首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Castanea sativa is susceptible to Phytophthora spp., a serious root pathogen causing ink disease, while C. crenata and C. mollissima show resistance to infection. Interspecific controlled crosses were established for introgression of resistance genes from the resistant species into the susceptible C. sativa, and two mapping populations were created. Phytophthora cinnamomi resistance of each progeny was evaluated by root and excised shoot inoculation tests. The number of days of survival after root inoculation was the best discriminator of resistance to P. cinnamomi while the percentage of shoots with internal lesions was the symptom most associated with survival. The lesion progression rate in the excised shoot inoculation test was strongly and negatively correlated with survival in the root inoculation test. The excised shoot inoculation test appears to be a reliable approach for screening the resistance of chestnut genotypes to P. cinnamomi. Strong genetic correlations were obtained between survival and ink disease symptoms and among symptoms, indicating that common or linked genes might influence resistance to P. cinnamomi. The most resistant genotypes selected from this study will be tested for other commercial variables, such as ease of vegetative propagation and stock–scion compatibility.  相似文献   

2.
Phytophthora kernoviae is a pathogen on a wide range of plants, but little is known of optimal infection conditions. Rhododendron ponticum leaves were inoculated with six different isolates of P. kernoviae sporangia and incubated at different temperatures from 10 to 28 °C. After 1 week, lesion development and pathogen recovery were only observed from all isolates at 15 and 20 °C and a few isolates at 10 °C. In an experiment with temperatures ranging from 20 to 25 °C, lesion development and pathogen recovery on R. ponticum, Magnolia stellata and Viburnum tinus occurred consistently at 20 and 21 °C, was limited at 22 °C, and did not occur at 23 °C and above. There was no difference in sporangia and zoospore germination at 20–25 °C. In a temperature fluctuation experiment, the necrotic area of inoculated R. ponticum leaves increased with longer incubation at 20 °C and decreased with longer incubation at 24 °C. Crude extracts of secreted proteins from P. kernoviae cultures grown at 20 and 24 °C were compared to determine any effects of temperature on pathogenicity. When spot tested on R. ponticum leaves, crude protein suspensions from cultures grown at 20 °C induced necrosis, while proteins from cultures grown at 24 °C did not. Proteomic analysis confirmed that a 10 kDa protein secreted at both 20 and 24 °C shared sequence homology to the conserved domains of known elicitins of other Phytophthora spp. The protein secreted at 20 °C that was responsible for necrosis has not been identified.  相似文献   

3.
This study investigated survival of the pathogens Phytophthora ramorum, P. alni and P. kernoviae as zoospores or sporangia in response to an important water quality parameter, electrical conductivity (EC), at its range in irrigation water reservoirs and irrigated cropping systems. Experiments with different strengths of Hoagland’s solution showed that all three pathogens survived at a broad range of EC levels for at least 3 days and were stimulated to grow and sporulate at ECs > 1·89 dS m?1. Recovery of initial populations after a 14‐day exposure was over 20% for P. alni subsp. alni and P. kernoviae, and 61·3% and 130% for zoospores and sporangia of P. ramorum, respectively. Zoospore survival of these pathogens at ECs < 0·41 dS m?1 was poor, barely beyond 3 days in pure water; only 0·3% (P. alni), 2·9% (P. kernoviae) and 15·1% (P. ramorum) of the initial population survived after 14 days at EC = 0·21 dS m?1. The variation in rates of survival at different EC levels suggests that these pathogens survive better in cropping systems than in irrigation water. Containment of run‐off and reduction in EC levels may therefore be non‐chemical control options to reduce the risk of pathogen spread through natural waterways and irrigation systems.  相似文献   

