首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
离心泵叶片开槽抑制空化数值模拟   总被引:2,自引:0,他引:2  
为了进一步提高低比转数离心泵的空化性能,提出在叶片压力面开槽的方法来抑制空化。针对离心泵运行过程中产生空化的流动特点,基于Kubota空化模型,采用SST k-ω模型对在相同工况下的离心泵中两相流动进行数值模拟与分析。模拟结果表明:叶片表面开槽后,离心泵各个工况下的扬程有所上升,在设计点扬程提高12.8%,同时效率提高4.2%。叶片开槽可以有效阻止低压区域向外扩张,改变压力的分布,对离心泵内各个阶段空化均有抑制作用。叶片开槽可以优化流场结构,使流道内的压力增加,减小空泡的体积分数。叶片开槽时离心泵叶轮内空泡体积在空化的各个阶段均小于无槽时叶轮内空泡体积,在空化发展阶段,开槽时空泡体积持续衰减。  相似文献   

2.
王洋  蒋其松 《排灌机械》2010,28(1):25-30
基于Fluent泵内部全流场数值模拟及性能预测,对IS65—40—200型泵进行了两段变曲率叶型改型尝试.分析了加短叶片前后两段变曲率叶型离心泵性能的变化规律,发现加短叶片后泵的扬程明显提高且效率基本相同.对比了具有不同改型比例的两段变曲率叶型离心泵的性能,分析改型比例对泵性能的影响,确定了改型比例范围.分析了改型前后泵性能的变化规律,总结了两段变曲率叶型离心泵改型方法.提出了两段变曲率叶型离心泵的设计方法:先设计一台基础离心泵,且基础泵最高效率点的流量在小流量区域,再在此基础上改型设计.通过样机试验,验证了此设计方法的可行性.研究表明:两段变曲率叶型离心泵比同设计参数的普通离心泵尺寸小,轴向力低  相似文献   

3.
为研究分流叶片对低比转数离心泵内部流动和性能的影响,在原型泵叶轮(具有4长4短叶片)基础上,设计了8长叶片的叶轮模型.基于雷诺时均Navier-Stokes方程和Spalart-Allmaras湍流模型对各模型泵内的流场进行三维定常数值模拟计算,得到了泵内部流动特性.同时对原型泵进行外特性试验,并将计算结果与试验结果进行对比验证.数值计算结果表明:离心泵蜗壳内的周向速度大于径向速度,流体呈周向流动;径向速度随着周向角度的增大缓缓变大;8长叶片的叶轮相对于4长4短叶片叶轮在设计流量工况下具有更高的扬程和效率,8长叶片的叶轮比4长4短叶轮具有更好的水力性能;8长叶轮的叶片进口处具有更大的相对低压区;叶轮内部都存在旋涡,相对于4长4短叶片的叶轮,8长叶片的叶轮具有更大的涡.试验结果验证了数值计算的正确性.  相似文献   

4.
低比转速离心泵由于叶轮直径大,出口宽度小,流道扩散严重等原因,导致其效率偏低且很难改善.在计算流体动力学数值模拟和模型泵性能试验基础上,分析了低比转速离心泵效率与内部流动特性之间的关系,为改善泵内流动结构和提高效率提供依据.基于以控制边界层分离为目的的流动控制技术,提出了两种新型的离心泵叶片结构,研制了新的叶轮.为便于比较分析,对新叶轮在保证原模型泵叶轮直径、出口宽度和安装尺寸等主要几何参数不变的前提下进行加工制造,并分别将常规设计的叶片、分流叶片和两种新型叶片的叶轮在同一泵体内进行试验.试验结果表明:分流叶片提高了泵在大流量区域的效率但不能拓宽流量范围,引流叶片使水泵在更大流量范围内运行,并且在整个流量范围内都显著地提高了泵效率.流动控制技术成功地改善了低比转速离心泵内部流动结构并提高了泵性能.  相似文献   

