首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Sorghum is an underutilized resource for the production of bioindustrial chemicals like lactic acid. Capillary electrophoresis (CE) was tested to monitor the fermentation process, i.e., quantify the amount of lactic acid and by‐products in the fermentation broth using phosphate buffer pH 6.25 containing the electroosmotic flow modifier cetyltrimethylammonium bromide (CTAB). High levels of calcium carbonate were required during fermentation to stabilize the pH and these caused considerably prolonged migration times in CE. A 1:10 dilution of the samples with water was the best way to reduce salt load and thus conductivity in the sample plug, and thus to eliminate the problem of prolonged migration times. Further improvements were achieved by rinsing the capillary with HCl and water after each run, rather than NaOH and water. HCl might more efficiently remove Ca2+ ions from the capillary surface. The fermentation broth studied was based on liquefied sorghum inoculated with Rhizopus oryzae. The main product was lactic acid (24.60 ± 0.56 g/L) and a significant by‐product was fumaric acid (1.07 ± 0.04 g/L).  相似文献   

2.
以菊芋粉为原料同步糖化发酵生产燃料乙醇   总被引:4,自引:1,他引:3  
汪伦记  董英 《农业工程学报》2009,25(11):263-268
利用粟酒裂殖酵母(Schizosaccharomyces pombe)能发酵菊芋未水解糖液高产乙醇的特点提出了以菊芋粉为原料,同步糖化发酵生产燃料乙醇的新工艺。在摇瓶中考察了原料预处理方法、原料浓度和初始pH值对乙醇发酵的影响,进而在5 L发酵罐中考察了未调控pH值和恒定pH值与通气情况对乙醇发酵的影响。结果表明:该菌株最适pH值为4.0;100目筛分的菊芋粉发酵效果良好,115℃灭菌处理优于121℃,在此条件下,菊芋粉浓度200 g/L时,乙醇产量达到66.58 g/L,理论转化率为85.88%;发酵液pH值下降对乙醇发酵没有影响,通入适量氧气会导致乙醇产量的下降,这表明粟酒裂殖酵母进行乙醇发酵时不需要供氧;通入氮气保持厌氧环境不能显著提高乙醇产量,不通气进行乙醇发酵也达到高的转化率,因此在工业生产中,不必保持厌氧发酵环境。在此基础上,对菊芋粉补料发酵进行了试验,补料至菊芋粉终浓度为300 g/L,发酵终点乙醇浓度为94.81 g/L,理论转化率为81.54%。这些研究工作,为以菊芋为原料的燃料乙醇工业化生产提供技术依据。  相似文献   

3.
Flour was obtained from oats fermented with lactic acid bacteria (LAB) to study the effect of fermentation on the physical properties and the suitability of fermented oats for use in starch noodle production. The results showed that fermented samples had a significantly lower pH than control samples. Gel strength and amylose content initially increased and then decreased (P < 0.05) with fermentation time. The peak viscosity, breakdown, final viscosity, and setback value decreased with fermentation time. Fermented noodles showed a higher hardness and springiness. In particular, Lactobacillus plantarum (LP) induced the highest springiness, cohesiveness, gumminess, chewiness, and resilience over 12 hr of fermentation. The cooking quality evaluation indicated that fermentation improved the quality of oat starch noodles. Fermented oats resulted in noodles with low cooking loss and higher cooking weight compared to noodles made from fresh flour. The use of LP for 12 hr of fermentation time yielded noodles of the best quality.  相似文献   

