首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A rye-cytoplasmic tetraploid triticale was found in Fs progenies of crosses between tetraploid rye‘No 1323’and hexaploid triticale‘KT 77′. In the tetraploid triticale, two complete rye genomes and two mixed wheat genomes, consisting of the chromosomes 1A. 2A, 4A, 7A, 3B, 5B, and 6B are present. The rye cytoplasm did not affect stability of rye chromosome pairing during metaphase 1, since rye chromosomes participated in pairing irregularities just as did wheat chramosomes, even on a larger scale. The fertility of F0, plants ranged from 0 to 75.6 %, always associated with high grain shrivelling. The analyzed pairing behaviour of induced triploid hybrids from crosses between the tetraploid triticale and diploid rye indicates the presence of at least one wheat-rye translocation in one of the investigated triploid plants.  相似文献   

2.
Limited genetic knowledge is available regarding crossability between hexaploid triticale (2n= 6x= 42, 21″, AABBRR, amphiploid Triticum turgidum L.‐Secale cereale L.) and rye (2n= 14, 7″, RR). Our objectives were to determine (1) the crossability between triticales and rye and (2) the inheritance of crossability between F2 progeny from intertriticale crosses and rye. First, ‘8F/Corgo’, a hexaploid triticale, was crossed as a female with two landrace ryes, ‘Gimonde’ and, ‘Vila Pouca’ and two derived north European cultivars, ‘Pluto’ and ‘Breno’. These crosses produced 21.7, 20.9, 5.9, and 5.6%, seed‐set or crossability, respectively, showing that the landrace ryes produced higher seed‐set than the cultivars. Second, ‘Gimonde’ rye was crossed as a male with four triticales for 3 years. The control cross, ‘Chinese Spring’ wheat × rye, produced 80‐90% seed‐set. Of the four triticales, ‘Beagle’ produced 35.7‐56.8% seed‐set. The other three triticales produced less than 20% seed‐set, showing that the triticales differ in crossability with ‘Gimonde’ rye. Third, six FiS from intertriticale crosses (‘8F/Corgo’בBeagle’, ‘Beagle’בCachirulo’, ‘Lasko’בBeagle’, ‘8F/Corgo’בCachirulo’, ‘Lasko’בCachirulo’, ‘Lasko’ב8F/Corgo’) were crossed to ‘Gimonde’ rye. Results indicated that lower crossability trait was partially dominant in the two F1S from crosses involving ‘Beagle’(high crossability) with‘8F/Corgo’ and ‘Cachirulo’(low crossability) and completely dominant in the ‘Beagle’בLasko’ cross, as it happens in wheat. Fourth, segregants in four F2 populations (‘Lasko’בBeagle’, ‘8F/Corgo’בBeagle’, ‘Lasko’ב8F/Corgo’, and‘8F/Corgo’בCachirulo’) were crossed with rye. Segregation for crossability was observed, although distinct segregation classes were blurred by environmental and perhaps other factors, such as self‐incompatibility alleles in rye. Segregation patterns showed that ‘Beagle’, with high crossability to rye, carries either Kr1 or Kr2. The three triticales with low crossability with rye were most likely homozygous for Kr1 and Kr2. Therefore, it is likely that the Kr loci from A and B genomes acting in wheat also play a role in triticale × rye crosses.  相似文献   

3.
Twelve primary hexaploid triticale (X Triticosecale Wittmack), synthesized from, three lines of tetraploid wheat (Triticum durum L., T. turgidum L.) and four inbred lines of rye (Secale cereale L.), were used to produce 18 crosses with homozygous wheat and heterozygous rye genome and 12 crosses with heterozygous wheat and homozygous rye genome. Parents and crosses of triticale, wheat, and rye were tested for two years (rye for one year only) in two-replicate block designs with 1 m2-plots. Data were assessed for plant height, grain yield and for yield-related traits. Performance of triticale crosses was considerably lower than that of the wheat and rye crosses. The amount of heterosis varied greatly between years. Positive and mainly significant heterosis was revealed in triticale generations F1 and F2. The average values were closer to those in wheat than to those in rye. For most characters a high level of heterosis was retained in tnucalt1 generation F2. Heterozygosity of the wheat and rye genome both contributed to heterosis in triticale. However, gene action of the rye genome strongly depended on the homozygous wheat background: one wheat line almost completely suppressed and another greatly stimulated the heterotic effect of the rye genome. In the later case, the amount of heterosis was related to that in rye per se. Information from hybrid rye breeding may therefore be used when establishing gene pools for hybrid breeding in triticale.  相似文献   