5.
为研究离心泵在小流量工况运行下性能及其内部流动特性,以型号为IS160-50-65的离心泵为研究对象,采用商用化软件Ansys CFX 12.0对模型离心泵的叶轮进口、叶轮流道以及蜗壳流道组成的全流场进行定常数值计算.同时,为了提高数值计算的准确性,考虑采用3种不同的网格数对模型离心泵的扬程进行网格无关性分析.且从离心泵的外特性及其内部流场分析了不同小流量工况下离心泵性能的变化规律.研究结果表明:与试验结果相比,设计工况下,扬程预测偏差为1.47%,效率预测偏差为3.61%;且随着流量降低,计算扬程的偏差值呈一定的下降趋势,计算效率的偏差值逐渐增大.另外,在设计工况下,离心泵的内部流动比较均匀;而在小流量工况下,离心泵进口管道及叶轮流道均出现回流现象,而回流引起的旋涡流有时甚至会堵塞叶轮流道;在极小流量Q/Qd=0.2时,回流区域已延伸至全部的进水管路中.  相似文献   

6.
为了进一步提高低比转数离心泵的空化性能,对离心泵叶轮叶片进口附近的开缝进行研究.考虑开缝的3个参数,设计6组水力模型探究开缝对低比转数离心泵性能的影响.针对离心泵运行过程中产生空化的流动特点,基于Rayleigh-Plesset方程来描述空泡成长和溃灭过程的空泡动力学模型,采用RNG k-ε模型对在相同工况下的离心泵中两相流动进行数值模拟与分析.模拟结果表明:在叶片进口处开缝可以提高泵空化性能,其中第二组模型的空化性能提升比较明显,空化余量由4.447 m下降到3.910 m,降低了12.1%,水力效率由71.56%上升至76.46%;在相同工况下,开缝叶轮流道内的能量分布更加均匀,而扬程在额定流量下只有很小的变化.该模拟结果对研究低比转数离心泵内部流动特性及性能的提升具有一定的参考价值.  相似文献   

7.
应用标准k-ε湍流模型加壁面函数法对低比转数冲压多级离心泵叶轮内的三维湍流流动进行了时均N-S方程的数值计算。分析了叶轮内部流场的速度分布和压力分布,研究了离心泵叶轮通道内流动的规律。并利用CFD软件CFX的模拟结果得到了设计工况下离心泵叶轮的扬程和效率的预测值,预测结果与相关的试验数据相吻合。  相似文献   

8.
为研究边界层分离对低比转数离心泵水力性能的影响规律,由边界层不发生分离条件,结合离心泵湍流边界层理论,在不改变叶轮进出口几何参数的情况下,通过实际案例设计新的叶轮叶片型线,探索在水力设计中防止或抑制过流表面边界层分离的方法.叶轮叶片型线方程以叶片安放角β为变参数,引入速度系数kv作为中间因子.水力设计计算结果显示:边界层动量损失厚度随速度系数kv的增大而变厚,理论扬程随速度系数kv的增大而升高;在满足理论扬程的条件下,减小叶片型线方程中速度系数kv的取值,有利于抑制过流表面边界层的分离.数值模拟结果表明,低比转数离心泵叶轮叶片型线设计不合理是导致过流表面边界层分离的主要原因,边界层分离引起泵的水力性能下降,在设计工况下,改型泵的扬程比原型泵的扬程增加不明显,但水力效率有所提升;新的叶轮叶片型线对内流场状况有一定的改善作用,能有效防止回流与涡旋的产生和发展.  相似文献   

9.
为提高现有超低比转数多级离心泵水力性能,基于ANSYS CFX软件,对多级离心泵内部全流场定常流动进行数值模拟,通过定义叶轮、泵腔、导叶扬程及效率,分别分析叶轮、泵腔、导叶内能量转换与流动损失情况,得到影响多级离心泵性能的主要因素为叶轮与导叶的匹配,次要因素为叶轮内的流动损失.提出取导叶喉部进口绝对速度为叶轮出口绝对速度的1/2计算导叶喉部面积,并逐步优化设计一流道式导叶,通过调整叶片型线消除叶轮流道内旋涡.优化后的叶轮与导叶各处速度变化均匀缓慢,大大降低了流动损失.将性能较优的模型进行制造和测试,测试结果表明,优化后方案的额定工况下扬程提高8.1 m,效率提高3.2%,达到了国家标准,取得了较好的优化效果.将数值模拟结果与试验结果进行对比,分析二者的差异,为进一步优化改进超低比转数多级泵的水力设计方法提供参考.  相似文献   

