首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The plasma disposition kinetics of albendazole sulphoxide (ABZSO), ((+)ABZSO and (–)ABZSO) and its sulphone metabolite (ABZSO2) were investigated in adult sheep. Six Corriedale sheep received albendazole sulphoxide by intravenous injection at 5 mg/kg live weight. Jugular blood samples were taken serially for 72 h and the plasma was analysed by high-performance liquid chromatography (HPLC) for albendazole (ABZ), ABZ sulphoxide (ABZSO) and albendazole sulphone (ABZSO2). Albendazole was not detected in the plasma at any time after the treatment, ABZSO and ABZSO2 being the main metabolites detected between 10 min and 48 h after treatment. A biexponential plasma concentration versus time curve was observed for both ABZSO and ABZSO2 following the intravenous treatment. The plasma AUC values for ABZSO and ABZSO2 were 52.0 and 10.8 (g.h)/ml, respectively. The ABZSO2 metabolite was measurable in plasma between 10 min and 48 h after administration of ABZSO, reaching a peak concentration of 0.38 g/ml at 7.7 h after treatment. Using a chiral phase-based HPLC method, a biexponential plasma concentration versus time curve was observed for both ABZSO enantiomers. The total body clearance was higher for the (–) than for the (+) enantiomer, the values being 270.6 and 147.75 (ml/h)/kg, respectively. The elimination half-life of the (–) enantiomer was shorter than that of the (+) enantiomer, the values being 4.31 and 8.33 h, respectively. The enantiomeric ratio (+)ABZSO/(–)ABZSO at t 0 was close to unity. However, the ratio in the plasma increased with time.  相似文献   

2.
Netobimin (NTB) was administered orally to ewes at 20 mg/kg bodyweight. Blood and faecal samples were collected from 1 to 120 h post-treatment and analysed by high-performance liquid chromatography (HPLC). Using a chiral phase-based HPLC, plasma disposition of albendazole sulphoxide (ABZSO) enantiomers produced was also determined. Neither NTB nor albendazole (ABZ) was present and only ABZSO and albendazole sulphone (ABZSO2) metabolites were detected in the plasma samples. Maximum plasma concentrations (C<max) of ABZSO (4.1 ± 0.7 μg/ml) and ABZSO2 (1.1 ± 0.4 μg/ml) were detected at (t max) 14.7 and 23.8 h, respectively following oral administration of netobimin. The area under the curve (AUC) of ABZSO (103.8 ± 22.8 (μg h)/ml) was significantly higher than that ABZSO2(26.3± 10.1 (μg h)/ml) (p<0.01). (−)−ABZSO and (+)-ABZSO enantiomers were never in racemate proportions in plasma. The AUC of (+)-ABZSO (87.8±20.3 (μg h)/ml) was almost 6 times larger than that of (−)−ABZSO (15.5 ±5.1 (μg h)/ml) (p < 0.001). Netobimin was not detected, and ABZ was predominant and its AUC was significantly higher than that of ABZSO and ABZSO2, following NTB administration in faecal samples (p > 0.01). Unlike in the plasma samples, the proportions of the enantiomers of ABZSO were close to racemic and the ratio of the faecal AUC of (−)−ABZSO (172.22 ±57.6 (μg h)/g) and (+)-ABZSO (187.19 ±63.4 (μg h)/g) was 0.92. It is concluded that NTB is completely converted to ABZ by the gastrointestinal flora and absorbed ABZ is completely metabolized to its sulphoxide and sulphone metabolites by first-pass effects. The specific behaviour of the two enantiomers probably reflects different enantioselectivity of the enzymatic systems of the liver that are responsible for sulphoxidation and sulphonation of ABZ.  相似文献   