4.
Immunoreactivity and amino acid content of fermented soybean products   总被引:1,自引:0,他引:1  
Food allergy has become a public health problem that continues to challenge both the public and the food industry. The objective of this research was the detection and quantification of the major human allergenic soy proteins and to study the reduction in immunoreactivity and improvement of amino acid content after fermentation of soybean flour. Fermentation was carried out in the solid state of cracked seeds inoculated with Aspergillus oryzae, Rhizopus oryzae, and Bacillus subtilis and in the liquid state of milled soybean flours fermented naturally by microorganisms present only in the seeds or by inoculation with Lactobacillus plantarum. ELISA and Western blot were used to quantify IgE antibody response, and HPLC was used to identify and quantify total amino acids. L. plantarum fermented soy flour showed the highest reduction in IgE immunoreactivity (96-99%) depending upon the sensitivity of the plasma used. Among the solid fermented products, the lowest reduction in immunoreactivity was obtained when mold strains, R. oryzae and A. oryzae, were used (66 and 68%, respectively, for human plasma 97.5 kUA/L). Among the solid fermented products, those inoculated with B. subtilis yielded a 81 and 86% reduction in immunoreactivity against both human plasma 97.5 IgE kUA/L and human pooled plasma samples, respectively. When soybean was subjected to liquid fermentation, most of the total amino acids increased significantly ( p < or = 0.05). In solid fermentation with R. oryzae, only Ala and Thr content improved. Fermentation can decrease soy immunoreactivity, and there is potential of developing nutritious hypoallergenic soy products.  相似文献   

5.
郑志  姜绍通  罗水忠  李兴江  潘丽军 《核农学报》2007,21(3):242-245,255
本研究利用亚硝基胍(NTG)对米根霉As3.3462进行诱变,在含丙烯醇的YPD选择培养基上筛选获得11株ADH活力降低的突变株,其中mut-2突变株发酵液中乙醇含量比原始菌株降低35.2%,而乳酸含量提高了79.6%。对原始菌株和mut-2突变菌株在发酵过程中ADH与LDH活力变化分析表明,突变菌株的最大ADH活力比原始菌株降低了60.6%,而LDH活力与原始菌株相比略有提高。研究结果还表明,mut-2突变菌株与出发菌株相比,其生物量和对还原糖的利用速率均比原始菌株提高。  相似文献   

6.
Muffins containing different amounts and molecular weights (MW) of β‐glucan were evaluated for the effect of β‐glucan on the physical characteristics of the muffins and on in vitro bile acid binding and fermentation with human fecal flora. Wheat flour muffins were prepared with the addition of β‐glucan extracts with high‐, medium‐, or low‐MW. For oat flour muffins, the native oat flour contained high‐MW β‐glucan; the oat flours were treated to create medium‐ and low‐MW β‐glucan within the prepared muffin treatments. For each 60‐g muffin, the amounts of β‐glucan were 0.52, 0.57, and 0.59 g for high‐, medium‐, and low‐MW β‐glucan wheat flour muffins, and 2.38, 2.18, and 2.23 g for high‐, medium‐, and low‐MW β‐glucan oat flour muffins, respectively. The lower the MW of the β‐glucan in muffins, the lower the height and volume of the muffins. The oat flour muffins were less firm and springy than the wheat flour muffins as measured on a texture analyzer; however, MW had no effect on muffin texture. The oat flour muffins bound more bile acid than did the wheat flour muffins. The muffins with high‐MW β‐glucan bound more bile acid than did those with low‐ and medium‐MW β‐glucan. Muffin treatment affected the formation of gas and total short‐chain fatty acids (SCFA) compared with the blank without substrate during in vitro fermentation. There were no differences in pH changes and total gas production among muffin treatments. The high‐MW β‐glucan wheat flour muffins produced greater amounts of SCFA than did the wheat flour muffin without β‐glucan and the oat flour muffins; however, there were no differences in SCFA production among muffins with different MW. In general, the β‐glucan MW affected the physical qualities of muffins and some potential biological functions in humans.  相似文献   

7.
Lactic acid fermentation of cereal flours resulted in a 100 (rye), 95-100 (wheat), and 39-47% (oat) reduction in phytate content within 24 h. The extent of phytate degradation was shown to be independent from the lactic acid bacteria strain used for fermentation. However, phytate degradation during cereal dough fermentation was positively correlated with endogenous plant phytase activity (rye, 6750 mU g(-1); wheat, 2930 mU g(-1); and oat, 23 mU g(-1)), and heat inactivation of the endogenous cereal phytases prior to lactic acid fermentation resulted in a complete loss of phytate degradation. Phytate degradation was restored after addition of a purified phytase to the liquid dough. Incubation of the cereal flours in buffered solutions resulted in a pH-dependent phytate degradation. The optimum of phytate degradation was shown to be around pH 5.5. Studies on phytase production of 50 lactic acid bacteria strains, previously isolated from sourdoughs, did not result in a significant production of intra- as well as extracellular phytase activity. Therefore, lactic acid bacteria do not participate directly in phytate degradation but provide favorable conditions for the endogenous cereal phytase activity by lowering the pH value.  相似文献   