10.
为探究气液两相流中含气率对高速离心泵内部流场的变化规律,基于ANSYS CFX欧拉非均相流模型对高速离心泵进行气液两相数值模拟分析,研究高速离心泵在设计流量下不同含气率对其效率和扬程的变化规律、叶轮流道流场的演变过程、隔舌和叶轮圆周出口监测点压力脉动变化特征。结果表明:效率和扬程特性与含气率呈线性关系,含气率越大,效率与扬程就越低,对高速离心泵性能影响就越严重;气相体积分布从叶片吸力面逐渐向叶片后缘处迁移,在叶轮出口处大量聚集,含气率10%附近出现相态分离现象;在含气率条件下隔舌与叶轮出口监测点的时域在t=0.02 s时压力发生较大波动。各含气率下主要变化幅值均发生在叶频及其倍频处,当含气率高于5%时对隔舌和出口的压力脉动幅值影响较大,即含气率5%是影响高速离心泵压力脉动幅值变化快慢的临界点。高速离心泵比常规转速离心泵所承受的含气率范围更小。  相似文献   

11.
为了研究叶片进口边位置对离心泵外特性能、内流场的影响规律,在原型泵的基础上,设计了叶片进口边位置不同的5种叶轮,基于SST k-ω湍流模型和Zwart空化模型,分别对5种叶轮的离心泵在清水和含沙水介质下进行三维全流道定常数值计算.结果表明:针对低比转数离心泵,叶片进口排挤严重,使叶片进口边向出口方向延伸可以使叶片进口处的流动更加均匀,液流的流动速度减小,叶片表面的压力变大,从而改善空化性能;在一定范围内变动叶片的进口边位置对离心泵的扬程、效率影响不大,但是当叶片的进口边位置向出口方向延伸过多会导致叶片对液流的做功能力下降,从而使离心泵的扬程明显下降;当离心泵在相同工况下运行时,离心泵进口沙粒含量的增大会使离心泵的扬程、效率降低,且会使流道内空化核的数量增大,从而导致空化性能变差.  相似文献   

12.
当离心泵扬程略低于实际需求时,可以通过修锉叶片出口提高其水力性能.文中对单级单吸离心泵叶轮进行修锉,对比修锉前后试验发现,扬程、效率分别提高了9.8%和6.7%.同时采用CFX软件对该泵在设计工况下的全流场进行了非定常数值计算,对比分析了修锉前后内流场的变化.基于ANSYS Workbench平台,对叶轮进行单向流固耦合计算,分析了修锉叶片出口对叶轮强度的影响.结果表明:叶片出口修锉后,出口尾迹区的绝对速度增大且相对速度减小,导致扬程上升;修锉后叶片出口边的逆压力梯度明显减小,阻止了边界层的分离,减少了摩擦和分离损失,从而提高了效率;叶轮最大等效应力与修锉前相比,其差别随着相位的不同而不同;各相位下,修锉后的叶轮最大总变形均大于修锉前.研究结果为改善离心泵内流场提供了一种可靠的方法.  相似文献   

13.
为了解叶轮叶片数对多级离心泵水利性能的影响,基于κ-ε湍流模型,采用SIMPLEC算法,利用Navier-Stokes时均化方程,对仅改变叶轮叶片数的某多级离心泵首级进行数值模拟。通过fluent数值计算得到泵内的压力,速度流场分布,对其进行分析,得出首级叶轮叶片数为六片时,此多级离心泵的内部流场压力及速度分布最均匀。同时利用fluent的后处理结果对此泵进行性能预测,得出叶轮叶片为六片时,泵的效率达到最高值70.68%。  相似文献   