4.
Z. L. Ren    T. Lelley  G. Röbbelen 《Plant Breeding》1990,105(4):265-270
Hybrid plants with 21 pairs of wheat chromosomes and with a haploid rye genome were produced by backcrossing a primary octoploid triticale with its parental hexaploid wheat. Upon a second backcrossing or selfing, the rye chromosomes were eliminated rapidly. Added rye chromosomes, in varying numbers, affected the transmission rate of wheat chromosomes significantly. Loss of wheat chromosomes ranging from 0.06 to 0.35 per plant in different populations was observed. In these plants a remarkably high incidence of wheat/rye and rye/rye translocations occurred. Translocations were identified by using the C-banding technique. Among 837 analyzed plants 64 wheat/rye and 256 rye/rye translocations were identified. In different generations of backcrossing or selfing the frequency of wheat/rye translocations varied between 4.23 % and 14.67 %. All 14 rye chromosome arms were involved in translocations but with different frequencies. BC1F3 plants with homozygous wheat/rye translocations were isolated The results indicate that monosomic wheat/rye addition lines may be directly used as an effective means to transfer genetic material from rye into bread wheat.  相似文献   

5.
Two series of progenies were developed from hybrids between octoploid (AABBDDRR) and tetraploid triticale ((AB)(AB)RR). One arose from the successive selfing of the F1s, while the second was established after one backcross of the F1 hybrids with the respective 8 × triticale parent. Altogether, 250 F3 and BC1F2 lines were developed, of which 112 were karyotyped in the F4/F5 or in BC1F3/BC1F4 generations using C-banding and SDS-PAGE. The 112 lines represented 61 different karyotypes, of which 39 appeared to be stabilized, having pairs of homologous wheat chromosomes only, while 22 karyotypes exhibited 1—3 heterologous pairs. The frequency of karyotypically stabilized lines originating from the series with one backcrossing was much higher (79.5 %) than those derived from the successive selfing of the F1 hybrids (51.7%). Six lines had the pure hexaploid triticale chromosome constitution. The frequency of disomic substitutions of D genome chromosomes for their homoeologous A and/or B genome chromosomes ranged from one to six per line with an average of 1.7. Except for 3B and 6B all possible D(A/B) substitutions were obtained. Chromosomes ID and 3D substituted for their homoeologues with the highest frequency, while the substitution of chromosome 4D for 4A or for 4B was the least frequent. D(R) substitutions were found in eight lines only. A complete set of 6x triticale lines was established in which chromosome ID was present in all possible combinations, i.e. single 1D(1A/1B/1R) disomic substitutions as well as disomic ID addition.  相似文献   

6.
S. J. Xu  L. R. Joppa 《Plant Breeding》2000,119(3):223-226
The formation of unreduced gametes in some hybrids between disomic D‐genome substitutions (DS) of durum wheat cv.‘Langdon’ and rye provides a convenient approach for the rapid introduction of D‐genome chromosomes into hexaploid triticale. Meiotic pairing at metaphase I and seed fertility in spontaneous and colchicine‐induced amphidiploids derived from F1 hybrids between a set of ‘Langdon’ DS and ‘Gazelle’ rye were analysed. The purpose was to determine the effects of the substitution of D‐genome chromosomes for their A‐ and B‐genome homoeologues on hexaploid triticale and to select stable disomic D‐genome substitutions of hexaploid triticale. The results showed that the disomic substitutions with D‐genome slightly increased the frequency of univalents (1.0‐3.13) compared with the ‘Langdon’ control primary hexaploid triticale (0.76). Substitutions 2D(2A) and 3D(3B) were partly desynaptic. The substitutions 1D(1A), 1D(1B) and 7D(7B) exhibited high seed fertility but the others had decreased fertility. Except for 2D(2A), 5D(5A), 3D(3B) and 5D(5B), 10 of the 14 possible hexaploid triticale D‐genome disomic substitutions have been obtained. The results suggest that the poor compensation ability of some D‐genome chromosomes for their homoeologous A‐ and B‐genome chromosomes is a major factor affecting meiotic stability and fertility in the hexaploid triticale D‐genome substitutions.  相似文献   

7.
Crosses between octoploid and hexaploid triticales have been made m breeding programs for several years, From an analysis of the progeny of such crosses where selections for an octoploid-like phenotype had been made, it was established that 149 out of 150 lines were hexaploid in chromosome number, C-banding and in situ hybridization demonstrated that all but five of the 62 lines analyzed in detail contained visible chromosomes or segments from the D genome. Only four lines had D-genome chromosome replacing rye chromosomes. All of the remaining 53 D-genome substitutions involved the replacing of wheat chromosomes from either the A or B genomes. This establishes the ease with which D-genome genes can be placed into triticale without the loss of rye chromosomes.  相似文献   