3.
Albendazole (ABZ) biotransformation was studied in vitro in liver microsomes of adult noncastrated male farm animals (ram, buck, bull and boar), castrated adult males (wether, billy and hog), and free living males (fallow buck, red deer stag, mouflon ram, roe buck and wild boar). Liver microsomal fractions were incubated with either ABZ or racemic albendazole sulphoxide (ABZSO). ABZ was extensively metabolized to the (+) and (-) enantiomers of ABZSO, whereas ABZSO underwent a slow oxidation to albendazole sulphone (ABZSO2) in all species. In all species both ABZSO enantiomers were detected. The chiral ratio, (+)-ABZSO/(-)-ABZSO, was greater than one in farm animals, mouflon and wild boar, and less than one in three species of deer. For total ABZ sulphoxidation, deer like species had lower values compared to the other species. Mouflon ram and ram had lower total sulphoxidation rates compared to wethers, as well as ABZ suphoxidation towards (+)-ABZSO. No significant difference occurred comparing ABZSO formation in mouflon ram and ram, but ABZSO2 formation rate in mouflon ram was higher than in rams and wethers. Roe deer stag, fallow buck and red deer stag did not differ in both total-ABZSO and (-)-ABZSO synthesis rates and roe deer stag and fallow buck did not differ in synthesis rates of (+)-ABZSO and ABZSO2. The bull differed from other species in all metabolites studied, except for red deer stag and boar in (-)-ABZSO synthesis rate. The extent of ABZSO sulphonation to ABZSO2 in bull microsomes was more than twice that of other species.  相似文献   

4.
The kinetics of albendazole metabolites and albendazole sulphoxide enantiomers were studied in 2- and 14-month-old female and male goats, after a single oral dose administration (10 mg/kg) of an albendazole formulation. Blood samples from the jugular vein were collected at 0.5, 1, 2, 4, 6, 8, 10, 12, 16, 20, 24, 30, 36, 42, 48 and 54 h post-treatment and analyzed using a high performance liquid chromatography method. In all groups the area under the plasma concentration-time curve (AUC) and peak concentration (Cmax) values of (+)-ABZSO were significantly higher than those of (−)-ABZSO. The AUC and Cmax values obtained for (+)-ABZSO and (−)-ABZSO in adult animals were higher compared to the results in young animals, showing significant differences except for (+)-ABZSO in female animals. In young animals, independently of gender, the Cmax appeared earlier compared to adult animals. The mean residence time (MRT) values were shorter in young animals compared to adult animals for all compounds analyzed. No sex-related differences were found for any of the parameters calculated except for the (+)-ABZSO from adult animals.  相似文献   

5.
This study aimed to determine the plasma disposition and faecal excretion of netobimin (NTB) and its respective metabolites as well as the efficacy against strongyles in horses following oral administration. Netobimin (10 mg/kg) was administered orally to 8 horses. Blood and faecal samples were collected from 1 to 120 h post-treatment and analysed by high performance liquid chromatography (HPLC). Using a chiral phase-based HPLC, plasma disposition of ABZSO enantiomers produced was also determined. Faecal strongyle egg counts (EPG) were performed by a modified McMaster’s technique before and after the treatment. Neither NTB nor ABZ were present and only albendazole sulphoxide (ABZSO) and sulphone metabolites (ABZSO2) were detected in the plasma samples. Maximum plasma concentration of ABZSO (0.53 ± 0.14 μg/ml) and ABZSO2 (0.36 ± 0.09 μg/ml) were observed at (tmax) 10.50 and 19.50 h, respectively following administration of NTB. The area under the curve (AUC) of the two metabolites was similar to each other. Netobimin was not detected, and ABZ was predominant in faecal samples. The maximum plasma concentration (Cmax) of (−)ABZSO was significantly higher than (+)ABZSO, but the area under the curves (AUCs) of the enantiomer were not significantly different each other in plasma samples. The enantiomers of ABZSO were close to racemate in the faecal samples analyzed. Netobimin reduced the EPG by 100%, 100%, 77%, 80% and 75% 2, 4, 6, 8 and 10 weeks post-treatment, respectively. The specific behaviour of the two enantiomers probably reflects different enantioselectivity of the enzymatic systems of the liver which are responsible for sulphoxidation and sulphonation of ABZ. Considering the pharmacokinetic and efficacy parameters NTB could be used as an anthelmintic in horses.  相似文献   