8.
The potential of apple pomace for lactic acid production by simultaneous saccharification and fermentation (SSF) was evaluated. The effects of the cellulase to solid ratio (CSR), the liquor to solid ratio (LSR), and the beta-glucosidase to cellulase ratio (BCR) on the kinetics of lactic acid generation were assessed, and a set of mathematical models was developed to reproduce and predict the lactic acid concentration of fermentation broths. Operating at low cellulase and cellobiase charges (1 FPU/g and 0.25 IU/FPU, respectively) and short reaction times (10 h), SSF media containing 27.8 g of lactic acid/L were obtained with a volumetric productivity of 2.78 g/Lh. Material balances showed that the SSF processing of 100 kg of dry apple pomace results in the production of 36.6 kg of lactic acid, 18.3 kg of oligomeric carbohydrates (which can be used as ingredients for functional foods), 8.4 kg of microbial biomass, and 8 kg uronic acids.  相似文献   

9.
A modified dry‐grind corn process has been developed that allows recovery of both pericarp and endosperm fibers as coproducts at the front end of the process before fermentation. The modified process is called enzymatic milling (E‐Mill) dry‐grind process. In a conventional dry‐grind corn process, only the starch component of the corn kernel is converted into ethanol. Additional ethanol can be produced from corn if the fiber component can also be converted into ethanol. In this study, pericarp and endosperm fibers recovered in the E‐Mill dry‐grind process were evaluated as a potential ethanol feedstock. Both fractions were tested for fermentability and potential ethanol yield. Total ethanol yield recovered from corn by fermenting starch, pericarp, and endosperm fibers was also determined. Results show that endosperm fiber produced 20.5% more ethanol than pericarp fiber on a g/100 g of fiber basis. Total ethanol yield obtained by fermenting starch and both fiber fractions was 0.370 L/kg compared with ethanol yield of 0.334 L/kg obtained by fermenting starch alone.  相似文献   

10.
A microbially safe process for the enrichment of conjugated linoleic acid (CLA) in oats was developed. The process consists of hydrolysis of oat lipids by non-inactivated oat flour, followed by propionibacterium-catalyzed isomerization of the resulting free linoleic acid to CLA. The first stage was performed at water activity (a(w)) 0.7, where hydrolysis of triacylglycerols progressed efficiently without growth of the indigenous microflora of flour. Thereafter, the flour was incubated as a 5% (w/v) aqueous, sterilized slurry with Propionibacterium freudenreichii ssp. shermanii. The amount of CLA produced in 20 h was 11.5 mg/g dry matter corresponding to 116 mg/g lipids or 0.57 mg/mL slurry. The oat flour had also the capability to hydrolyze exogenous oils at a(w) 0.7. Sunflower oil, added to increase linoleic acid content in triacylglycerols 2.7-fold, was hydrolyzed rapidly. Isomerization of this oil-supplemented flour as a 5% slurry gave final CLA content of 22.3 mg/g dry matter after 50 h of fermentation, corresponding to 118 mg/g lipids or 1.14 mg/mL slurry. Storage stability of CLA in fermented oat slurries at 4 degrees C was good.  相似文献   

