1 to maintain satisfactory fish performance.  相似文献   

12.
Seven casein gelatin-based diets containing 450 g/kg CP and 18.39 kJ/g GE with different levels of pyridoxine (0, 2, 4, 6, 8, 10, and 12 mg/kg diet) were fed to fingerling Channa punctatus (4.66 ± 0.46 g) for 12 weeks to determine pyridoxine requirement. Highest absolute weight gain (AWG; 25.81 g/fish, P < 0.05), protein retention (PRE; 23.69%, P < 0.05), energy retention efficiencies (ERE; 69.63%, P < 0.05), and minimum feed conversion ratio (FCR; 1.48) were noted at 8 mg pyridoxine/kg diet. However, liver pyridoxine content achieved the positive correlation as the dietary pyridoxine increased up to 10mg/kg. On the basis of broken-line analysis of AWG, PRE, FCR, and liver pyridoxine data, pyridoxine requirement is recommended between 7.6 and 10.4 mg/kg of dry diet.  相似文献   

13.
This study was conducted to evaluate the effects of extruded diets and pelleted diets with varying dietary lipid levels on growth performance and nutrient utilization of tilapia. Six diets, containing three levels of lipid at 40, 60 or 80 g kg?1 (with the supplemental lipid of 0, 20 or 40 g kg?1, respectively), were prepared by extruding or pelleting and then fed to tilapia juveniles (8.0 ± 0.1 g) in cages (in indoor pools) for 8 weeks. The results indicated that the fish that were fed the diet with 60 g kg?1 of lipid had a higher weight gain (WG), specific growth rate (SGR), protein efficiency ratio (PER), lipid retention (LRE), energy retention (ERE), apparent protein digestibility, apparent dry matter digestibility and a lower feed conversion ratio (FCR) than those fed the diet with 40 g kg?1 lipid in both the extruded diet and pelleted diet (P < 0.05). As the dietary lipid level increased from 60 to 80 g kg?1, these parameters were not further improved, even digestibilities of the crude protein and dry matter decreased (P < 0.05). With the dietary lipid level increased, whole‐body lipid content significantly increased (P < 0.05), serum aspartate aminotransferase, alkaline phosphatase, total cholesterol and low‐density lipoprotein cholesterol (LDL‐C) tended to increase (P > 0.05), whereas whole‐body protein content, serum triglyceride (TG), high‐density lipoprotein cholesterol (HDL‐C) and HDL‐C/LDL‐C tended to decrease (P > 0.05). Fish fed with the extruded diets had a higher WG, SGR, hepatosomatic index (HSI), PER, protein retention (PRE), LRE, ERE, TG, apparent digestibility of protein and dry matter, as well as a lower FCR, than those fed with the pelleted diets at the same dietary lipid level (P < 0.05). These results suggested that tilapia fed with the extruded diets had a better growth and higher nutrient utilization than fish fed with the pelleted diets, when dietary lipid level ranged from 40 to 80 g kg?1 and at dietary crude protein level was 280 g kg?1. The optimum dietary lipid level was 60 g kg?1 in both the pelleted and extruded diets, and extrusion did not affect dietary lipid requirement of the tilapia.  相似文献   

14.
A 12‐week feeding trial was conducted to estimate the dietary copper requirement of fingerling Channa punctatus. Six casein?gelatin‐based test diets (450 g kg?1 crude protein; 18.81 kJ g?1 gross energy) with graded levels of copper as copper sulphate (3.7, 4.7, 5.7, 6.7, 7.7 and 8.7 mg copper equivalent kg?1 diet) were formulated and fed to triplicate groups of fish (7.25 ± 0.81 cm; 5.21 ± 0.27 g) near to satiation. Fish fed diet with 6.7 mg kg?1 copper had highest absolute weight gain (AWG; 51.63 g fish?1), protein efficiency ratio (PER; 1.42 g fish?1), protein gain (PG; 8.34 g fish?1), haemoglobin (Hb; 9.68 g dL?1), haematocrit (Hct; 31.18%) and RBCs (3.24 × 106 × mm?3). Feed conversion ratio (FCR) was found to be best (1.57) at above level of dietary copper. Whole body copper concentration was found to increase with the increasing levels of dietary copper. Hepatic thiobarbituric acid‐reactive substances concentration was found to decrease with increasing dietary concentrations of copper up to 6.7 mg kg?1 beyond which a reverse trend in this parameter was noted. Broken‐line regression analysis of AWG, FCR and PG concentrations against varying levels of dietary copper yielded the requirement in the range of 6.66–6.78 mg kg?1. Data generated during this study would be useful in formulating copper‐balanced commercial feeds for the intensive culture of this fish.  相似文献   