6.
Albendazole sulphoxide (ABZSO) is an anthelmintic drug used in veterinary practice. Its molecule has a chiral centre in the sulphur atom and racemic formulations are always used. The kinetics of the ABZSO enantiomers in the last third of pregnancy in ewes, and the placental transfer to the fetus, were studied after a single-dose oral administration (7.5 mg/kg) of a racemic formulation. In mothers, the area under the plasma concentration-time curve (AUC) and C(max) values of (+)-ABZSO (42.4+/-10.5 microg/mL and 1.9+/-0.4 microg/mL, respectively) were higher than those of (-)-ABZSO (15.3+/-5.1 microg/mL and 1.0+/-0.3 microg/mL). The MRT values were 17.0+/-1.6 h for (+)-ABZSO and 13.1+/-1.8 h for (-)-ABZSO. Similar kinetic parameters were obtained in the fetus for both enantiomers, but the fetal concentrations were lower compared with values for the dam. The AUC ratio between (-)-ABZSO/(+)-ABZSO in the dam was 0.36 and in the fetuses 0.64, indicating a higher impairment for the (+)-enantiomer in its placental transfer to the fetus.  相似文献   

7.
Dib, A., Palma, S., Suárez, G., Farías, C., Cabrera, P., Castro, S., Allemandi, D., Moreno, L., Lanusse, C., Sánchez Bruni, S. Albendazole sulphoxide kinetic disposition after treatment with different formulations in dogs. J. vet. Pharmacol. Therap. 34 , 136–141. New therapeutic strategies based on the search of alternative formulations of albendazole (ABZ) and albendazole sulphoxide (ABZSO) are under current development to optimize posology and antiparasite efficacy in dogs. In an incomplete block design, nine dogs were randomly divided into three groups (n = 6). Treatments were carried out in two phases as follows. Phase I: Group I (treatment A), animals received ABZ at 25 mg/kg of conventional formulation. Group II (treatment B), dogs received 25 mg/kg of a modified poloxamer‐ABZ formulation. Group III (treatment C), animals were treated with ABZSO in equimolar amount to ABZ doses. After 21 days of wash‐out period the experiment was repeated (Phase II). Blood samples were collected over 24 h and subsequently analysed by high performance liquid chromatography. ABZSO and ABZSO2 were the analytes recovered in plasma. Significant higher (P < 0.001) ABZSO area under the concentration–time curve (+500%) and Cmax (+487%) values were obtained for the treatment C in comparison with treatments A and B. However, no statistical differences on pharmacokinetic parameters were found between formulations A and B. In conclusion, the enhanced plasma concentration profile obtained for the ABZSO formulation used in treatment C may contribute to optimize the anthelmintic control in dogs.  相似文献   

8.
Three single oral doses (8.5, 10, and 14 mg/kg) of a racemic formulation of albendazole sulphoxide (ABZSO) were administered to pregnant rats on day 10 of gestation. Mother plasma and embryo concentrations of ABZSO enantiomers and albendazole sulphone (ABZSO(2)) were determined 9 h after administration. The (-)-ABZSO enantiomer showed higher peak concentrations in both maternal plasma and embryo than the (+) enantiomer. An increase in embryo concentrations of ABZSO enantiomers and ABZSO(2) was only observed when dose rose to 14 mg/kg. There was an increase in resorption when the dose increased, but significant differences were only found in the higher dose group when compared with the other groups. The incidence of external and skeletal malformations (mostly of the tail, vertebrae and ribs) rose significantly in the 10 mg/kg group, producing almost 20% and 90% of malformed fetuses, respectively, and gross external and skeletal abnormalities in the thoracic region and limbs were also found.  相似文献   

