首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 63 毫秒
1.
O. N. Konan    A. D'Hont    J.-P. Baudoin    G. Mergeai 《Plant Breeding》2007,126(2):176-181
A three‐species hybrid named HTL including Gossypium hirsutum L. [2n = 4 x = 52, (AD)1 genome] was created using the pseudophyletic introgression method with G. longicalyx Hutch. & Lee (2n = 2x = 26, F1 genome) as donor parent and G. thurberi Tod. (2n = 2x = 26, D1 genome) as bridge species. The new hybrid was totally self‐sterile and its interspecific status was confirmed using simple sequence repeat markers and cytogenetic analysis. Cytogenetic studies showed that its chromosome configuration was 2n = 52 = 14.13 I + 15.10 II + 1.03 III + 0.9 IV + 0.03 V + 0.13 VI (where I, II, III, IV, V and VI are univalents, bivalents, trivalents, tetravalents, pentavalents and hexavalents, respectively). Prospects for successfully exploiting the HTL hybrid in breeding programmes are discussed.  相似文献   

2.
In order to introgress the ‘glandless-seed and glanded-plant’ trait from Gossypium sturtianum Willis (2n= 2x= 26, C1 genome) into the cultivated upland cotton Gossypium hirsutum L. (2n= Ax= 52 (AD), genome), two trispecific hybrids have been created using either Gossypium thurberi Torado (2n= 2x= 26, D1 genome) or Gossypium raimondii Ulbrich (2n= 2x= 26, D5 genome) as bridge species. The cross of both trispecific hybrids by G. hirsutum produced the first backcross progenies (BCl). Cytogenetic analysis showed that the trispecific hybrids had 52 chromosomes, their chromosome configurations at metaphase I (Ml) being 15.071 + 15.3411 + 0.93III + 0.69IV + 0.26VI in G. thurberi×G. sturtianum×G. hirsutum (TSH) and 14.421 + 17.0311 + 0.82III + 0.15IV + 0.07VI in G. hirsutum × G. raimondii ×. G. sturtianum (HRS), respectively. Among six BCl plants analysed, the only plant expressing the ‘glandless-seed and glanded-plant’ trait had 52 chromosomes and a meiotic configuration of 5.261 + 20.61II + 0.69III + 0.77IV at MI. Pollen fertility was 2.90% in TSH, 8.97% in HRS, and ranged from 0% to 40.28% in the BCl progenies. The introgressed BCl plant is perennial in growth habit. It can be used in breeding programmes aiming at the introgression of the ‘glandless-seed and glanded-plant’ trait into a cultivar of upland cotton.  相似文献   

3.
C. H. Park  P. D. Walton 《Euphytica》1990,45(3):217-222
Summary Fifty four hybrid plants between Elymus canadensis and Psathyrostachys juncea were obtained by handpollination and embryo culture. The average cross compatibility between both species was 31.2 percent. One amphiploid plant was induced by colchicine treatment. The hybrid and amphiploid plants resembled P. juncea in appearance but showed a higher plant height and dry matter yield than the parents. The hybrids showed extremely low pollen stainability and were completely sterile. With the exception of one plant (2n=3x+1=22), all hybrid plants were allotriploids (SHN, 2n=3x=21). The amphiploid plant (SSHHNN, 2n=6x=42) showed 58.9% pollen stainability and 11.6% seed fertility.Mean chromosome associations of the hybrids and amphiploid at metaphase I were 0.02IV+0.06III+2.03II+16.91I and 0.07III+18.00II+5.85I, respectively. Lagging chromosomes, chromosome bridges, abnormal cytokinesis, and micronuclei were occasionally observed at the anaphase, telophase, or tetrad stage.  相似文献   