15.
A 10‐week feeding experiment was conducted to determine the optimum dietary protein requirement of juvenile obscure puffer (Takifugu obscurus). Six isoenergetic (20 MJ kg?1 gross energy) diets were formulated to contain graded levels of 34%, 38%, 42%, 46%, 50% or 54% crude protein (as dry matter basis). The results showed final body weight, weight gain and specific growth rate (SGR) increased significantly with increasing protein levels up to 42% and then decreased thereafer. Second‐order polynomial regression analysis (y = ?0.0024x2 + 0.1788x ? 1.3196, R2 = 0.9032) indicated a maximum SGR at protein level of 37%. Feed conversion ratio (FCR) decreased with increasing levels of dietary protein up to 42% and increased thereafter. Second‐order polynomial regression analysis (y = 0.0054x2 ? 0.4351x + 10.391, R2 = 0.753) indicated a minimum FCR at protein level of 40%. Protein efficiency ratio (PER) of fish fed the 34%, 38% and 42% diets was significantly higher than that of fish fed the 46%, 50% and 54% diets, and broken‐line analysis indicated PER tended to decrease when dietary protein level was higher than 40%. Generally, whole body lipid content, total cholesterol, low‐density lipoprotein cholesterol and triacylglycerol decreased with increasing levels of dietary protein. Fish fed the 42% protein diet showed the highest essential amino acids (histidine, isoleucine, leucine, lysine and threonine) and non‐essential amino acids (aspartic acid and glutamic acid) in muscle. Based on the second‐degree polynomial regression analysis of SGR and FCR and broken‐line analysis of PER, the optimal dietary protein level of obscure puffer is estimated to be between 37% and 40% (% as dry matter basis).  相似文献   

16.
This study aimed to evaluate the protein-sparing effect of dietary lipid on digestive and metabolic responses of fingerling Megalobrama amblycephala. Fish were fed nine practical diets with three protein levels (270, 310 and 350 g kg−1) and three lipid levels (40, 70 and 100 g kg−1) for 8 weeks. Weight gain was significantly affected only by dietary lipid levels with the highest found in fish fed 70 g kg−1 lipid. Relative feed intake and whole-body protein content showed little difference among all the treatments. Activities of intestine lipase and amylase increased significantly as dietary lipid levels increased, whereas little difference was observed in protease activities. Liver lipid content was significantly affected only by protein levels with the lowest found in fish fed 310 g kg−1 protein. Liver aspartate aminotransferase (GOT) activities increased significantly with decreasing lipid levels, whereas the highest GOT activity was obtained in fish fed 310 g kg−1 protein in terms of dietary protein levels. Activities of liver lipoprotein lipase, total lipase and plasma cholesterol concentration of fish fed 350 g kg−1 protein were significantly lower than that of the other groups, whereas the same was true for plasma 3, 5, 3′-triiodothyronine level of fish fed 270 g kg−1 protein. The results indicated that an increase of dietary lipid content from 40 to 70 g kg−1 can enhance the growth and digestive enzyme activities of this species and reduce the proportion of dietary protein catabolized for energy without inducing hepatic steatosis; meanwhile, decreasing protein level from 350 to 310 g kg−1 leads to the increase of lipase activities both in intestine and liver coupled with the reduced liver lipid content.  相似文献   

17.
A feeding trial was conducted to determine the dietary methionine requirement of juvenile golden pompano (initial body weight 12.40 ± 0.02 g). Six diets were formulated with six graded levels of methionine (8.6, 9.2, 10.4, 11.5, 13.2 and 14.5 g kg−1). Each diet was randomly assigned to triplicate groups of 20 juvenile fish in seawater floating net cages (1.0 m × 1.0 m × 1.5 m). Fish were fed twice daily (08:30 and 16:30) to apparent satiation for 56 days. Weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), feed efficiency (FE), nitrogen retention efficiency (NRE), proximate body composition, morphometry and haematology were significantly (< 0.05) affected by the dietary methionine levels. WG, SGR and FE increased with increasing levels of methionine up to 13.2 g kg−1 diet (< 0.05) and remained nearly the same thereafter. NRE also increased with increasing levels of methionine up to 13.2 g kg−1 diet (< 0.05) and remained nearly the same thereafter. Linear regression analysis on WG and NRE indicated that the recommended optimum dietary methionine levels for optimal growth of juvenile pompano were 10.6 and 12.7 g kg−1 diet, respectively, corresponding to 24.6 and 29.5 g kg−1 dietary protein, respectively, so the level of dietary methionine should be between 10.6 and 12.7 g kg−1 diet, corresponding to 24.6–29.5 g kg−1 dietary protein. Additionally, the estimated requirements for the other essential amino acids were calculated from A/E ratios of whole‐body amino acid profile based on the methionine requirement determined from the present experiment.  相似文献   

