首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sandy soil was amended with different types of sewage sludge (digested, dried, and composted) and pig slurry. The composted sludges displayed higher organic‐matter stability (39–45%) than only digested sludge (26–39%) or digested + dried sludge (23–32%). The microbial biomass of the dried sludge was undetectable. Digested and composted sludges and pig slurry displayed microbial biomasses (12492–13887 µg g?1, 1221–2050 µg g?1, and 5511 µg g?1, respectively) greater than the soil (108 µg g?1). The wastes were applied at seven doses, ranging from 10 to 900 g kg?1. Soils were incubated for 28 days. Substrate‐induced respiration (SIR) was measured for 12 consecutive hours on day 1 and on day 28. The results showed that SIR increased with the dose of organic amendment. However, SIR decreased when moderate doses of pig slurry or high doses of digested + dried sludge were tested. The possibility of using this inhibition as an ecotoxicological indicator is discussed.  相似文献   

2.
Soil properties are one of the most important factors explaining the different toxicity results found in different soils. Although there is knowledge about the role of soil properties on the toxicity of individual chemicals, not much is known about its relevance for sewage sludge amendments. In particular little is known about the effect of soil properties on the toxicity modulation of these complex wastes. In addition, in most studies on sewage sludges the identity of the main substances linked to the toxicity and the influence of soil properties on their bioavailability remains unknown.In this study, the toxicity of a sewage sludge to the soil collembolan Folsomia candida was assessed in nine natural soils from agricultural, grassland and woodland sites, together with the OECD soil. Correlations between the relative toxicity of sludge for collembolans in the different soils and their physical and chemical soil properties were assessed in order to identify the main compounds responsible for the effects observed. Furthermore, the relationships between the toxic effects to collembolans and water-soluble ions released by sludge, pH and electric conductivity were also assessed, together with the modulating effects of soil properties.Sludge toxicity was directly linked to the water extractable ammonium, which explained most of the mortality of the collembolans, and part of the inhibition of reproduction. For the last endpoint, nitrite also contributed significantly to the inhibition observed. The varied levels in water extractable ammonium in the different soils at equal dosages seem to be, in turn, modulated by some soil properties. Higher organic carbon contents were associated with lower toxicity of sludge, both for survival and reproduction, probably related to its higher ammonium sorption capacity. In addition, for reproduction, increasing the C/N ratio and pH appeared to increase the toxicity, probably due to both the greater difficultly in nitrification and the known unsuitability of alkaline soils for this species.  相似文献   

3.
《Applied soil ecology》2002,19(1):65-70
There is a high probability that urban compost, sewage sludge and ash will come in contact with natural terrestrial ecosystems. The present paper investigates the extent to which the Folsomia candida population development test (now a standardised ecotoxicological test, ISO 11267, for testing the impact of pure chemicals on soil fauna) can be applied to the detection of the toxicity of these wastes, the goal being to evaluate ecotoxicity of wastes before they are spread on land. We show that some potentially useful information on waste toxicity can be obtained with this test, but the results must be interpreting with caution, indeed, problems can arise from differences in pH, humidity and organic matter content of the waste relative to the characteristics of the dilution soil. On the basis of the results of these assays, we propose a classification of the toxicity of seven wastes.  相似文献   

4.
The quality of three types of treated sludges (sludge from the paper recycling industry, and sewage sludge treated by composting with pruning waste and thermally dried) was assessed in this work. The amendments were physicochemically characterized and evaluated for their microbiological quality and for contamination with pollutants. All three organic amendments showed an absence of pathogens, so they are microbially suitable for agricultural use. The pollutants studied in the amendments included eight heavy metals and 83 organic compounds. Heavy metals, pesticides, polycyclic aromatic hydrocarbons, octylphenol, bisphenol A, and parabens were found in the organic amendments. The amount and type of contaminants depended on the sample sources and differed between samples from a single origin. The presence of some of the pollutants found has not been previously reported in organic amendments. The germination assay showed that these amendments may be applied to soil in controlled doses. As far as we know, this is the first reported study that has evaluated a great variety of pollutants (heavy metals, pesticides, persistent and emerging organic pollutants) in sludge from the recycled paper industry; moreover, studies in other waste products in which such a broad range of pollutants has been evaluated have been scarce until now due to the complexity of these matrices.  相似文献   