4.
Summary The chromosome associations of amphidiploids of I. laevigata × I. ensata were analysed and compared with those of the parental species and F1 hybrids of I. laevigata × I. ensata. The F1 hybrids showed partial chromosome associations. Their mean chromosome association per cell was 20.73I+3.63II, although the mean chromosome association per cell in the parental species was 0.09I+15.96II for I. laevigata and 0.03I+11.98II for I. ensata, respecively. In contrast, the normal association (28II) was partially restored in the amphidiploids. Their mean chromosome association per cell was 1.93I+26.48II+0.28III+0.03IV+0.03V. In this study, moreover, the crossability between I. ensata (2X and 4X) and the amphidiploids and between I. laevigata and the amphiliploids was examined. No hybrid plants were obtained from both reciprocal crosses between I. ensata (2X) and the amphidiploids and between I. laevigata and the amphidiploids. Only the cross of I. ensata (4X) × the amphidiploids in the reciprocal crosses produced hybrid plants. The observation of their somatic chromosome numbers indicates that these are true hybrid plants between autotetraploid I. ensata and the amphidiploids, and such plants can be called autoallotetraploids between I. ensata and I. laevigata. The interspecific cross-breeding of I. ensata using the autoallotetraploids is discussed.  相似文献   

5.
F. Ahmad  A. Comeau 《Plant Breeding》1991,106(4):275-283
New intergeneric hybrids were obtained between Triticum aestivum L. cv. Tukuho’ (2n = 6x = 42, AABBDD) and Agropyron fragile (Roth) Candargy PGR 8097 (2n = 4x = 28, PPPP) at a frequency of 1.06 %, through the use of direct embryo culture and in ovulo embryo culture. Such hybrids could be used to transfer barley yellow dwarf virus (BYDV) resistance and winterhardiness into bread wheat. The somatic chromosome number in all the hybrid plants was 2n = 5x = 35, as expected. Considerable variation in chromosome pairing was observed among the different hybrid plants. Average meiotic chromosome configuration at metaphase I was 17.29 Is + 6.57 rod Us + 1.97 ring Us + 0.18 III + 0.03 IV + 0.002 VI. The high level of chromosome pairing in some F1 hybrids was attributed to Ph-suppressor gene(s) present in A. fragile. The hybrids could not be backcrossed to wheat, but amphiploid seeds have been obtained by colchicine treatment.  相似文献   

6.
Thirty five octoploids (2n = 56). two aneuploids (2n = 54), and one hexaploid (2n = 42) were obtained from the self-fertilized octoploid which was regenerated from the immature inflorescence culture of Elymus canadensis. The octoploid regenerant showed gigas leaves and stems but reduced tillering and fertility. The selfed octoploid progeny varied from genotype to genotype for all of the characters investigated. Hexaploid was morphologically superior to other ploidy levels. Its dry matter yield was 34 % to 40 % higher than the octoploids and the tetraploids but fertility markedly decreased to 7.4 %. Chromosome pairing at metaphase 1 in the octoploid regenerant and its selfed progeny — octoploid, aneupioid. and hexaploid — were 2.57IV +0.83III + 21.23II + 0.971; 3.06IV + 1.06III + 19.66II + 1.251; 2.23IV + 0.85III + 16.54II + 4.69I; and 0.41IV + 8.34III + 8.25II ? 3.141 per microsporocyte, respectively. High frequency of trivalents in hexaploid indicated that it is a doubled triploid. Unequal chromosome disjunction, laggards, and chromatid bridges were commonly observed at the anaphase stage in the first and second meiotic division.  相似文献   

7.
Summary Identification and location of fertility restoring genes facilitates their deployment in a hybrid breeding program involving cytoplasmic male sterility (CMS) system. The study aimed to locate fertility restorer genes of CMSWA system on specific chromosomes of rice using primary trisomics of IR36 (restorer), CMS (IR58025A) and maintainer (IR58025B) lines. Primary trisomic series (Triplo 1 to 12) was crossed as maternal parent with the maintainer line IR58025B. The selected trisomic and disomic F1 plants were testcrossed as male parents with the CMS line IR58025A. Plants in testcross families derived from disomic F1 plants (Group I crosses) were all diploid; however, in the testcross families derived from trisomic F1 plants (Group II crosses), some trisomic plants were observed. Diploid plants in all testcross families were analyzed for pollen fertility using 1% IKI stain. All testeross families from Group I crosses segregated in the ratio of 2 fertile: 1 partially fertile+partially sterile: 1 sterile plants indicating that fertility restoration was controlled by two independent dominant genes: one of the genes was stronger than the other. Testcross families from Group II crosses segregated in 2 fertile: 1 partially fertile+ partially sterile: 1 sterile plants in crosses involving Triplo 1, 4, 5, 6, 8, 9, 11 and 12, but families involving triplo 7 and triplo 10 showed significantly higher X2 values, indicating that the two fertility restorer genes were located on chromosome 7 and 10. Stronger restorer gene (Rf-WA-1) was located on chromosome 7 and weaker restorer gene (Rf-WA-2) was located on chromosome 10. These findings should facilitate tagging of these genes with molecular markers with the ultimate aim to practice marker-aided selection for fertility restoration ability.  相似文献   