4.
The aim of this study was to investigate the potential diversity and pathogen‐specificity of sources of quantitative resistance to leaf rust caused by Puccinia triticina in French wheat germplasm. From a set of 86 genotypes displaying a range of quantitative resistance levels during field epidemics, eight wheat genotypes were selected and challenged in a greenhouse with three isolates of the pathogen, belonging to different pathotypes. Five components of resistance were assessed: infection efficiency, for which an original methodology was developed, latent period, lesion size, spore production per lesion, and spore production per unit of sporulating tissue. High diversity and variability for all these components were expressed in the host × pathotype combinations investigated; isolate‐specificity was found for all the components. The host genotypes displayed various resistance profiles, based on both the components affected and the isolate‐specificity of the interaction. Their usefulness as sources of quantitative resistance was assessed: line LD7 probably combines diversified mechanisms of resistance, being highly resistant for all the components, but displaying isolate‐specificity for all the components; cv. Apache did not show isolate specificity for any of the components, which could be related to the durability of its quantitative resistance in the field over more than 11 years.  相似文献   

5.
Among the Phytophthora species that cause black pod of cacao, P. megakarya is the most virulent, posing a serious threat to cacao production in Africa. Correct identification of the species causing the black pod and understanding the virulence factors involved are important for developing sustainable disease management strategies. A simple PCR‐based species identification method was developed using the species‐specific sequences in the ITS regions of the rRNA gene. A phylogenetic tree generated for 119 Phytophthora isolates, based on the 60S ribosomal protein L10 gene and rDNA sequence, verified the PCR‐based identification assay and showed high interspecific variation among the species causing black pod. Phytophthora megakarya isolates were uniformly virulent in an assay using susceptible cacao pod husks inoculated with zoospores, while the P. palmivora isolates showed greater divergence in virulence. The virulence of P. megakarya was associated with earlier production of sporangia and an accelerated induction of necrosis. While zoospore germ tubes of both species penetrated pods through stomata, only P. megakarya produced significant numbers of appressoria. A hypersensitive‐like response was observed when attached SCA‐6 pods were inoculated with P. palmivora. SCA‐6 pods became vulnerable to P. palmivora when wounded prior to zoospore inoculation. Phytophthora megakarya was more aggressive than P. palmivora on attached SCA‐6 pods, causing expanding necrotic lesions with or without wounding. Phytophthora megakarya is predominant in the Volta region of Ghana and it remains to be seen whether it can displace P. palmivora from cacao plantations of Ghana as it has in Nigeria and Cameroon.  相似文献   

6.
In plant–pathogen interactions, strong structural and biochemical barriers may induce a cascade of reactions in planta, leading to host resistance. The kinetic speed and amplitudes of these defence mechanisms may discriminate resistance from susceptibility to necrotrophic fungi. The infection processes of two Ascochyta lentis isolates (FT13037 and F13082) on the recently identified ascochyta blight (AB)‐resistant Lens orientalis genotype ILWL180 and two cultivated genotypes, ILL7537 (resistant) and ILL6002 (susceptible), were assessed. Using histopathological methods, significant differences in early behaviour of the isolates and the subsequent differential defence responses of the hosts were revealed. Irrespective of virulence, both isolates had significantly lower germination, shorter germ tubes and delayed appressorium formation on the resistant genotypes (ILWL180 and ILL7537) compared to the susceptible genotype (ILL6002); furthermore, these were more pronounced on genotype ILWL180 than on genotype ILL7537. Subsequently, host perception of pathogen entry led to the faster accumulation and notably higher amounts of reactive oxygen species and phenolic compounds at the penetration sites of the resistance genotypes ILWL180 and ILL7537. In contrast, genotype ILL6002 responded slowly to the A. lentis infection and reaffirmed previous gross disease symptomology reports as highly susceptible. Interestingly, quantification of H2O2 was markedly higher in ILWL180 particularly at 12 h post‐inoculation compared to ILL7537, potentially indicative of its superior resistance capability. Faster recognition of A. lentis is likely to be a major contribution to the superior resistance observed in genotype ILWL180 to the highly aggressive isolates of A. lentis assessed.  相似文献   