5.
Limestone quarrying reduces the land's capacity to support a complete functional ecosystem. Adding sewage sludge to mining residues facilitates the establishment of a vegetation cover and can stimulate C and N cycling.We aimed to evaluate the effects of three composted and three thermally dried sewage sludges, on some biological properties of two types of debris (extraction soil and trituration soil) from a limestone quarry. Lysimeters filled with debris-sludge mixtures and control soils were sampled immediately after preparation and after being left in the open for 13 months. Total carbohydrates (TCH), 0.5 M K2SO4 extractable (ECH) carbohydrates, 0.5 M K2SO4 extractable organic C (EOC), microbial biomass carbon (MBC), microbial respiration (MR), β-glucosidase activity and β-galactosidase activity were determined immediately after sampling. The treated soils were also analyzed for their more general physicochemical characteristics. Adding sewage sludge clearly improved the physicochemical and biological properties of the residual soil and the effect of the type of sludge was greater than that of the type of soil. The sludge effect was generally more durable over the trituration soil. The sludge effect decreased the most in MR and EOC followed by MBC and ECH. Total carbohydrates showed the least enhancement but the sludge effect on this endpoint had the smaller decrease with time. Root exudates and plant debris contributed to β-glucosidase and β-galactosidase activities in the treated soils. Activities present in mixtures partly corresponded to enzymes free in the soil aqueous face. β-Glucosidase was also partly associated with humified organic matter. Thirteen months after sludge addition a fraction of the organic matter present in soils was still moderately labile. Results observed in BMC and MR suggests the sludge did not cause major toxic effects on residual soils. The sludge effect differed with the pre and post treatments of the sludges; thermal drying made the sludge organic matter more easily decomposable.  相似文献   

6.
The main objective of this study was to analyse how different sewage sludges influence soil wetting and drying dynamics. Three composted and three thermally‐dried municipal sludges from different wastewater plants located in Catalonia (NE Spain) were mixed with a mine‐soil obtained from a limestone quarry. Measurements of the time required to reach zero contact angle () and water holding time (WHT) provided information on the time required for a mine‐soil to reach its complete wettability and the residence time of water stored between ?0.75 and ?25 MPa of soil suction, respectively. One month after sludge amendments, one composted and one thermally‐dried sludge significantly increased . WHT was increased in the mine‐soil treated by composted sludges (50.6% by Blanes' sludge, 65.5% by Manresa's sludge and 52.5% by Vilaseca's sludge) one month after sludge amendments. The amount of water retained in the mine‐soil was increased by all composted sludges and one thermally‐dried sludge after one month (by 42.3% with Blanes' sludge, 42.3% with Manresa's sludge, 65.7% with Vilaseca's sludge and 23.9% with Mataró's sludge) and one year after sludge amendments and at a small suction. Increments in WHT corresponded with the amount of water retained so the time‐scale of soil water availability should also be considered. The value was modified mainly by increments in carbon stock and microbial biomass, while the WHT was modified mainly by increments in pH and electrical conductivity. Under similar air‐drying conditions, mine‐soil treated with composted sludges retained more water for longer compared with thermally‐dried sludges.  相似文献   