8.
A. Chandra    M. L. Gupta    S. S. Banga  S. K. Banga 《Plant Breeding》2004,123(5):497-498
An interspecific hybrid between a wild species, Brassica fruticulosa (2n = 16, FF) and a crop Brassica species, B. rapa (2n = 20, AA) was synthesized using sequential ovary‐ovule culture on MS medium supplemented with casein hydrolysate. Morphological, molecular and cytogenetic analysis confirmed the true hybrid nature of the offspring. The F1 plants (2n = 18) were intermediate in morphology, highly pollen‐sterile as well as self‐sterile. A maximum of three bivalents per PMC was recorded, but 14 I + 2 II was the most common meiotic configuration. Normal pollen fertility and regular bivalent (18 II) formation was observed in the amphiploid sectors of the hybrid plants. The F1 hybrid harboured significantly lower aphid populations than the crop Brassica parent.  相似文献   

9.
Summary Leaflets from 11 L. esculentum x L. hirsutum F2 individuals were bioassayed with spider mites (Tetranychus urticae). Densities of Type I, Type III, Type IV, Type V, and Type VI trichomes and the intensity of red fluorescence of the Type VI trichome tip varied widely among the 11 F2 hybrids. Mite responses were analyzed in relation to these trichome characters and leaflet surface. Variation in Type IV density accounted for most of the variation in mite responses. Densities of Type I, V and VI trichomes also contributed to mite responses but their effects were obscured by high Type IV densities. Type VI tip fluorescence was not associated with responses of mites in bioassays of these hybrids.The investigation reported in the paper (84-10-123) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Director. This material is based upon work supported, in part, by the U.S. Department of Agriculture, Agreement No. 59-2213-1-1-717-0 (Competitive Research Grants Program)  相似文献   

10.
In the present investigation, 13 Cucumis genotypes from different geographical areas of India were screened for genetic diversity using 19 morphological traits and 15 ISSR primers. The analysis of morphological traits grouped the accessions into six clusters. Cluster V contained the maximum number of genotypes namely Kanivellari, Long Green, Andaman Local, Perundurai Local, and Sempatti Local. Clusters I and VI contained the minimum number of genotypes. Among all the characters, the highest mean value was observed in fruit length (23.38) and the lowest mean value was observed in stripes on the blossom end (1.31). The 15 ISSR primers generated 109 polymorphic alleles. The average number of ISSR alleles generated was 8.3 per primer and the level of polymorphism was 87.20%. The ISSR primer UBC 825 was highly informative with a PIC value of 0.8934. The 13 genotypes were grouped into six clusters based on ISSR markers. Cluster III contained the maximum number of genotypes, namely Kanivellari, Sankagiri Local, Perundurai Local, Long Melon, and Sempatti Local, while Clusters I, II, IV, and V (Karur Local, Andaman Local, Edapaddi Local, and N 78, respectively) contained the minimum number of genotypes. The ISSR profile generated genotypes specific allele namely, UBC 812700bp and UBC 8121000bp for Cluster VI which contained Cucumis genotypes collected from the northern part of India. Similarly, UBC 808 produced specific allele UBC 808650bp formed in Cluster III which contained genotypes collected from Tamil Nadu and Kerala.  相似文献   