9.
Bistoletti, M., Alvarez, L., Lanusse, C., Moreno, L. Disposition kinetics of albendazole and metabolites in laying hens. J. vet. Pharmacol. Therap.  36 , 161–168. An increasing prevalence of roundworm parasites in poultry, particularly in litter‐based housing systems, has been reported. However, few anthelmintic drugs are commercially available for use in avian production systems. The anthelmintic efficacy of albendazole (ABZ) in poultry has been demonstrated well. The goal of this work was to characterize the ABZ and metabolites plasma disposition kinetics after treatment with different administration routes in laying hens. Twenty‐four laying hens Plymouth Rock Barrada were distributed into three groups and treated with ABZ as follows: intravenously at 10 mg/kg (ABZ i.v.); orally at the same dose (ABZ oral); and in medicated feed at 10 mg/kg·day for 7 days (ABZ feed). Blood samples were taken up to 48 h posttreatment (ABZ i.v. and ABZ oral) and up to 10 days poststart feed medication (ABZ feed). The collected plasma samples were analyzed using high‐performance liquid chromatography. ABZ and its albendazole sulphoxide (ABZSO) and ABZSO2 metabolites were recovered in plasma after ABZ i.v. administration. ABZ parent compound showed an initial concentration of 16.4 ± 2.0 μg/mL, being rapidly metabolized into the ABZSO and ABZSO2 metabolites. The ABZSO maximum concentration (Cmax) (3.10 ± 0.78 μg/mL) was higher than that of ABZSO2Cmax (0.34 ± 0.05 μg/mL). The area under the concentration vs time curve (AUC) for ABZSO (21.9 ± 3.6 μg·h/mL) was higher than that observed for ABZSO2 and ABZ (7.80 ± 1.02 and 12.0 ± 1.6 μg·h/mL, respectively). The ABZ body clearance (Cl) was 0.88 ± 0.11 L·h/kg with an elimination half‐life (T1/2el) of 3.47 ± 0.73 h. The T1/2el for ABZSO and ABZSO2 were 6.36 ± 1.50 and 5.40 ± 1.90 h, respectively. After ABZ oral administration, low ABZ plasma concentrations were measured between 0.5 and 3 h posttreatment. ABZ was rapidly metabolized to ABZSO (Cmax, 1.71 ± 0.62 μg/mL) and ABZSO2 (Cmax, 0.43 ± 0.04 μg/mL). The metabolite systemic exposure (AUC) values were 18.6 ± 2.0 and 10.6 ± 0.9 μg·h/mL for ABZSO and ABZSO2, respectively. The half‐life values after ABZ oral were similar (5.91 ± 0.60 and 5.57 ± 1.19 h for ABZSO and ABZSO2, respectively) to those obtained after ABZ i.v. administration. ABZ was not recovered from the bloodstream after ABZ feed administration. AUC values of ABZSO and ABZSO2 were 61.9 and 92.4 μg·h/mL, respectively. The work reported here provides useful information on the pharmacokinetic behavior of ABZ after both i.v. and oral administrations in hens, which is a useful first step to evaluate its potential as an anthelmintic tool for use in poultry.  相似文献   

10.
The anthelmintic albendazole (ABZ) undergoes a two-step oxidation resulting first in the formation of chiral albendazole sulfoxide (ABZSO) followed by its transformation to albendazole sulfone (ABZSO2) in many farm and laboratory animal species. Although cloven-hoofed game are also treated with ABZ, limited information concerning ABZ biotransformation in these species is available. The present study focused on in vitro ABZ sulfoxidation in hepatocytes from wild sheep-mouflon (Ovis musimon) and comparison of ABZ sulfoxidation in mouflon and rat (Rattus norvergicus) hepatocytes. ABZ was used as a substrate for primary cultures of mouflon and rat hepatocytes. Time-dependent stereospecific consumption of ABZSO and ABZSO2 formation has been investigated. The metabolites were determined by high-performance liquid chromatography with both achiral and chiral stationary phases. Although total-ABZSO formation did not significantly differ between mouflon and rat, after separation of the (+)-ABZSO and (-)-ABZSO enantiomers a significant difference between species was found. The enantiomeric ratio of (+)/(-)-ABZSO in mouflon hepatocytes was 2.8-3.8, while rat hepatocytes biotransformed ABZ to almost racemic ABZSO, with an enantiomeric ratio of 1.0-1.1. The ratio were similar for two concentrations of substrate used and stable over several time intervals. The formation of ABZSO2 was more extensive in rat (approximately five times) than in mouflon hepatocytes.  相似文献   