18.
This study describes the digestible protein (DP) and digestible energy (DE) utilization in juvenile mulloway, and determined the requirements for maintenance. This was achieved by feeding triplicate groups of fish weighing 40 or 129 g held at two temperatures (20 or 26°C), on a commercial diet (21.4 g DP mJ DE−1) at four different ration levels ranging from 0.25% of its initial body weight to apparent satiation over 8 weeks. Weight gain and protein and energy retention increased linearly with increasing feed intake. However, energy retention efficiency (ERE) and protein retention efficiency (PRE) responses were curvilinear with optimal values, depending on fish size, approaching or occurring at satiated feeding levels. Maximum predicted PRE was affected by body size, but not temperature; PRE values were 0.50 and 0.50 for small mulloway, and 0.41 and 0.43 for large mulloway, at 20 and 26°C respectively. ERE demonstrated a similar response, with values of 0.42 and 0.43 for small, and 0.32 and 0.34 for large mulloway at 20 and 26°C respectively. Utilization efficiencies for growth based on linear regression for DP (0.58) and DE (0.60) were independent of fish size and temperature. The partial utilization efficiencies of DE for protein (k p) and lipid (k l) deposition estimated using a factorial multiple regression approach were 0.49 and 0.75 respectively. Maintenance requirements estimated using linear regression were independent of temperature for DP (0.47 g DP kg−0.7 day−1) while maintenance requirements for DE increased with increasing temperature (44.2–49.6 kJ DE kg−0.8 day−1). Relative feed intake was greatest for small mulloway fed to satiation at 26°C and this corresponded to a greater increase in growth. Large mulloway fed to satiation ate significantly more at 26°C, but did not perform better than the corresponding satiated group held at 20°C. Mulloway should be fed to satiation to maximize growth potential if diets contain 21.4 g DP mJ DE−1.  相似文献   

19.
The dietary folic acid requirement of fingerling Catla catla (3.4 ± 0.17 g; 7.6 ± 0.41 cm) was evaluated by feeding casein–gelatin‐based isonitrogenous (350 g/kg crude protein) and isocaloric (16.72 kJ/g GE) diets containing different concentrations of folic acid (0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 mg/kg) to triplicate groups to apparent satiation at 08:00, 12:30 and 17:30 hr for 16 weeks. Absolute weight gain (AWG; 40.07 g/fish), specific growth rate (SGR; 2.25%), feed conversion ratio (FCR; 1.53), protein retention efficiency (PRE; 31.42%) and protein gain (PG; 6.74) improved significantly (p < .05) with increasing folic acid levels up to 0.4 mg/kg diet and then reached a plateau. However, maximum liver folic acid concentration increased up to 0.6 mg/kg diet. Dietary folic acid levels also significantly affected (p < .05) body composition of fish. No significant change (p > .05) in haematological parameters except in fish fed folic acid‐free diet was noted. Antioxidant and immune parameters increased with increasing concentration of dietary folic acid up to 0.4 mg/kg diet. Broken‐line regression analysis of AWG, FCR, PRE, PG, HCT and liver folic acid concentrations of fingerling C. catla against dietary folic acid levels indicated optimum growth, FCR, PRE, PG, HCT and liver folic acid saturation ranging between 0.22 and 0.56 mg/kg diet, respectively.  相似文献   

20.
A 50‐day feeding trial was conducted to examine the effects of dietary protein and lipid levels on growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica. Fish (initial body weight 44.6 g ind−1) were fed ten test diets which were formulated at 5 crude protein levels (360, 400, 440, 480 and 520 g kg−1) and 2 crude lipid levels (90 and 150 g kg−1). In addition, a raw fish diet (fillet of small yellow croaker) served as the reference. The weight gain (WG) increased, whereas the feed intake (FI) and feed conversion ratio (FCR) decreased, with increasing dietary protein level from 360 to 520 g kg−1. At the same dietary protein level, no significant difference was found in the WG between fish fed the diets containing 90 or 150 g kg−1 crude lipid. Fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid exhibited higher WG, nitrogen retention efficiency (NRE) and energy retention efficiency (ERE) but lower nitrogen wastes output (TNW). At the end of the feeding trial, the hepatosomatic index (HSI) and viscerosomatic index (VSI) decreased, whereas the body protein content increased, with increase in dietary protein level. The body lipid content was higher in fish fed at the 150 g kg−1 lipid level than in fish fed at the 90 g kg−1 lipid level. No significant difference was found in the maximum sustained swimming speed (MSS) between fish fed at different dietary protein and lipid levels. The WG, NRE, ERE and condition factor (CF) were higher, whereas the FI, FCR, HSI, VSI and TNW were lower, in fish fed the raw fish diet than in fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. No significant difference was detected in the MSS between fish fed the raw fish diet and diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. The results of this study suggest that the suitable dietary crude protein and crude lipid levels are 480 g kg−1 and 90 g kg−1 for giant croaker reared in net pens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号