11.
Y. Kaneko    H. Yano    S. W. Bang  Y. Matsuzawa 《Plant Breeding》2001,120(2):163-168
Breeding of Raphanus sativus‐Brassica rapa monosomic chromosome addition lines (MALs, 2n = 19) was carried out by backcrossing the synthesized amphidiploid line, Raphanobrassica (R. sativus×B. rapa, 2n = 38, RRAA, line RA89) with R. sativus cv. ‘Shogoin’ (2n = 18, RR). In the first cross of Raphanobrassica× radish, four sesquidiploidal BC1 plants (2n = 28, RRA, RA89‐36‐1, RA89‐31‐1, RA89‐31‐2, RA89‐31‐3) were successfully developed. In these plants, the chromosome configurations of 9II + 10I and 10II + 8I were observed frequently at first metaphase (MI) of meiosis in pollen mother cells (PMCs). The RA 89‐36‐1 plant produced many seeds in the reciprocal backcrosses with radish. About 50% of the BC2 plants obtained from the cross of RA89‐36‐1 plant × radish were 2n = 19 plants, followed by 2n = 18 plants (24%) and 2n = 20 plants (19%). In the reciprocal cross, 2n = 19 plants were also developed at the rate of 40%. From analysis of specific morphological traits, 2n = 19 plants were classified into eight types (a‐h). When 25 selected primers were used in polyacrylamide gel electrophoresis, random amplified polymorphic DNA (RAPD) markers derived from B. rapa for each type of MAL were detected in numbers between three for e‐type and 16 for b‐type. RAPD markers specific for each type alone were from one (OPE 05‐344) for h‐type to nine for b‐type. In the g‐type, no marker specific to this type alone was observed. However, 19 bands were common between at least two types. These MAL plants exhibited predominantly the chromosome configuration of 9II + 1I at MI of PMCs, pollen and seed fertility being the same level as the radish cv. ‘Shogoin’. From the morphological traits and DNA markers, eight different MAL types among 10 expected were identified.  相似文献   

12.
S. W. Bang    K. Sugihara    B. H. Jeung    R. Kaneko    E. Satake    Y. Kaneko    Y. Matsuzawa 《Plant Breeding》2007,126(1):101-103
Intergeneric crosses were made between Brassica oleracea and Moricandia arvensis utilizing embryo rescue. Six F1 hybrid plants were generated in the cross‐combination of B. oleracea × M. arvensis from 64 pods by the placenta‐embryo culture technique, whereas three plants were produced in the reciprocal cross from 40 pods by the ovary culture technique. The hybrid plants were ascertained to be amphihaploid with 2n = 23 chromosomes in mitosis and a meiotic chromosome association of (0–3)II + (17–23)I at metaphase I (M I). In the backcross with B. oleracea, some of these hybrids developed sesquidiploid BC1 plants with 2n = 32 chromosomes that predominantly exhibited a meiotic configuration of (9II + 14I) in pollen mother cells. The following backcross of BC2 plants to B. oleracea generated 48 BC3 progeny with somatic chromosomes from 2n = 19 to 2n = 41. The 2n = 19 plants showed a chromosomal association type of (9II + 1I) and a chromosomal distribution type of (91/2 + 91/2) or (9 + 10) at M I and M II, respectively. These facts might suggest that they were monosomic addition lines (MALs) of B. oleracea carrying a single chromosome of M. arvensis that could offer potential for future genetic and breeding research, together with other novel hybrid progeny developed in this intergeneric hybridization.  相似文献   