11.
Fermentation of pure teff (Eragrostis teff), pure grass-pea (Lathyrus sativus), and their mixtures, 9:1 and 8:2 (teff/grass-pea) has been done at two temperatures (room temperature and 35 degrees C) in duplicate using the strains of Lactobacillus plantarum, for bacterial fermentation, and Aspergillus oryzae and Rhizopus oligosporus in succession for solid-state fungal fermentation as inocula. In addition, the natural or spontaneous and back-slopping methods of bacterial fermentation have been done on the above four substrate groups. The pH and essential amino acid profiles of the different fermentation processes were compared. The back-slopping in teff at a temperature of 35 degrees C gave the sharpest pH drop. All fermentations done at 35 degrees C showed a steeper slope in their pH versus time plot compared to their room temperature counterpart. Fungal fermentation gave an improved amino acid profile for the essential ones in all of the substrate groups, except in pure grass-pea. Fermented teff/grass-pea (8:2) in this fungal fermentation has been found to be quite comparable in essential amino acid profile to an ideal reference protein recommended for children of 2-5 years of age. None of the bacterial fermentations produced a net change in their essential amino acid profile in any of the substrate groups investigated. Solid state fungal fermentation on pure grass-pea using the fungal strains R. oligosporous and A. oryzae in succession has shown that the neurotoxin beta-N-oxalyl-alpha,beta-diaminopropionic acid (beta-ODAP) in grass-pea has been removed by 80% on average for the high-toxin variety and by up to 97% for the low-toxin variety as determined by an improved chromatographic method with bioelectrochemical detection coupled on-line with refractive index detection.  相似文献   

12.
为探究米根霉发酵米糠的最佳条件,本研究采用过热蒸汽对米糠作稳定化处理,以米根霉为菌种发酵稳定化米糠,以米糠可溶性膳食纤维(SDF)得率为指标,并对此条件下发酵米糠的体外益生活性进行评价。结果表明,过热蒸汽稳定米糠最佳条件为160℃、2 min,此条件下脂肪酶失活率为88.01%;甜香型米根霉发酵米糠的最佳条件为:以甜香型米根霉为发酵菌种,料液比1:2.25、接种量0.7%、发酵温度35℃、发酵时间24 h,此条件下SDF得率为5.83%,比未发酵米糠提高了近一半;与未发酵米糠相比,经甜香型米根霉发酵后的米糠,可有效促进双歧杆菌(对数值6.85)和乳酸杆菌(对数值5.23)的增殖;总短链脂肪酸含量提高37.30%,肠道益生活性显著增强(P<0.05)。本研究结果为改善米糠功能特性提供了依据,对今后米糠在发酵方面的应用具有一定的指导意义。  相似文献   

13.
Two agro-industrial coproducts, soybean cotyledon fiber and distiller's dried grains with solubles (DDGS), were used as substrates to evaluate the effect of coculturing three different fungi, Aspergillus oryzae , Trichoderma reesei , and Phanerochaete chrysosporium , on enzyme production by solid-state fermentation (SSF). When soybean fiber was used as the substrate, a maximum xylanase activity of 757.4 IU/g and a cellulase activity of 3.2 IU/g were achieved with the inoculation and incubation of T. reesei and P. chrysosporium for 36 h, followed by A. oryzae for an additional 108 h. This inoculation scheme also resulted in the highest xylanase activity of 399.2 IU/g compared to other fungi combinations in the SSF of DDGS. A large-scale SSF by this fungus combination produced fermented products that had xylanase and cellulase activities of 35.9-57.0 and 0.4-1.2 IU/g, respectively. These products also had 3.5-15.1% lower fiber and 1.3-4.2% higher protein contents, suggesting a potential feed quality improvement.  相似文献   

14.
In vitro fermentabilities of the oat flour digestion residues (ODR) from two commercial oat lines with 4.7 and 5.3% beta-glucan and from two high-beta-glucan experimental lines with 7.6 and 8.1% beta-glucan were evaluated and compared with fermentations of lactulose, purified oat beta-glucan (POBG), and purified oat starch (POS). Substrates were fermented by using an in vitro batch fermentation system under anaerobic conditions for 24 h. The progress of the fermentation was studied by following the change in pH of the fermentation medium, production of short-chain fatty acids (SCFA) and gases, and consumption of carbohydrates. The substrate from the flour with the greatest amount of beta-glucan tended to have the greatest pH decline and the greatest total SCFA production. A significant correlation occurred between gas production and SCFA formation (R 2 = 0.89-0.99). Acetate was produced in the greatest amounts by all of the substrates except POBG, by which butyrate was produced in the greatest amount. More propionate and butyrate, but less acetate, were produced from high-beta-glucan ODR. With the given fermentation conditions, >80% of the total carbohydrate was depleted by the bacteria after 24 h. Glucose was the most rapidly consumed carbohydrate among other available monosaccharides in the fermentation medium. Overall, the high-beta-glucan experimental lines provided the best conditions for optimal in vitro gut fermentations.  相似文献   