7.
不同有机废弃物对土壤磷吸附能力及有效性的影响   总被引:9,自引:3,他引:6  
城郊农地是循环有机废弃物的重要场所,但长期施用畜禽粪和城市污泥可引起土壤磷素积累、磷饱和度提高,增加土壤向环境流失磷的风险。为了解施用不同来源的有机废弃物对城郊耕地土壤磷素化学行为的影响,选择4种不同磷含量的土壤,探讨在等量磷素情况下,施用KH2PO4、猪粪/稻草秸秆堆肥、沼渣、猪粪、鸡粪、生活垃圾堆肥和2种污泥等不同磷源时,土壤有效磷含量及磷吸附能力的差异。结果表明,施用有机废弃物增加了土壤有效磷和水溶性磷含量,降低了土壤对磷的吸附能力,但影响程度因有机废弃物来源而异。施用猪粪/稻草秸秆堆肥和猪粪降低土壤磷最大吸附量比例(9.03%~15.60%)与施KH2PO4(10.59%~16.63%)相当,但施用沼渣、鸡粪和生活垃圾堆肥降低土壤磷最大吸附量的比例(5.09%~9.84%)明显低于施KH2PO4;施用2种污泥降低土壤磷最大吸附量的比例(4.32%~6.77%)最小。不同有机废弃物对土壤有效磷的影响差异较小,但对水溶性磷的影响较大。施用有机废弃物后,土壤磷最大吸附量的下降值与施用有机废弃物中铁、铝、钙含量呈负相关;土壤水溶性磷的变化量与施用有机废弃物后土壤交换性钙的增加量呈负相关,表明有机废弃物中铁、铝和钙等矿质成分的增加,可在一定程度上减少有机废弃物在土壤循环处理时磷对环境的负影响。在农田施用有机废弃物时,不仅要考虑有机废弃物磷素状况,也应适当考虑其他矿质成分的组成特点。该研究可为城郊农地科学施用有机废弃物提供依据。  相似文献   

8.
The chemical composition of waste-material-derived dissolved organic matter (DOM) was characterized by chemolytic analyses and 1H, 13C and 31P nuclear magnetic resonance (NMR) spectroscopy. Dissolved organic matter was extracted by water from an aerobic fermented urban waste compost, a sewage sludge and a pig slurry and then fractionated using the XAD-8 method. The amount of water-extractable dissolved organic carbon (DOC) ranged from 3% in the sewage sludge to 22% in the pig slurry. Dissolved organic matter isolated from pig slurry was equally distributed between hydrophilic and hydrophobic DOC, whereas in the sewage-sludge-derived material the hydrophobic fraction was predominant. Dissolved organic C from the urban waste compost was mainly within the hydrophilic fraction. Wet-chemical analysis and 1H- and 13C-NMR spectra showed that both DOM fractions from the urban waste compost were low in neutral, acidic and amino sugars as well as in lignin-derived compounds. In turn, the materials were rich in low-molecular-weight aliphatic compounds. The chemical structure of both fractions is probably the result of the intensive transformation of urban waste compost during its fermentation. The hydrophilic fractions of DOM from sewage sludge and pig slurry contained considerable amounts of carbohydrates but were also rich in low-molecular-weight aliphatics. The respective hydrophobic fractions had the largest contents of CuO-extractable phenols which may in part derive from sources other than lignin. By contrast with the other materials, the hydrophobic fraction from the pig slurry seemed to contain polymeric rather than low-molecular-weight material. The 31P-NMR spectrum of the hydrophilic DOM fraction from urban waste compost did not show signals of inorganic or organic P compounds while the spectrum of the hydrophobic fraction revealed traces of monoester P, diester P, and orthophosphate. 31P-NMR spectroscopy suggested that both the hydrophobic and hydrophilic fractions from pig slurry did not contain organic P. The hydrophilic DOM fraction from sewage sludge contained orthophosphate, organic monoester P and a little pyrophosphate. The hydrophobic fraction contained mainly organic diester P and smaller amounts of teichoic acids and organic monoester P. Considering that water-soluble fractions of urban waste compost contained no easily plant-available P and a low content of labile organics, we conclude that this material contains less labile nutrients and is more refractory than the soluble constituents of pig slurry and sewage sludge.  相似文献   

9.
The aim of the present study was to determine the influence of light soil fertilization using sewage sludges or composts on soil toxicity for three plant species (Lepidium sativum, Sorgo saccharatum, and Sinapis alba) and crustaceans (Heterocypris incongruens). The results obtained were compared to the polycyclic aromatic hydrocarbon (PAHs) content as a potential toxicity factor. The PAH content in soils fertilized with sludges was proportional to the dose applied. Soil fertilization with the studied materials negatively influenced plant growth and development. The negative influence was clearer in the case of sewage sludges than composts. Both sludges and composts significantly influenced H. incongruens mortality. However, the influence of sludges and composts on H. incongruens growth did not exceed 20%. The EC50 and LC50 values calculated on the basis of toxicity parameters showed that H. incongruens was characterized by a higher sensitivity to sludges and composts than most of the plants. L. sativum was characterized by the lowest EC50 values among all plants. No significant relationships between sewage sludge or compost toxicity and their PAHs content were observed.  相似文献   