11.
The pharmacokinetic behaviour of albendazole sulfoxide (ABZSO) enantiomers was studied in rats after the oral administration of 10 mg/kg of rac-ABZSO, 5 mg/kg of (-)-ABZSO or 5 mg/kg of (+)-ABZSO. The disposition profiles of ABZSO enantiomers were similar in all treatments, but the calculated area under the curve for the (-)-ABZSO was higher in all cases compared with (+)-ABZSO. The results suggest that there is no chiral inversion of ABZSO enantiomers. After the administration of rac-ABZSO, 17.2% of the total dose was recovered in urine as albendazole ABZ (0.1%), albendazole sulfone ABZSO(2) (0.3%), albendazole 2-aminosulfone (ABZ-SO(2)NH(2)) (3.1%) and ABZSO (13.7%). The ratio (+) to (-) was similar in urine (1.6) and blood (1.7).  相似文献   

12.
The gastrointestinal (GI) distribution and plasma disposition kinetics of alberidazole (ABZ) metabolites after oral administration of netobirnin (NTB) to cattle were studied. Eight Holstein steers (150–180 kg) were surgically fitted with permanent cannulae in the rumen, abomasum and ileum. After post-surgical recovery, the ariinials were treated orally with a suspension of neto1)imin zwitterion (400 mg/ml) at 20 nig/kg. Jugular blood and ruminal, abomasal arid ileal fluid samples were taken serially over a 96 h period and analysed by HPLC for NTB and its metabolites, including ABZ, ABZ sulphoxide (ABZSO), AH% sulphone (ABZSO?) and amino-albendazole sulphone (NHp4BZSOy). N T B parent drug was only fonnd in the G I tract and for only 12–18 h post-treatment. ABZSO and ABZSOp were the main metabolites found in plasma, being present for 30–36 h. These metabolites were exchanged between plasma and different GI fluids and were greatly concentrated in the abomasum. This phenornenori may account for the presence of ABZ, ABZSO and ABZSO? in the GI tract f'or 72 h post-treatment despite the fact that ABZ was riot detected in plasma and ABZSO and ABZSO.;, were detected for only 30–36 h in plasma. The presence o f ABZ and ABZSO in the abomasum and intestine for this extended period of time is probably relevant for anthelmintic efficacy against GI parasites. The NH2 ABZSO2 metabolite was detected in plasma, abomasum and ileum and its disposition kinetics were characterized for the first time.  相似文献   

13.
The comparative plasma disposition kinetics of albendazole (ABZ), fenbendazole (FBZ) and oxfendazole (OFZ) following their oral administration (5 mg/kg) to adult sheep was characterized. Jugular blood samples were taken serially over a 144 h period and plasma was analysed by high performance liquid chromatography (HPLC) for ABZ, ABZ sulphoxide (ABZSO) and ABZ sulphone (ABZSO2) (ABZ treatment), and for FBZ, OFZ and FBZ sulphone (FBZSO2) (FBZ and OFZ treatments). While the ABZ parent drug was not detected at any time post-treatment, ABZSO and ABZSO2 were the analytes recovered in plasma, after oral administration of ABZ to sheep. The active ABZSO metabolite was the main analyte recovered in plasma (between 0.25 and 60h post-treatment), accounting for 71 % of the total AUC. FBZ, OFZ and FBZSO2 were the analytes detected in plasma following the oral administration of both FBZ and OFZ to sheep. Low concentrations of FBZ were found in plasma between 4 (FBZ treatment) or 8 h (OFZ treatment) and 72 h post-treatment. The plasma profile of each analyte followed a similar pattern after both treatments; OFZ being the main component detected in plasma. The plasma disposition of ABZ metabolites was markedly different to that of FBZ derivatives. ABZSO exhibited faster absorption and a higher Cmax than OFZ (both treatments). Furthermore, while ABZSO declined relatively rapidly in plasma reaching non-detectable concentrations at 60 h post-ABZ administration, OFZ was found in plasma for up to 120 (FBZ treatment) and 144 h (OFZ treatment). The extended detection of OFZ in plasma in both treatments correlated with the prolonged t1/2β (18 h) and mean residence time (MRT) (30–33 h) obtained for this metabolite compared to those of ABZSO (t1/2β= (7.0 h); MRT= 12.5 h). These differences between the disposition of ABZ and FBZ metabolites may account for differences in their patterns of efficacy and tissue residues.  相似文献   