8.
Hugh Wallwork 《Euphytica》1989,40(1-2):103-109
Summary Fifteen triticale and wheat-triticale hybrid lines were evaluated for resistance to the take-all fungus Gaeumannomyces graminis var. tritici and compared with five wheat and two rye lines in inoculated field and pot trials. The triticale and wheat-triticale hybrid lines varied in rye chromosome number and degree of resistance expressed. One line, Venus with seven pairs of rye chromosomes consistently showed levels of resistance intermediate between wheat and rye. A trend was observed where increasing rye chromosome content led to greater resistance but exceptions showed that variation within triticales could not be ascribed to rye chromosome content alone.  相似文献   

9.
R. E. Niks  R. G. Dekens 《Euphytica》1987,36(1):275-285
Summary The reaction of eight triticales and of the respective wheat and rye parental lines to infection by the leaf rust fungi of wheat and rye were studied in the seedling stage. The histological observations indicated that wheat and triticale showed a typical nonhost reaction to the leaf rust of rye: sporelings of this fungus were arrested after the formation of primary infection hyphae and before the formation of extensively branched mycelium, mostly without necrosis of plant cells. The rye inbred lines were all susceptible to the rye leaf rust. The reaction of wheat and triticales to the wheat leaf rust was susceptible or resistant. The reaction of resistant lines could be early or late and complete or incomplete, but was associated with substantial necrosis of plant cells, and therefore entirely different from the nonhost reaction to rye leaf rust. In their reaction to wheat leaf rust the rye lines were similar to the resistant wheat and triticale lines. They did not show an important degree of nonhypersensitive early abortion as would be expected in a nonhost species. It appeared that genes for hypersensitive resistance in triticale may be contributed by either the wheat or the rye parental line.A screening of sixty wheat, rye and triticale lines confirmed the nonhost status of wheat and triticale to rye leaf rust and the hypersensitive or moderately susceptible reaction of rye to wheat leaf rust.  相似文献   

10.
本工作以改进八倍体小黑麦与六倍体小黑麦的经济性状为目的,对60个杂交组合 F_1的田间出苗率、结实率、杂种后代的性状分离、新类型的形成以及细胞遗传的若干问题进行了探讨,观察到 F_1田间出苗率、结实率以八倍体为母本的杂交组合显著好于以六倍体为母本的杂交组合。由于杂种是普通小麦、硬粒小麦、黑麦三个物种种质的再度组  相似文献   

11.
将小麦近缘属植物黑麦中的优良基因导入小麦可以拓宽小麦的遗传基础,丰富小麦的遗传变异。本研究调查并分析了390份小麦-黑麦种质材料。在这390份种质材料中,6个主要农艺性状值均有较大的极差,说明其遗传多样性丰富。与10份小麦主栽品种相比,90%以上的材料具有穗长和分蘖数的显著优势,60%以上的材料具有小穗数优势,约30%的材料穗粒数和千粒重显著高于主栽品种。利用基因组原位杂交(genomic in situ hybridization,GISH)和多色荧光原位杂交(multicolor fluorescent in situ hybridization,mc-FISH)技术,对8份农艺性状优良的代表性材料进行染色体组成分析,发现3份为六倍体小黑麦(AABBRR),2份为八倍体小黑麦(AABBDDRR),1份为1RS·1BL易位系,其余2份不具有可见的黑麦染色体或染色体片段。值得指出的是,3份六倍体小黑麦与2份八倍体小黑麦所含的黑麦染色体不完全相同。八倍体小黑麦中有1对来源于黑麦的小染色体,而六倍体小黑麦中没有类似小染色体;并且,不同材料中黑麦4R染色体端部的GISH杂交带有明显差异。本研究结果为这些小麦-黑麦种质材料进一步应用于小麦育种提供了依据。  相似文献   

12.
Summary A self-fertile trigeneric hybrid in the Triticeae involving species from the Hordeum, Triticum and Secale genera has been produced. The trigeneric hybrid was obtained by crossing octoploid triticale (x Triticosecale Wittmack) with octoploid tritordeum (H. chilense × T. aestivum amphiploid). The trigeneric hybrid presented a genome constitution AABBDDRHch and 2n=8X=56 chromosomes. The cytogenetical analyses showed no chromosome instability nor homeologous pairing between Hordeum and Secale chromosomes. In the F2 generation the chromosome number ranged from 42 to 52. Within this range, the plants with smaller numbers of chromosomes were more frequent. A preferential transmission of rye chromosomes could be inferred.  相似文献   