10.
Background, aim, and scope  Sewage sludge use in agriculture should be limited by the presence of metals and other persistent environmental pollutants. The present study aims to contribute for the definition of a test battery of ecotoxicological assays that allows a proper ecotoxicological characterization of sludges, providing information on their potential hazard and identified “safe” application levels. Materials and methods  Three sludges from distinct sources (urban, olive-processing, and electroplating industries) were tested using avoidance and reproduction tests with earthworms (Eisenia andrei) and springtails (Folsomia candida) and plant growth tests with turnips (Brassica rapa) and oats (Avena sativa). Different soil–sludge mixture concentrations mimicking recommended/realistic field dosages were tested. Results  Only the sludge from the electroplating industry induced an avoidance response from the earthworms (EC50 = 0.4 t/ha) and collembolans (no observed effect concentration (NOEC) = 15 t/ha). This sludge was the only sludge responsible for any effect on the reproductive output of the earthworms (EC50 = 7.74 t/ha). Regarding collembolans, none of the sludges tested caused any significant decrease in reproduction. In higher plant tests, the two industrial sludges were toxic, causing a decrease growth in both species. The EC20 values determined for B. rapa were 20.3 and 24.2 t/ha and for A. sativa 14.7 and 16.2 t/ha for sludges from olive-processing and electroplating industries, respectively. Discussion  The metal loadings of the different test sludges could partially explain the results obtained. The toxicity of the test sludge from electroplating industry observed on the tested invertebrates and plants could be explained by the high amount of total chromium from which 22.3% was in the most toxic oxidation state—Cr(VI). However, the toxicity caused by the sludge from the olive-processing industry in the test plants could be attributed to the presence of other compounds (not measured in this study) since the metal content was not high enough to induce such an effect. The absence of toxicity showed by the urban test sludge was in agreement with its low levels of metals. Conclusions  The response of the different test organisms and end points varied according to the sludge type. The urban sludge was non-toxic whereas the sludge from the electroplating industry caused a toxic effect on almost all parameters measured (avoidance behavior of both test organisms, reproduction of earthworms, and growth of both plant species). Sludge from the olive-processing industry only caused a toxic effect on growth of both plant species. By analyzing the sensitivity of the different parameters for the most toxic sludge, it was found that avoidance and reproduction were more sensitive than plant growth, whereas plant seed germination was not sensitive at all. Recommendations and perspectives  The ecotoxicological evaluation of wastes can be used as an environmental safety control of sludge use in agriculture. A tiered approach could be adopted for this purpose, incorporating avoidance tests in the first tier (screening level) and reproduction and plant growth tests in a second tier. But more evidence aiming to define the most suitable ecotoxicological test battery for specific sludges with a different contamination profile is still needed.  相似文献   

11.
Changes produced in the biological characteristics of an arid soil by the addition of various urban wastes (municipal solid waste, sewage sludge and compost) at different doses, were evaluated during a 360-day incubation experiment. The addition of organic materials to the soil increased the values of biomass carbon, basal respiration, biomass C/total organic C ratio and metabolic quotient (qCO2), indicating the activation of soil microorganisms. These biological parameters showed a decreasing tendency with time. Nevertheless, their values in amended soils were higher than in control soil, which clearly indicates the improvement of soil biological quality brought about by the organic amendment. This favorable effect on soil biological activity was more noticeable with the addition of fresh wastes (municipal solid waste or sewage sludge) than with compost. In turn, this effect was more permanent when the soil was amended with municipal solid waste than when it was amended with sewage sludge. Received: 28 May 1996  相似文献   