7.
This study evaluates resistance to witches’ broom disease in flower cushions of Theobroma cacao under field conditions. The aim was to determine optimal inoculation methods to evaluate the disease incidence using flower cushions in the field. A segregating mapping population of 580 trees (cultivar TSH 1188 × CCN 51) was analysed under two field conditions: high and low inoculum levels (in different years), corresponding respectively to trees with or without dried witches’ brooms hanging on the trees and producing basidiocarps. The number of newly formed cushion brooms in each tree was counted by the conventional method, and also the healthy and infected flower cushions in three 30 cm‐long regions along the trunk and the two main branches. The field inoculation methods discriminated between genotypes, with a 26% increase in disease incidence by Moniliophthora perniciosa at high inoculum. Two different segregation patterns were also observed: 27:27:9:1 under low, and 27:9:9:9:3:3:3:1 under high inoculum potential. It was also determined that at least 20 flower cushions were needed to accurately determine the percentage of infection. These methodologies allowed identification of the extreme phenotypes in this mapping population, and can therefore facilitate the detection of sources of resistance to witches’ broom disease.  相似文献   

8.
Sunflower downy mildew is a disease of high global economic impact as well as a causal agent that is extremely difficult to eradicate. During the past decades, several approaches for the determination of Plasmopara halstedii (Ph) races have been used worldwide and are discussed in this review. Procedures of isolation, cultivation and maintenance of Ph isolates, as well as the screening of sunflower for resistance, are also critically reviewed. The predominant, globally used resistance screening protocol is a ‘whole seedling immersion’ inoculation. ‘Soil drench’ inoculation allows more precise control of the number of Ph zoosporangia applied to a single sunflower seedling. A detached leaf assay has been described, but it has been used mainly for Ph subcultivation and fungicide tests. For race determination, a differential set consisting of nine sunflower genotypes has been used since 1988, coupled with a numerical triplet code for virulence phenotyping of Ph. The increasing variability in global Ph populations has demonstrated the inadequacy of the current set of differentials, and several researchers have proposed additional public lines as new differentials. Furthermore, bulk isolates may show different results in repeated tests, as Ph may contain genetically distinct zoospores within a single zoosporangium. For precise race determination, single zoosporangia or single zoospore isolates are advisable. However, due to low success of isolation, approximately 1–2%, this method cannot be applied in routine Ph race screening. Methods surveyed in this review have a broad spectrum of applications, including taxonomic studies.  相似文献   

9.
Late blight, caused by the oomycete Phytophthora infestans, is a threat to potato‐cropping systems worldwide. In the Ecuadorian Andes, despite a high late blight incidence in foliage, tuber blight is rare. In this work, the hypothesis that Ecuadorian Andean soils are naturally suppressive to P. infestans tuber infection was evaluated. Soils from four potato‐growing regions were assessed for disease suppressiveness by determining the effects of soil heat treatment on P. infestans sporangia and their ability to infect potato slices after 1, 8, 15 and 30 days of exposure to soils. Tuber infection after inoculation with P. infestans‐infested soils was consistently lower during the evaluation period compared with heat‐treated soils. Fresh, untreated soils affected germination and viability of P. infestans sporangia in a site‐dependent manner. In addition, the effect of heat treatment on soil bacterial communities was assessed through terminal restriction fragment length polymorphism analysis of the 16S rDNA gene region. Heat treatment disrupted bacterial community composition, and a subset of terminal restriction fragments (TRF) was either positively or negatively correlated with tuber infection. Bacterial TRF negatively correlated with tuber infection corresponded in fragment size to taxa with known ability to inhibit pathogens and promote plant growth. Finally, bacterial isolates obtained from untreated soils, which inhibited P. infestans growth in vitro, represented 22–47% of isolates recovered, and matched classes predicted by the TRFs. This work represents a first step in understanding the mechanisms behind the low incidence of tuber blight in Andean potato‐cropping systems.  相似文献   