14.
Suárez, G., Alvarez, L., Castells, D., Correa, O., Fagiolino, P., Lanusse, C. Comparative drug systemic exposure and clinical efficacy against resistant nematodes in lambs treated with different albendazole formulations. J. vet. Pharmacol. Therap. 34 , 557–564. A pharmaco‐parasitological assessment of four different albendazole (ABZ) formulations was carried out in lambs infected with multiple resistant gastrointestinal (GI) nematodes. The comparative drug systemic exposure profiles (ABZ sulphoxide plasma concentrations) and anthelmintic efficacies (clinical endpoint measured through the faecal nematode eggs reduction counts) were determined for a reference formulation (RF) and three different test (T1, T2, T3) generic ABZ preparations. Fifty (50) Corriedale lambs naturally infected with multiple resistant GI nematodes were allocated into five experimental groups (n = 10). Animals in each group received treatment with either the RF, one of the test ABZ formulations (5 mg/kg by the intraruminal route) or were kept as untreated control. Blood samples were collected over 48 h post‐treatment. ABZ parent drug was not recovered in the bloodstream. The ABZ sulphoxide (ABZSO) and sulphone (ABZSO2) metabolites were measured in plasma by ultraviolet high‐performance liquid chromatography over 36–48 h post‐treatment. A faecal nematode egg count reduction test (FECRT) was performed at day 10th post‐treatment to lambs from all treated and untreated groups, which indicated the predominance of nematodes with high level of resistance to ABZ. Both ABZSO Cmax and AUC0–LOQ values obtained for the RF (pioneer product) were significantly higher (P < 0.05) than those obtained for the T1 and T3 preparations. Based on the currently available bioequivalence criteria, the test (generic) ABZ formulations under evaluation could not be considered equivalent to the RF regarding the rate (Cmax) and extent (AUC0–LOD) of drug absorption (indirectly estimated through the ABZSO metabolite). A large variation in nematode egg counts did not permit to obtain statistically significant differences among formulations. However, a favourable trend in the efficacy against the most resistant nematodes was observed for the formulations with the highest ABZSO systemic exposure.  相似文献   

15.
The influence of fasting on the bioavailability and disposition kinetics of albendazole (ABZ) and its metabolites in cattle was investigated. ABZ (10 mg/kg) was given by intraruminal (i.r.) (Experiment 1) and intravenous (i.v.) (Experiment 2) administration to Holstein calves either fed ad libitum (control) or subjected to a 48 h fasting period (fasted group) prior to treatment. The rate of passage of digesta through the gastrointestinal (GI) tract was evaluated by measurement of cobalt faecal excretion following the oral administration of the sodium-cobalt-ethylendiamine-tetracetic acid complex to calves subjected to the feeding conditions above described. Jugular blood and abomasal fluid (via cannula) samples were collected over 120 h post-treatment; samples were analysed by high performance liquid chromatography (HPLC) for ABZ, ABZ sulphoxide (ABZSO) and ABZ sulphone (ABZSO2). Fasting the animals prior to the i.r. treatment resulted in pronounced modifications to the plasma and abomasal fluid disposition kinetics of ABZ and its metabolites. A greater extent of GI absorption with significantly higher Cmax (150%) and AUC (310%) values for ABZSO in plasma, was observed in fasted compared to fed animals following the i.r. administration of ABZ. Extended detection of ABZ metabolites resulting in significantly longer plasma t½el and MRT was also obtained in fasted compared to fed calves. These results correlated with the substantially enhanced availability of ABZ and its metabolites (AUCs over 200% greater) in the abomasal fluid of the fasted animals. Fasting did not induce changes to the plasma disposition of either ABZ or its metabolites after the i.v. treatment. The digesta passage rate, measured by the amount of cobalt excreted in faeces, was significantly lower in fasted compared to animals fed ad libitum. A delayed GI transit time that decreases the rate of passage of the drug down the digestive tract, may have accounted for enhanced ABZ dissolution and absorption in fasted compared to fed calves. The findings reported in this article show that fasting prior to treatment notably affects the bioavailability and disposition kinetics of ABZ and its metabolites in cattle.  相似文献   