12.
Generation of organic waste is increasing worldwide and strategies for its environmentally sound use must be developed and optimized. Regulations in European countries and the USA differ largely with respect to requirements of organic waste quality and the quantities of pollutants which can be added to the soil. Research has shown beneficial effects regarding the improvement of soil fertility. Enrichment of total metals in soil was attributed to long‐term sludge application but the effect on bioavailability of metals must be further clarified. A number of organic pollutants, such as hydrophobic persistent organic contaminants and surfactants, are known to accumulate in organic wastes. However, the former interact strongly with organic matter in the sludge‐soil‐plant system and systemic plant uptake is generally assumed to be minimal. Surfactants may cause adverse environmental impacts when they enter sewage systems in high loads and accumulate in sludge. Surfactants and some of their metabolites are not readily biodegraded in non‐aerated environments. Due to their toxicity and estrogenic activity, of nonylphenol for example, more research is needed to optimize analytical techniques and to trace their behavior in soil. Some options to cope with the risks of huge amounts of organic waste and also some benefits are presented: (1) further limitation of standards for pollutants and reduced application rates; (2) improved treatment of sewage sludge to reduce the total and bioavailable portions of both heavy metals and organic pollutants; (3) adaptation of waste application rates to soil properties such as sorption capacity for pollutants; (4) harmonization of analytical protocols for organic contaminants, i.e. surfactants and metabolites, enabling a more thorough monitoring of the wastes which are to be applied onto soils.  相似文献   

13.
Effective use of organic wastes for agricultural production requires that risks and benefits be documented. Two types of sewage sludge, household compost and solid pig manure were studied under field and greenhouse conditions to describe their fertilizer value and effects on soil properties and soil biota, the fate of selected organic contaminants, and their potential for plant uptake. A 3-year field trial on two soil types showed no adverse effects of waste amendment on crop growth, and a significant fertilizer value of one sludge type. Accumulation of N and Pi was indicated, as well as some stimulation of biological activity and micro-arthropod populations, but these effects differed between soil types. There was no detectable accumulation of polycyclic aromatic hydrocarbons (PAH), di(2-ethylhexyl)phthalate (DEHP), nonylphenol and ethoxylates (NP+NPE) or linear alkylbenzene sulfonates (LAS) after three repeated waste applications, and no plant uptake was suggested by analysis of the third crop. A plot experiment with banded sludge was conducted to examine sludge turnover and toxicity in detail. Less than 5% of NP or LAS applied in organic wastes was recovered after 6 months, and less than 6% of DEHP applied was recovered after 12 months. Potential ammonium oxidation (PAO) at 0–1 cm distance from the banded sludge was stimulated despite toxic concentrations in the sludge, which suggested that contaminants were degraded inside sludge particles. Phospholipid fatty acid (PLFA) profiles suggested a gradual shift in the composition of the microbial community within sludge, partly due to a depletion of degradable substrates. A pot experiment with sludge-amended soil and soil spiked with contaminants showed no plant uptake of NP, DEHP or LAS. Degradation of LAS and NP added in sludge was delayed and the degradation of DEHP was faster than when the contaminants were added directly to the soil. In conclusion, adverse effects of organic waste application on soil or crop were not found in this study, and for some waste products positive effects were observed.  相似文献   

14.
Knowing whether test species used for single-species toxicity tests are representative of other species provides valuable information because contaminant effects are often extrapolated to the community level based on these tests. To evaluate how representative the sensitivity of the standard test collembolan species Folsomia candida is for Collembola, we devised toxicity tests using the collembolan species Onychiurus yodai and Sinella umesaoi, which exhibit life-forms different from F. candida. Sensitivity to cadmium (Cd) was compared between F. candida and the novel test species. The 50% effective concentrations for reproduction were 154.7, 72.2 and 40.9 mg Cd/kg dry soil for O. yodai, F. candida and S. umesaoi, respectively. Thus, the reproductive sensitivity of F. candida to Cd was between that of the other two species. Increasing reproductive sensitivity to Cd corresponded to increasing activity levels and a more surface-dwelling life-form. Our data may facilitate the generalisation of effect data for F. candida to other species.  相似文献   