10.
Large‐scale virulence tests using trees or saplings are expensive, time‐consuming and require a considerable amount of space. The suitability of using ‘Golden Delicious’ apples as a rapid screen for identifying Ophiostoma novo‐ulmi transformants with reduced virulence was thus evaluated. When a collection of O. novo‐ulmi field isolates belonging to subspecies novo‐ulmi or americana was inoculated to apples, members of subsp. novo‐ulmi induced, on average, larger necrotic lesions than subsp. americana isolates. The size of the lesions on apples was not correlated with mycelial growth rate of isolates on nutrient agar. Insertional mutants from O. novo‐ulmi subsp. novo‐ulmi isolate H327 were inoculated to ‘Golden Delicious’ apples and Ulmus parvifolia × U. americana saplings in parallel experiments. Results clearly indicated that the O. novo‐ulmi transformants included several exhibiting significantly altered levels of virulence. Variability among replicates within a treatment was reduced in apple inoculation data compared to elm sapling data. Overall, the ‘Golden Delicious’ apple assay was found to be an excellent means for rapidly assessing the virulence level of O. novo‐ulmi isolates.  相似文献   

11.
Bacterial wilt of forage grasses, caused by the pathogen Xanthomonas translucens pv. graminis (Xtg), is a major disease of forage grasses such as Italian ryegrass (Lolium multiflorum). The plant genotype‐bacterial isolate interaction was analysed to elucidate the existence of race‐specific responses and to assist the identification of plant disease resistance genes. In a greenhouse experiment, 62 selected plant genotypes were artificially inoculated with six different bacterial isolates. Significant differences in resistance were observed among Lmultiflorum genotypes (P < 0·001) and in virulence (intensity of disease symptoms) among Xtg isolates (P < 0·001) using the area under the disease progress curve (AUDPC). No significant genotype‐isolate interaction (P > 0·05) could be observed using linear regression modelling. However, additive main effects and multiplicative interaction effects (ammi ) analysis revealed five genotypes which did not cluster close to the origin of the biplot, indicating specific interactions between these genotypes and some bacterial isolates. Simple sequence repeat (SSR) markers were used to identify marker‐resistance associations using the same plant genotypes and bacterial isolates. The SSR marker NFA027 located on linkage group (LG) 5 was significantly associated with bacterial wilt resistance across all six bacterial isolates and explained up to 37·4% of the total variance of AUDPC values. Neither the inoculation experiment nor the SSR analyses revealed major host genotype‐pathogen isolate interactions, thus suggesting that Xtg resistance, observed so far, is effective across a broad range of different bacterial isolates and plant genotypes.  相似文献   

12.
Decline of newly planted, grafted grapevines is a serious viticultural problem worldwide. In the Riverina (New South Wales, Australia), characteristic symptoms include low fruit yields, very short shoots and severely stunted roots with black, sunken, necrotic lesions. To determine the cause, roots and wood tissue from affected plants in 20 vineyards (Vitis vinifera cv. Chardonnay grafted to V. champini cv. Ramsey rootstock) were assayed for microbial pathogens. Ilyonectria spp. (I. macrodidyma or I. liriodendra, producers of phytotoxin brefeldin A, BFA, and cause of black foot disease of grapevines) and Botryosphaeriaceae spp. (predominantly Diplodia seriata) were isolated from rootstocks of 100 and 95% of the plants, respectively. Togninia minima and Phaeomoniella chlamydospora (cause of grapevine Petri disease) were isolated from 13 and 7% of affected plants, respectively. All Ramsey rootstock stems of grafted plants sampled from a supplier nursery were infected with Ilyonectria spp. and D. seriata. Diplodia seriata, but not Ilyonectria spp., was also isolated from 25% of canes sampled from the rootstock source block. Root inoculation of potted, disease‐free Chardonnay plants with Ilyonectria isolates from diseased vineyards caused typical disease symptoms, while co‐inoculation with Botryosphaeriaceae spp. increased disease severity. This is the first study to show that a major cause of young grapevine decline can be sequential infection by Botryosphaeriaceae from rootstock cuttings and Ilyonectria spp. from nursery soil. Although the Petri disease fungi were less common in young declining grafted grapevines in the Riverina, they are likely to contribute to the decline of surviving plants as they mature.  相似文献   