16.
The comparative concentration profiles of the (+) and (-) albendazole sulphoxide (ABZSO) enantiomers obtained in plasma and in selected target tissues/fluids after intravenous (i.v.) administration of a racemic formulation of ricobendazole (RBZ) to cattle were characterised. Fourteen Holstein calves received RBZ (racemic solution, 150 mg/mL) by i.v. administration at 7.5 mg/kg. Jugular blood samples were collected over 48 h post-treatment (plasma kinetic trial) and two animals were sacrificed at either 4, 12, 20, 28 or 32 h post-treatment to obtain samples of abomasal/small intestine mucosal tissue, abomasal/small intestine fluids, bile, liver and lung tissue (tissue distribution study). The (-)ABZSO enantiomer was depleted significantly faster from plasma compared with the (+)ABZSO antipode. The plasma AUC for (+)ABZSO (38.3 microg. h/mL) was significantly higher (P < 0.05) compared with that obtained for (-)ABZSO (20.5 microg. h/mL). The (+)ABZSO enantiomer was the predominant antipode measured in bile, abomasal fluid and abomasal mucosa. For instance, at 12 h post-treatment the (+)/(-) concentration ratios were: 12.9 (plasma), 1.62 (abomasal mucosa), 13.0 (abomasal fluid), 2.92 (intestinal mucosa), 9.87 (intestinal fluid) and 21.5 (bile). No marked differences between the concentration profiles of both enantiomers were observed in the liver tissue. Albendazole (ABZ) was recovered from the liver, lung and gastrointestinal (GI) mucosal tissues of RBZ-treated calves up to 32 h post-treatment, probably produced by a GI microflora-mediated sulphoreduction of RBZ. An enantioselective kinetic behaviour may account both for the faster depletion of the (-) enantiomer and for the higher availabilities of the (+) antipode observed in plasma and in most of the tissues/fluids investigated. The simultaneous evaluation of the plasma kinetics and tissue concentration profiles of both enantiomeric forms reported here, may help to interpret the relationship between chiral behaviour and pharmacological action for sulphoxide derivatives of benzimidazole (BZD) methylcarbamate anthelmintics.  相似文献   

17.
The comparative in vitro sulphoreduction of the (+) and (-) enantiomers of albendazole sulphoxide (ABZSO) and oxfendazole (OFZ) by ruminal fluid obtained from sheep and cattle, was investigated, under anaerobic conditions, in this study. Ruminal fluid samples were obtained from Holstein steers fitted with a permanent rumen fistula and from Corriedale lambs via an oesophageal tube. Albendazole sulphoxide, incubated as either the racemic (rac) mixture or as each individual enantiomeric form, was extensively sulphoreduced to form albendazole (ABZ) by ruminal fluid from both species. The concentrations of ABZ formed at different incubation times were between 55 and 158% greater after the incubation of cattle ruminal fluid with (+) ABZSO, compared with that produced when (-) ABZSO was the incubated substrate. Similarly, the concentrations of ABZ were 1.3--3.0-fold higher when (+) ABZSO was incubated with sheep ruminal fluid. Significantly higher rates of depletion were observed for the (+) enantiomeric form when ABZSO was incubated with ruminal fluid from both species. The rates of ABZ formation from both ABZSO enantiomeric forms were significantly higher in sheep compared with cattle ruminal fluid. Fenbendazole (FBZ) was the metabolite formed after the incubation of the racemic form of OFZ with ruminal fluid obtained from both species. The metabolic profile of both OFZ enantiomers followed a similar pattern to that observed for ABZSO enantiomers. A bi-directional chiral inversion of one enantiomer into its antipode was observed. The (+) enantiomer appeared in the incubation medium when (-) ABZSO was the incubated substrate, and also the (-) antipode was detected after (+) ABZSO incubation with ruminal fluid obtained from both species. The results reported here demonstrate an enantioselective ruminal sulphoreduction of ABZSO and OFZ (substrate enantioselectivity). These findings contribute to interpret the chiral behaviour of benzimidazole-sulphoxide anthelmintics.  相似文献   