15.
This study looks at the ability of organic wastes from different sources to efficiently promote chemical attributes and enhance nitrogen (N) concentrations in an Oxisol Ustox with a sandy texture. This experiment was performed in a randomized design using wastes from pulp mill sludge, petrochemical complex, sewage treatment plant, dairy factory sewage treatment plant, and pulp fruit industry, on 10 different days. Results showed that addition of the wastes to the soil amended their chemical attributes. The different characteristics of the organic wastes seem to have influenced the N mineralization rates during the 112 days. There was a close relationship between the N mineralization and organic waste C/N ratio: blank soil (SP) (Nma = 3.17) < Treated pulp mill sludge (PMS) (Nma = 30.49, C/N 63.6:1) < Organic compost from the fruit pulp industry (FPW) (Nma = 67.6, C/N 11.9:1) < Treated urban sewage sludge (USS) (Nma = 76.22, C/N 7.2:1) = Petrochemical complex sludge (PS) (Nma = 84.0, C/N 7.7:1) < Treated dairy industry sewage sludge (DSS) (Nma = 102.17, C/N 8.4:1).  相似文献   

16.

Purpose

Mercury pollution in agricultural soils associated to the use of fertilizers and its influence on crops is a cause of major concern. The purpose of this work was to investigate the impact of the application of different organic and mineral fertilizers on the Hg concentration in the agricultural soils and its uptake by barley.

Materials and methods

Hg concentration was studied through a field test in an agricultural land located in the province of Palencia (Spain) over a 5-year period. The impact of irrigation and of four different fertilizers (a mineral one and three different organic waste materials, namely municipal solid waste compost, sewage sludge, and dehydrated sewage sludge) was assessed. The amounts of the mineral and organic fertilizers added to the soil were determined according to agricultural fertilization needs. The experimental crop was barley (Hordeum vulgare L.), planted as an annual crop. Mercury analyses were conducted using a direct mercury analyzer and validated according to EPA Method 7473. BCR-141R was used as a certified reference material.

Results and discussion

After 5 years, whereas the application of the mineral fertilizer did not increase the mercury content in the agricultural soils, the application of the organic residues led to Hg contents 1.7–7.6 times higher than that of the control soil. The treatment with solid municipal waste compost (MSWC) led to the largest increase in Hg content in the soil, followed by composted sewage sludge (CSS) and by dehydrated sewage sludge (DSS). No significant differences were observed in the Hg content in the barley grains, although the highest values were associated to the sludge-treated plots.

Conclusions

The application of organic fertilizers such as sewage sludges and municipal solid wastes led to an increase in the mercury concentration in the agricultural soils, noticeable for soils with low initial Hg concentrations (similar to background levels). This increase differed depending on the type of waste and on the intra-organic matter diffusion mechanisms, as well as on the type of irrigation of the agricultural land. Conversely, no significant differences in the Hg content in grains were found among the soils with the different fertilization treatments, although the highest values were observed for those treated with sewage sludge. The resulting Hg levels in both soils and grains were within legal limits, posing no danger to the environment or to human health.
  相似文献   

17.
《Applied soil ecology》2000,14(2):103-110
Ecotoxicological tests are increasingly being used to evaluate the toxicity of a substance or mixture of substances towards soil fauna. One of these uses the parthenogenetic collembolan Folsomia candida to test for soil contamination, and this has been standardised in Europe. However, in such studies, it is important to know whether different laboratories use genetically close clones.In this study, nine clones of the parthenogenetic collembolan F. candida, used in five laboratories, have been subtyped by amplification of random regions of genomic DNA using 10-base primers in the random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). This differentiated these clones into three groups of four, four and one, respectively. Several hypotheses can be envisaged to explain these divergences between the populations of this parthenogenetic collembolan, notably the history of interlaboratory exchanges of clones. Ecotoxicological tests (mortality and reproduction) were undertaken to test the sensitivities to cadmium and phenantrene of two clones from different RAPD defined groups. These showed minor differences in sensitivities to both, but more extensive testing with five cadmium concentrations showed that the genetic clone does not affect the LOEC determination. There is no evidence of significant differences between clones throughout a concentration gradient of cadmium.  相似文献   