14.
利用试验测得输送粘性油时离心泵叶轮内部流动特征,在不同工况下观察到叶片吸力面附近流动发生分离形成尾流的变化差异,随着流体粘度的升高,叶片压力面附近的流体向叶轮出口流去而不断加速,直到叶轮出口为止.在叶片的吸力面附近促使尾流的形成,两叶片之间截面相对速度与中心区存在差异,加速尾流并分离形成了旋涡.由叶轮内部流动属于分离流动模型,叶轮是对流体粘度反应最灵敏的过流部件,并且其水力损失具有突变性.在试验过程中改变叶轮的一些性能参数会影响试验性能,为了提高叶轮输送粘性介质时的水力性能,必须采取适当方法削弱或消除分离的尾流.为进一步研究输送粘油泵时的水力性能和优化设计方法提供借鉴.  相似文献   

15.
低比转数离心泵叶轮内的流动机理和叶轮设计   总被引:4,自引:0,他引:4  
通过分析得出影响低比转数离心泵效率的主要原因是在叶轮出口存在二次流、边界层的分离等引起的射流-尾迹结构,提出了改进的方法。提出叶轮设计方法:加大叶轮出口宽度,增大泵体喉部面积,采用较大的叶片出口安放角、较大的叶片包角,叶片的线型前部采用较小曲率半径,后部采用较大的曲率半径。实例表明此方法能够获得较高效率和较好性能的低比转数离心泵。  相似文献   

16.
基于计算流体力学方法,对KQW250-400型离心泵全流场进行数值模拟.基于叶片设计理论,对叶轮进行改进设计,通过改变叶片包角Φ和叶片出口安放角β2建立5个不同的叶轮模型,并数值计算获得5个模型泵相应的外特性曲线和内部流场分布,对比分析可知:叶片包角Φ=126°与叶片出口安放角β2=24°的叶轮最优;设计流量为550 m3/h时,扬程计算值为53.49 m,效率计算值为87.66%.原始离心泵和带改进叶轮的离心泵外特性试验测试结果表明:当流量Q=551.381 m3/h时,测得原始扬程为49.10 m,效率为79.88%;流量Q=550.823 m3/h时,测得带改进叶轮的扬程为51.84 m,效率为85.65%.改进后设计工况点扬程提高了2.74 m,效率提高了5.77%,且改进后的离心泵效率整体高于改进前,离心泵的整体性能得到了提升.研究结果有利于提高建筑物用泵的经济效益,从而降低能耗.  相似文献   

17.
基于自由曲面变形方法的离心泵叶片载荷优化   总被引:3,自引:0,他引:3  
针对传统离心泵叶片反问题及其优化难以进行,提出了基于载荷驱动的离心泵叶片自由曲面变形反问题方法,构建了更为稳定有效的晶格变形函数。根据离心泵叶片载荷分布特征采用多段样条曲线对离心泵叶片的载荷进行参数化控制,在控制变量空间进行试验设计,采用响应面方法对叶片载荷分布规律进行优化研究,得到了离心泵叶片载荷分布规律与对应的叶片形状及叶片水力性能间的关系,得到了低比转速离心泵叶片理想的载荷分布规律。算例优化结果表明:提出的离心泵叶轮叶片载荷优化理论及方法是可行的。  相似文献   

18.
为研究叶轮出口斜切对于离心泵驼峰性能的影响,选用离心泵(IS 65-50-174)作为研究对象,利用试验获得叶轮斜切前后的外特性,并利用SST k-ω模型进行非定常数值模拟以获得内流场以及压力脉动特性.试验结果表明,叶轮出口斜切后,可以消除原模型泵中的驼峰现象,并在小流量区域引起更高的耗功.对驼峰附近工况0.2,0.3,0.4倍设计流量下的内部流动进行分析,可以得到以下结论:随着流量的减小,原模型泵叶轮出口的低能量区,从前盖板转移到后盖板附近;而叶轮斜切之后,回流发生在叶轮后盖板附近,并随着流量的减小出口回流强度逐渐上升,进而形成较为稳定的性能曲线.对叶轮出口的压力脉动进行分析,发现斜切后低频脉动幅值减小,叶轮出口流动不稳定性有所下降.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号