15.
A method for microbial isomerization of oat linoleic acid to conjugated linoleic acid (CLA) was developed. The method includes hydrolysis of oat lipids in aqueous flour slurries by the endogenous oat lipase. Then, the flour slurry containing free linoleic acid is utilized as a substrate for the isomerization reaction carried out by resting cells of Propionibacterium freudenreichii ssp. shermanii. The isomerization reaction progressed most effectively when, after the lipid hydrolysis period, the pH of the slightly acidic oat slurry was elevated to 8.0-8.5 and maintained at this range. With slurries containing 5% (w/v) oat flour, the amounts of CLA formed per dry matter were up to 10.1 mg/g corresponding to 102 mg/g lipids or 0.44 mg/mL slurry. Increments in the flour content up to 15% increased the volumetric production of CLA to 0.85 mg/mL. The proportion of the cis-9,trans-11 isomer was 80% of the total CLA formed. CLA could be concentrated into the solid material of the oat slurry by acidification.  相似文献   

16.
Fractionating the corn kernel to separate endosperm from germ and pericarp improves corn ethanol processing by increasing fermentation throughput and generating salable coproducts. One fractionation technology, dry fractionation (DF), suffers from loss of germ‐derived nutrients and amino acids, resulting in poor fermentation performance. Such deficiencies may be addressed by increasing nitrogen and other nutritional supplementation. As an alternative to exogenous nitrogen source, we investigated the use of a fungal protease to generate free amino nitrogen (FAN) from corn endosperm. Incubation of endosperm with protease did not affect subsequent liquefaction and saccharification. FAN supplementation through proteolysis resulted in fermentation being 99% complete in 48 hr, compared to 93% maximum with urea supplementation. Viable cell growth rates were similar in FAN and urea‐supplemented fermentations. Urea and FAN addition resulted in similar fermentation characteristics and similar FAN consumption rates as with FAN alone, which was indicative that FAN was assimilated preferentially. Increased amounts of maltose remaining after fermentation were correlated with initial FAN concentrations in mash. This observed trend was implicated in ethanol yield reduction of 2 g/L at high protease loading (generating 1.6 mg of FAN/g of glucose substrate) compared to a urea control. Using a glucose and maltose solution, we confirmed higher residual maltose in fermentations supplemented with high FAN concentrations. Use of protease to generate optimal FAN concentration in mash (1.2 mg of FAN/g of glucose substrate) could improve economics of dry fractionated corn ethanol production by increasing fermentation rates and, consequently, reducing fermentation time.  相似文献   

17.
Reducing corn steep time by adding lactic acid instead of relying on in situ fermentation was studied. Corn at two initial moisture levels (15 and 20%) was steeped for 18 hr in a countercurrent steep system. The initial SO2 target concentration in steepwater was 2,000 or 3,000 ppm, while the initial lactic acid concentration in steepwater was 0, 0.28, or 0.55%. Adding lactic acid under all steeping conditions decreased steepwater pH, accelerated SO2 absorption, and increased the amount of solids released from corn. Adding lactic acid during steeping also increased the first grind slurry density and made germ skimming easier than when no lactic acid was added. Starch yields for the hybrid used in this study under all steep conditions were comparable to those from 24‐hr steeping, except when steeping corn with an initial moisture content of 15% in ≈2,000 ppm of SO2 alone. For the 20% moisture corn, adding lactic acid to fresh steepwater significantly improved the starch yield at ≈2,000 ppm of SO2 for 18‐hr steeping. At ≈3,000 ppm of SO2, adding lactic acid did not increase the starch yield for the hybrid used. The protein content in starch was significantly lower when lactic acid was added. Pasting properties of starch were not affected by adding lactic acid. The hybrid used in this study had an initial moisture content of 20% and could be wet‐milled without affecting starch yield, starch protein content, and pasting properties.  相似文献   