18.
Dendrobaena veneta is an earthworm species capable of consuming a wide range of organic wastes which may be used as a field indicator of municipal sewage sludge applied to land. The aim of the present 8-week laboratory experiment was to check viability, reproduction and the immune system of D. veneta maintained in soil without food additions (control 0s group) or in soil amended with 25% or 50% municipal sewage sludge (25s and 50s groups, respectively). Reproduction and immunity are important physiological functions whose detailed study can provide information on the effects of pollutants. After the 8-week exposure period, earthworm mortality (2 out 20 individuals) was recorded only in the 50s group. Reproduction was high in the 25s group (44 cocoons and 41 juveniles) whereas reproduction was almost completely inhibited both in the food-deprived control 0s group (1 cocoon, 3 juveniles) and in the 50s group containing a high amount of sludge (2 cocoons). Significantly increased numbers of non-invasively extruded coelomocytes were recorded 3 weeks after the start of the experiment in the 50s group, but they dropped to the food-deprived control level by the end of 8 weeks likely due to exhaustion of the immune system coping with sludge-derived microbes and/or toxins. In contrast, numbers of coelomocytes in the 25s group increased gradually reaching the maximum at the end of the experiments. In conclusion, high amounts of municipal sewage sludge are detrimental to worms, inhibiting reproduction and inflicting mortality. A moderate amount of municipal sewage sludge provides a good source of nutrients for D. veneta, supporting their growth and reproduction for at least 8 weeks. Immunological parameters might serve as useful indicators of earthworm exposure to sewage sludge.  相似文献   

19.
We examined collembolan food preference for fungal mycelium grown on copper-contaminated medium, and the relationship between copper content, food selectivity and collembolan fitness when fed contaminated mycelium.To clarify whether collembolan food selectivity is related to fitness parameters, Folsomia candida were fed mycelium of the dark-pigmented fungus Alternaria alternata grown on medium with different copper concentrations. Copper-contaminated food (fungus grown on 50, 125, 250 and 500 μg Cu g−1 medium, fresh wt.) was offered together with untreated food for 4 weeks. F. candida fed selectively on the provided mycelium and discriminated clearly between mycelium grown on high and low levels of contamination, distinctly preferring fungus grown on medium with a total copper concentration of 50 and 125 μg g−1. In contrast, fungus grown on highly contaminated medium (250 and 500 μg g−1) was avoided. Collembolan food preference generally matched fitness parameters. Reproduction was significantly affected by the total copper concentration of the fungal growth medium. When fed their preferred mycelium, collembolan reproduction was enhanced, whereas a diet of highly contaminated mycelium (250 or 500 μg g−1) resulted in a strong decrease in reproduction. Adult survival was affected only marginally. Even though heavy metal contamination is a potential stress factor for many soil microarthropods, F. candida is able to discriminate between high and low quality food sources, and even benefits from moderately elevated copper concentrations.  相似文献   

20.
A valuable feature of sewage sludge used for restoring degraded soils is its supplying capacity for C, N and P. A series of laboratory incubation experiments to quantify the release of N and P from raw (dried) and co-composted urban sewage sludges applied to mine dump soil were conducted. The effect of application dose (0–100 g kg−1) and incubation time (0–30 day) on N and P mineralization as well as the process modelling were carried out by Response Surface Methodology. Models fitted revealed significant interaction effects between factors involved in soil-sludge dynamics, which accounted for 26% total variance in N-mineralization. The response models were used to predict nutrient releases required in properly formulating sludge management guidelines, viz. maximum simultaneous value for extractable inorganic forms of N and P achieved 11 and 18 days after applying 100 g kg−1 of co-compost and dried sludge, respectively. Addition of sludges resulted into mineralization of 18% total N and up to 15% total P, while chemical and biochemical properties of the amended soil were improved paralleling organic matter mineralization. Compared to dried sludge, co-composting sludge lead to a decline of up to 30% and 65% in the availability in soil of N and P, respectively, but at expenses of C losses of only 7%, illustrating that co-composting was superior in turning sludge into an environmentally safe soil amendment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号