13.
Since its first isolation from Salix roots in 1972, isolates of a sexually sterile Phytophthora species have been obtained frequently from wet or riparian habitats worldwide and have also been isolated from roots of Alnus and Prunus spp. Although originally assigned to Phytophthora gonapodyides on morphological grounds, it was recognized that these isolates, informally named P. taxon Salixsoil, might represent a separate lineage within ITS Clade 6. Based on phylogenetic analyses and comparisons of morphology, growth‐temperature relationships and pathogenicity, this taxon is formally described here as Phytophthora lacustris sp. nov. Isolates of P. lacustris form a clearly resolved cluster in both ITS and mitochondrial cox1 phylogenies, basal to most other Clade 6 taxa. Phytophthora lacustris shares several unusual behavioural properties with other aquatic Clade 6 species, such as sexual sterility and tolerance of high temperatures, that have been suggested as adaptations to riparian conditions. It appears to be widespread in Europe and has also been detected in Australia, New Zealand and the USA. It was shown to be weakly or moderately aggressive on inoculation to Alnus, Prunus and Salix. The extent of P. lacustris’ activity as a saprotroph in plant debris in water and as an opportunistic pathogen in riparian habitats needs further investigation. Its pathogenic potential to cultivated fruit trees also deserves attention because P. lacustris has apparently been introduced into the nursery trade.  相似文献   

14.
Sclerotinia stem rot (Sclerotinia sclerotiorum) is a serious disease in oilseed Brassica crops worldwide. In this study, temperature adaptation in isolates of S. sclerotiorum collected from differing climatic zones is reported for the first time on any crop. Sclerotinia sclerotiorum isolates from oilseed rape (Brassica napus) crops in warmer northern agricultural regions of Western Australia (WW3, UWA 7S3) differed in their reaction to temperature from those from cooler southern regions (MBRS‐1, UWA 10S2) in virulence on Brassica carinata, growth on agar, and oxalic acid production. Increasing temperature from 22/18°C (day/night) to 28/24°C increased lesion diameter on cotyledons of B. carinataBC054113 more than tenfold for warmer region isolates, but did not affect lesion size for cooler region isolates. Mean lesion length averaged across two B. carinata genotypes (resistant and susceptible) fell from 4·6 to 2·4 mm for MBRS‐1 when temperature increased from 25/21°C to 28/24°C but rose for WW3 (2·35 and 3·21 mm, respectively). WW3, usually designated as low in virulence, caused as much disease on stems at 28/24°C as MBRS‐1, historically designated as highly virulent. Isolates collected from cooler areas grew better at low temperatures on agar. While all grew on potato dextrose agar between 5 and 30°C, with maximum growth at 20–25°C, growth was severely restricted above 32°C, and only UWA 7S3 grew at 35°C. Oxalate production increased as temperature increased from 10 to 25°C for isolates MBRS‐1, WW3 and UWA 7S3, but declined from a maximum level of 101 mg g?1 mycelium at 20°C to 24 mg g?1 mycelium at 25°C for UWA 10S2.  相似文献   