13.
Summary The study was undertaken to evaluate the relative efficiency of anther culture and chromosome elimination (by crosses with maize) techniques of haploid induction in intergenotypic triticale and triticale × wheat hybrids. For this, 15 triticale × wheat and 8 triticale × triticale F1 hybrids were subjected to anther culture and were also simultaneously crossed with the `Madgran Local' genotype of maize (Zea mays L.) to induce haploids through the chromosome elimination technique. The haploid embryo formation frequency through the chromosome elimination technique was significantly higher in both, triticale × wheat (20.4%) and triticale × triticale (17.0%) F1 genotypes, as compared to the calli induction frequencies through anther culture (1.6 and 1.4%, respectively). Further, four triticale × wheat and three triticale × triticale F1 genotypes failed to respond to anther culture, whereas, all the F1 genotypes formed sufficient number of haploid embryos through the chromosome elimination technique with no recovery of albino plantlets. The haploid plantlet regeneration frequencies were also significantly higher through the latter technique in both triticale × wheat (42.7%) and triticale × triticale (49.4%) F1s as compared to anther culture (8.2 and 4.0%, respectively), where the efficiency was drastically reduced by several constraints like, high genotypic specificity, low regeneration frequency and albinism. The overall success rates of obtaining doubled haploids per 100 pollinated florets/anthers cultured were also significantly higher through the chromosome elimination technique (1.1% in triticale × wheat and 1.5% in triticale × triticale hybrids), proving it to be a highly efficient and economically more viable technique of haploid induction as compared to anther culture, where the success rates were only 0.2% and 0.1%, respectively.  相似文献   

14.
Summary In this study a new trigeneric hybrid involving species from the Triticum, Secale and Leymus was produced by crossing octoploid triticale (Jinsong49) with octoploid tritileymus (950059). The chromosome constitution of the parental amphiploid, trigeneric hybrid and its progenies were studied. Genomic in situ hybridization (GISH) analysis showed that Jinsong49 and 950059 had 44 wheat chromosomes, and 12 rye chromosomes, 12 L. mollis chromosomes respectively. The mean meiotic configuration of trigeneric hybrid F1 was 13.17 I + 20.82 II + 0.37 III + 0.02 IV. GISH results indicated the trigeneric hybrid F1 had 6 rye chromosomes and 6 Leymus chromosomes. In the selfed derivatives of the trigeneric hybrids, while the number of selfed generation increased, the mean number of chromosomes tends to decrease gradually and slowly. GISH results revealed that most plant tested in the progeny population had 8–12 rye chromosomes, and no Leymus chromosomes were detected. The results indicated that rye chromosomes can be preferentially transmitted in the progenies of trigeneric hybrid than Leymus chromosomes.  相似文献   

15.
Powdery mildew (caused by Erysiphe graminis) and yellow rust (caused by Puccinia striiformis) are the two most serious wheat diseases found in China. Rye chromosomes, carrying genes for resistance to these diseases, were introduced into common wheat in two generations using chromosome engineering and anther culture. The F1 hybrids from a cross involving a hexaploid triticale (×Triticosecale Wittmack) בChinese Spring’ nulli‐tetrasomic N6DT6A wheat aneuploid line were anther cultured and doubled‐haploid plants were regenerated. Using genomic in situ hybridization, C‐banding and biochemical marker analyses, one of the anther‐cultured lines (ZH‐1)studied in detail, proved to be a doubled‐haploid with one rye chromosome pair added (1R) and a homozygous 6R/6D substitution (2n= 44). The line was tested for expression of disease resistance and found to be highly resistant to powdery mildew and moderately resistant to yellow rust.  相似文献   

16.
K. K. Nkongolo    K. C. Armstrong    A. Comeau    C. A. St.  Pierre 《Plant Breeding》1992,109(2):123-129
Common wheat × hexaploid triticale hybrids were produced and evaluated for tolerance to barley yellow dwarf virus disease (BYD). The BYD tolerance expression varied with wheat × triticale combination. The selection for BYD tolerance increased the recovery of tolerant genotypes in the next generations. Homozygous tolerant and susceptible lines were obtained in advanced generations. The rye chromosomes 1R, 2R, and 4R with 7R were transmitted as disomic or monosomic, disomic, and double disomic substitution to the late generations of ‘Musala’ (common wheat) בMuskox 658’ (triticale), ‘Encruzilhada’ (common wheat) בNord Kivu’ (triticale) and ‘Encruzilhada’× 12th. International Triticale Screening Nursery 267 (12ITSN267) (triticale), respectively. A clear association was established between the 1R chromosome of the ‘Muskox 658’ triticale line and the tolerance to BYDV. Results suggest that the 2R chromosome may be involved in BYD tolerance of ‘Nord Kivu’ triticale line.  相似文献   