18.
The citrus-processing industry generates in the Mediterranean area huge amounts of orange peel as a byproduct from the industrial extraction of citrus juices. To reduce its environmental impact as well as to provide an extra profit, this residue was investigated in this study as an alternative substrate for the fermentative production of citric acid. Orange peel contained 16.9% soluble sugars, 9.21% cellulose, 10.5% hemicellulose, and 42.5% pectin as the most important components. To get solutions rich in soluble and starchy sugars to be used as a carbon source for citric acid fermentation, this raw material was submitted to autohydrolysis, a process that does not make use of any acidic catalyst. Liquors obtained by this process under optimum conditions (temperature of 130 degrees C and a liquid/solid ratio of 8.0 g/g) contained 38.2 g/L free sugars (8.3 g/L sucrose, 13.7 g/L glucose, and 16.2 g/L fructose) and significant amounts of metals, particularly Mg, Ca, Zn, and K. Without additional nutrients, these liquors were employed for citric acid production by Aspergillus niger CECT 2090 (ATCC 9142, NRRL 599). Addition of calcium carbonate enhanced citric acid production because it prevented progressive acidification of the medium. Moreover, the influence of methanol addition on citric acid formation was investigated. Under the best conditions (40 mL of methanol/kg of medium), an effective conversion of sugars into citric acid was ensured (maximum citric acid concentration of 9.2 g/L, volumetric productivity of 0.128 g/(L.h), and yield of product on consumed sugars of 0.53 g/g), hence demonstrating the potential of orange peel wastes as an alternative raw material for citric acid fermentation.  相似文献   

19.
利用果蔬垃圾厌氧合成中链脂肪酸(medium-chain fatty acids,MCFAs)等化学品是厌氧技术高值化的重要方向。中链脂肪酸合成通常需要以乳酸/乙醇(电子供体)和短链脂肪酸(电子受体)为碳源进行碳链延长反应。因此,利用有机废弃物连续、稳定地协同制备乳酸和短链脂肪酸是中链脂肪酸合成的关键步骤。该研究考察了果蔬垃圾重复批次发酵协同制备乳酸和短链脂肪酸(short-chain fatty acids,SCFAs)的可行性,研究了不同置换率和进料浓度对果蔬垃圾重复批次发酵产酸特性的影响。结果表明,调控重复批次发酵的置换率和进料浓度是提高生产率、改善乳酸/SCFAs比例的有效方法。综合考虑酸化产物的生产率、乳酸/SCFAs比例和碳源浓度,在70%置换率和8%进料TS(total solid)浓度条件下获得的酸化产物相对更有利于MCFAs的合成。此时,酸化产物生产率达到(5.25±0.25)g/(L·d),乳酸/SCFAs的碳摩尔比例达到5±0.3,碳源浓度达到(985±29)mmol C/L。微生物群落分析显示,乳酸菌,如LactobacillusEnterococcus作为优势菌通过异型乳酸发酵协同制备乳酸和SCFAs。研究结果可为果蔬垃圾的高值化利用提供参考。  相似文献   

20.
Three major oat components, β-glucan, starch, and protein, and their interactions were evaluated for the impact on viscosity of heated oat slurries and in vitro bile acid binding. Oat flour from the experimental oat line "N979" (7.45% β-glucan) was mixed with water and heated to make oat slurry. Heated oat slurries were treated with α-amylase, lichenase, and/or proteinase to remove starch, β-glucan, and/or protein. Oat slurries treated with lichenase or lichenase combined with α-amylase and/or proteinase reduced the molecular weight of β-glucan. Heat and enzymatic treatment of oat slurries reduced the peak and final viscosities compared with the control. The control bound the least amount of bile acids (p < 0.05); heating of oat flour improved the binding. Heated oat slurries treated with lichenase or lichenase combined with α-amylase and/or proteinase bound the least amount of bile acid, indicating the contribution of β-glucan to binding. Oat slurries treated with proteinase or proteinase and α-amylase together improved the bile acid binding, indicating the possible contribution of protein to binding. These results illustrate that β-glucan was the major contributor to viscosity and in vitro bile acid binding in heated oat slurries; however, interactions with other components, such as protein and starch, indicate the importance of evaluating oat components as whole system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号