15.
Olive leprosy, caused by the fungus Phlyctema vagabunda, is a classic fruit rot disease widespread in the Mediterranean basin. From 2009 to 2013, new disease symptoms consisting of small circular necrotic leaf lesions, coin branch canker and shoot dieback were observed in Spanish and Portuguese olive orchards showing intense defoliation. Phlyctema‐like anamorphs were consistently isolated from leaves and shoots with symptoms. Representative isolates from affected leaves, shoots and fruits were characterized based on morphology of colonies and conidia, optimum growth temperature and comparison of DNA sequence data from four regions: ITS, tub2, MIT and rpb2. In addition, pathogenicity tests were performed on apple and olive fruits, and on branches and leaves of olive trees. Maximum mycelial growth rate ranged between 0.54 and 0.73 mm per day. Conidia produced on inoculated apple fruits showed slight differences in morphology among the representative fungal isolates evaluated. Phylogenetic analysis clustered all of the Phlyctema‐like isolates in the same clade, identifying them as Phlyctema vagabunda. On fruits, influence of wounding, ripening and cultivar resistance was studied, with cv. Blanqueta being the most susceptible cultivar. On branches, a mycelial‐plug inoculation method reproduced olive leprosy symptoms and caused shoot dieback. On leaves, Koch's postulates were fulfilled and the pathogen caused characteristic necrotic spots and plant defoliation. This is the first time that the pathogenicity of P. vagabunda in olive leaves has been demonstrated.  相似文献   

16.
The angular leaf spot disease caused by Xanthomonas fragariae is an important plant disease with major impact for the strawberry nursery industry. Currently there is no plant protection product available for controlling the disease effectively. Planting of resistant cultivars seems to be promising, but all commercially used cultivars are susceptible and no donor with a high level of resistance has yet been found. Therefore, a total of 145 genotypes from the Fruit Genebank Dresden (Germany) were evaluated for resistance to X. fragariae by artificial inoculation. Six genotypes were classified as partly resistant, out of which only two (US4808 and US4809) are octoploid. Fragaria vesca f. alba, Fragaria nilgerrensis ‘Yunnan’, F. vesca ‘Illa Martin’ and F. moschata ‘Bauwens’ were also classified as partially resistant, but they are only of limited use for breeding because of their variable ploidy level. Fully resistant genotypes could not be detected. The systemic dispersal of the bacteria in strawberry plants was investigated after inoculation of leaves with X. fragariae strain XF3.9.C and the GFP‐tagged strain XF3.9.C(pKAN). The systemic spread was evaluated after 3, 7, 14 and 28 days post‐inoculation (dpi) by nested PCR and fluorescence microscopy. After 3 dpi, X. fragariae could be found in all tissues tested including the inoculated leaf, its petiole, the rhizome, the heart bud up to the youngest fully expanded leaf and its petiole. The systemic spread was also detectable in partially resistant genotypes.  相似文献   

17.
To test the hypothesis that resistance in Phytophthora cinnamomi to control by the fungicide phosphite (phosphonate) would arise in sites with prolonged use of phosphite, 30 P. cinnamomi isolates were collected from a range of sites with different phosphite‐use histories, including phosphite‐treated and untreated avocado orchards, and phosphite‐treated and untreated native vegetation sites. The colonizing ability of these isolates was tested by different inoculation methods against a range of host tissues, treated and untreated with phosphite, including mycelial stem inoculation on clonally propagated Leucadendron sp., mycelial root inoculation of lupin seedlings and zoospore inoculation of Eucalyptus sieberi cotyledons. Isolates from avocado orchards with a long history of phosphite use were, on average, more extensive colonizers of the phosphite‐treated Leucadendron sp., lupin seedling roots and Eucalyptus sieberi cotyledons. These isolates did not colonize untreated plant tissue (Leucadendron sp.) more extensively than isolates from sites with no history of phosphite use and no isolates were resistant to control by phosphite. Analysis of all isolates with microsatellite markers revealed the majority were from a single clonal lineage. Selection for decreased sensitivity to phosphite in planta has taken place within asexual clonal lineages of P. cinnamomi in sites with prolonged use of phosphite.  相似文献   