18.
This work characterized the egg residual concentrations of albendazole (ABZ ) and its sulphoxide (ABZSO ) and sulphone (ABZSO 2) metabolites and evaluated their effect on egg fertility and hatchability after ABZ treatments to laying hens. Seventy hens were allocated in groups: Group‐1 was the control without treatment; Group‐2 received a single ABZ oral dose (10 mg/kg); Group‐3, ‐4 and ‐5 were treated with ABZ in medicated feed over 7 days at 10, 40, or 80 mg kg?1 day?1, respectively. Eggs were analyzed to determine the ABZ /metabolite level by HPLC or subjected to incubation to evaluate the fertility and hatchability. Only ABZSO and ABZSO 2 metabolites were quantified in egg after ABZ single oral administration with maximum concentrations of 0.47 ± 0.08 and 0.30 ± 0.07 μg/ml, respectively. ABZ and its metabolites were found in eggs after 7‐day ABZ treatments. The egg residue exposure estimated as AUC s (areas under the concentration vs . time curve) were 100.5 (ABZ ), 56.3 (ABZSO ) and 141.3 μg hr g?1 (ABZSO 2). ABZ administration did not affect the egg fertility at any dosages. Egg hatchability was not affected by ABZ treatment at 10 mg/kg in medicated feed, but it decreased when the dose was 4–8 times higher. These results should be considered when ABZ is used for deworming laying hens.  相似文献   

19.
The influence of clofibrate on the stereoconversion of fenoprofen (FPF) was studied in guinea pigs. This hypolipidaemic agent has been related to some biochemical changes in the liver leading to an increase in the chiral inversion process. Two groups of animals (n = 6 per group) were pretreated with oral doses of clofibrate (280 mg/kg per day) for three days and were then given (R)- or (S)-FPF (5 mg/kg, IV). The FPF enantiomers were extracted from the guinea-pigs' plasma using a solid phase procedure and analysed by HPLC with previous derivatization with L-leucinamide. Pretreatment with clofibrate increased the chiral inversion of (R)-FPF in favour of the pharmacologically active (S)-FPF enantiomer. Before this metabolic interaction can be applied to therapy with fenoprofen, the toxic effects of (S)-(+)-FPF on the gastrointestinal and renal tracts and the interference by (R)-(–)-FPF with the metabolism of lipids should be thoroughly evaluated.  相似文献   

20.
This study was designed to investigate the effect of feeding on the plasma disposition of triclabendazole (TCBZ) in goats following oral administration. A total of eight goats, aged 14–16 months and weighing 20–30 kg were used in this study. The animals were allocated into two groups (fasted and fed groups) of four animals each. The goats in fed group were fed ad libitum but the animals in fasted group were not fed 24 h before and 6 h after drug administration. Commercial oral drench formulation of TCBZ (Endex-K, 5%) was administered orally to animals in two groups at dose of 10 mg/kg bodyweight. Heparinized blood samples were collected between 1 and 192 h after treatment and the plasma samples were analysed by high performance liquid chromatography (HPLC) for TCBZ, TCBZ sulphoxide (TCBZ–SO), and TCBZ sulphone (TCBZ–SO2). Relatively very low concentration of TCBZ parent drug was detected between 2 and 48 h, but TCBZ–SO and TCBZ–SO2 metabolites were present between 2 and 192 h in the plasma samples of fed and fasted animals. Fasting significantly enhanced the plasma concentration of TCBZ and its metabolites. The availability of TCBZ, TCBZ–SO and TCBZ–SO2 in the plasma samples of fasted goats were markedly greater compared to those of fed goats. It was concluded that fasting decreases the digesta flow rate and prolongs the retention of the drug into the gastrointestinal tract, resulting in enhanced quantitative gastrointestinal absorption or systemic availability of TCBZ and its metabolites in fasted goats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号