17.
Hexaploid triticale contains valuable genes from both tetraploid wheat and rye and plays an important role in wheat breeding programmes. In order to explore the potential of hexaploid triticale ‘Certa’ in wheat improvement, two crosses were made using ‘Certa’ as female parent, and common wheat cultivars ‘Jinmai47’ (JM47) and ‘Xinong389’ (XN389) as male parents. The karyotyping of BCF4:5 lines from Certa/JM47//JM47 and F5:6 lines from Certa/XN389 was investigated using sequential fluorescence in situ hybridization (FISH). One 1B(1R) substitution line and five 1BL.1RS whole‐arm translocation lines were identified, one of which was found lacking ω‐secalin locus. Many structural alterations on wheat chromosomes were detected in the progeny. Great morphologic differences resulting from genetic variations were observed, among which the photosynthetic capability was increased while grain quality was slightly improved. Compared with both parents, the stripe rust resistance at adult stage was increased in lines derived from Certa/JM47//JM47, while it was decreased in lines derived from Certa/XN389. These newly developed lines might have the potential to be utilized in wheat improvement programmes.  相似文献   

18.
Seed set over three years in crosses between three tritordeums used as female parents and four triticale lines, showed that there are significant differences in crossability attributable to both parents and that most of these differences are consistent over the three years. When used as the female parent tritordeum line HT67 had an average seed set of 29.62%, tritordeum line HT9 an average of 12.73%, and tritordeum line HT31 an average of only 6.58% averaged over the four triticales lines used as pollinators. These data show genotype effect that is highly significant (P < 0.001) both for tritordeum and triticale genotypes and highly significant (P < 0.001) female ×year, male × year and female × pollinator interactions. The behaviour of F1 tritordeum hybrids when crossed with one of the triticale pollinators supports the conclusion that the parents' crossability behaviour is genetically controlled. Analysis of segregation ratio of F2 hybrids plants from high and low crossability tritordeum genotypes crossed with the same triticale pollinator genotype is consistent with 9:3:3:1 ratio. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
Y. B. Wang  H. Hu  J. W. Snape 《Euphytica》1995,81(3):265-270
Summary Heptaploid hybrids between octoploid triticale and wheat were backcrossed as female parents with wheat to examine the rye chromosome distribution in the resultant progenies using genomic in situ hybridization (GISH). One hundred and one backcross (BC) seeds were examined and whole rye chromosome additions and substitutions, wheat/rye centric and noncentric translocations and rye telocentric chromosomes were detected. Dicentric wheat/rye translocated chromosomes were also observed. Comparisons were made with previous results on the rye chromosome distribution from male gametes of the same cross and differences were found, where in the female derived population a deficit of plants with more than two rye chromosomes was apparent relative to the anther derived population.  相似文献   

20.
Wheat (Triticum aestivum L.) breeders often utilize alien sources to supply new genetic variation to their breeding programs. However, the alien gene complexes have not always behaved as desired when placed into a wheat background. The introgressed genes of interest may be linked to undesirable genes, expressed at low levels or not at all. The short arm of rye (Secale cereale L.) chromosome one (1RS) contains many valuable genes for wheat improvement. In order to study rye gene response to varying copy number, wheat lines were constructed which contained zero, two or four doses of 1RS. The meiotic behavior of rye chromosome 1R, and wheat/rye translocation chromosomes, 1AL/1RS and 1BL/1RS was studied in the F1 hybrids between wheat lines carrying 1R or the translocation chromosomes. The IRS arm was transmitted at a very high frequency; 98 % of the F2 plants had at least one of the chromosomes with a IRS arm. In addition, 44 % of the F2 plants received at least one copy of the chromosomes from each parent. Analysis of the meiotic behavior of the IRS arm suggested that few euploid wheat gametes were formed. Therefore, most of the pollen must have contained IRS. It is unknown whether the lack of euploid wheat pollen could account for the high transmission frequency of the rye chromosomes. There may have been differential survival of the embryos receiving the rye chromosome as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号