18.
The objective of this study was to determine whether genetically differentiated groups of Puccinia triticina are present in Europe. In total, 133 isolates of P. triticina collected from western Europe, central Europe and Turkey were tested for virulence on 20 lines of wheat with single leaf rust resistance genes, and for molecular genotypes with 23 simple sequence repeat (SSR) markers. After removal of isolates with identical virulence and SSR genotype within countries, 121 isolates were retained for further analysis. Isolates were grouped based on SSR genotypes using a Bayesian approach and a genetic distance method. Both methods optimally placed the isolates into eight European (EU) groups of P. triticina SSR genotypes. Seven of the groups had virulence characteristics of isolates collected from common hexaploid wheat, and one of the groups had virulence characteristics of isolates from tetraploid durum wheat. There was a significant correlation between the SSR genotypes and virulence phenotypes of the isolates. All EU groups had observed values of heterozygosity greater than expected and significant fixation values, which indicated the clonal reproduction of urediniospores in the overall population. Linkage disequilibria for SSR genotypes were high across the entire population and within countries. The overall values of RST and FST were lower when isolates were grouped by country, which indicated the migration of isolates within Europe. The European population of P. triticina had higher levels of genetic differentiation compared to other continental populations.  相似文献   

19.
A screening system for apple proliferation resistance was developed, based on in vitro graft‐inoculation with the causal agent ‘Candidatus Phytoplasma mali’. For this, in vitro cultures of the field‐resistant apomictic genotypes Malus sieboldii, H0909, D2212 and the susceptible Malus × domestica genotypes Golden Delicious and rootstock M9 were established, as well as in vitro cultures of Rubinette and Golden Delicious infected with ‘Ca. P. mali’ strains PM4 and PM6, respectively. Healthy in vitro shoots were inoculated by micrografting with infected shoots used as graft tip. After 6 weeks graft contact no significant differences for graft quality were observed between healthy and infected grafts. Mortality of grafts and transmission rates were not significantly different among the different genotypes. The phytoplasma concentration in inoculated shoots was determined at different times post‐inoculation (p.i.) by quantitative real‐time PCR. Infected M. sieboldii and D2212 had lower phytoplasma concentration than the susceptible controls and showed no symptoms. H0909 showed an intermediate behaviour exhibiting lower phytoplasma concentrations with strain PM4 but growth was affected. The dynamics of phytoplasma concentration reached a maximum at 6–8 months p.i. for all genotypes but the values for 3–5 and 10–12 months p.i. were similar. The resistance of M. sieboldii and D2212 was confirmed in vitro. A significant difference in phytoplasma concentration was observed between strains PM4 and PM6.  相似文献   

20.
Roses produced or grown in the field, as well as pot‐grown and cut roses, are attacked by different fungal pathogens causing leaf spot diseases. The incorrect identification and scoring of these pathogens and the lack of information about their genetic and pathotype diversity hamper resistance breeding. This is especially true for the hemibiotrophic ascomycete Sphaceloma rosarum, which is often confused with other fungi. Here for the first time, the genetic variability between isolates at both the molecular and morphological level is analysed. Eighty leaf spot samples were collected from different rose genotypes at five different locations, and 15 single conidial isolates established. All of the samples showed high morphological similarities to the reference isolate CBS 213.33 that was obtained from a public repository. By sequencing a part of the large subunit (LSU) of the 28S ribosomal RNA and phylogenetic analysis, high sequence similarities were shown to other Sphaceloma species for 13 of the isolates and the CBS reference. One of the isolates clustered with Septoria species and another clustered with Seimatosporium species. UPGMA clustering with 145 polymorphic AFLP markers resulted in five distinct groups in the majority rule consensus tree for the 14 S. rosarum isolates, including the CBS reference. Jaccard similarities ranged from 0·31 to 0·91. A detached leaf assay using a differential set of five rose genotypes led to the classification of the five tested isolates as five distinct pathotypes. Therefore, grouping depending on the avirulence gene diversity was clearly different from clustering using selectively neutral AFLP markers that were evenly distributed throughout the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号