13.
Results of cytogenetic studies of 2 amphidiploids, O. glaberrima-sativa and O. sativa-breviligulata, are reported for the first time in the genus Oryza. All the 3 species have 2n=24 chromosomes. They were produced by treating buds of F1 stubbles with 0.1% colchicine solution.The gigas effect of polyploidy was observed in both the amphidiploids. While the F1 hybrids were completely sterile polyploidy resulted in 75.0% pollen fertility in both, with 47.0% spikelet fertility in O. glaberrima-sativa and 12.7% in O. sativa-breviligulata. Meiosis in the 2 amphidiploids was generally similar. Quadrivalents ranging from 0 to 12 were observed with 2 modes at 6IV and 8IV. The average number of IVs in the C2 and C3 generations ranged from 6.2 to 7.8. Segregation of characters was observed in the C2 and C3 generations in O. glaberrima-sativa. The C2 plants segregated for spikelet size and hairiness. Of the 4 C3 progenies studied, one segregated in the ratio 3:1 for the presence of anthocyanin pigmentation and hairiness of spikelets.The occurrence of IVs in high frequency and the segregation for differences in characters of the original parents noted in O. glaberrima-sativa are similar to the results reported from autotetraploids of O. sativa. It is suggested that these results point out to the rather close structural similarity in the chromosome complements of the 3 species and provide experimental evidence to the theory that the 2 cultivated species O. sativa and O. glaberrima have evolved independently from a common species O. perennis.  相似文献   

14.
In a backcrossing programme to transfer desirable characters from wild Avena maroccana Gdgr. to cultivated oats, A. sativa L., meiotically stable plants in BC1F3 and BC2F2 progenies were isolated. The recovery of stable genotypes with 2n = 6×= 42 chromosomes indicated that two backcrosses are enough for such a programme. The cytological observations in various backcross generations are presented and discussed.  相似文献   

15.
G. Jenkins  P. R. Hanson 《Euphytica》1976,25(1):167-174
Summary The inheritance of the character complex of naked grain and multiflorous spikelets was studied in a diallel set of crosses comprising five varieties of naked oats (Avena nuda)-As 78, Manu, Caesar, Nuprime and AJ86/2/1-and one variety of husked oats (A. sativa), Maris Oberon. In the F1 generation the distribution of multiflorous spikelets was in all cases similar to that of the mid-parent. Crosses between the varieties of A. nuda produced only naked grain on plants in the F1 and F2 generations, indicating that nakedness in the varieties studied was determined by the same loci.The three-gene model proposed by Moule (1972) for the determination of A. nuda characters was inadequate to account for the observed F2 segregation in naked x husked crosses. An extension of this model is proposed to include a third modifying gene, N3, which in the homozygous dominant condition produces the husked phenotype when the principal gene, N, is heterozygous. The model assumes complex epistatic relationships between the three modifying genes N1, N2 and N3. Published information and further experimental data suggest that the genotype NN--N3N3 is uncommon. The expression of the genes determining nakedness was greatly influenced by the environment.  相似文献   

16.
Rice is subjected to excessive waterlogging and flash-flooding on large areas in south China. A study on water use, growth and yield effects of controlled irrigation and drainage (CID) of paddy rice at four stages was conducted in specially designed experimental tanks. The treatments were (1) CID during Stage I of tillering stage (CID-Stage I), (2) CID during Stage II of booting stage (CID-Stage II), (3) CID during Stage III of heading to flowering stage (CID-Stage III), (4) CID during Stage IV of milky stage (CID-Stage IV), (5) alternate wetting and drying irrigation during the whole stage (CK). Compared with CK, CID reduced drainage volume with 15.8–31.3% in 2008, and 13.5–28.3% in 2009, and increased the efficiency of available rainfall and irrigation by 1.98–3.46% in both years. Irrigation water application during the whole growing season across the 2 years, on average, was only 81.8%, 91.1%, 93.9%, and 94.5%, respectively, of that applied to CK. A strong reduction in root length, root weight, root-shoot ratio and harvest index were observed, however, shoot weight and total dry mass is increased from the treatments of CID-Stage II, CID-Stage III and CID-Stage IV. The highest radiation use efficiency values were for CID-Stage IV. The responses of CID from vegetative plants at Stage I and Stage II were greater than in generative plants at the latter two stages. CID-Stage II had only a small effect on subsequent development and grain yield. This decrease in grain yield to less than 7.88% and 5.72% of CK was due to reduced number of spikelets per panicle in one trial, and reduced panicle number per unit area in another. The CID-Stage I treatment showed the lowest grain yield among the treatments and reduced it by 23.3% in 2008 and by 17.3% in 2009, due to the decreases in the percentage of filled grains and total number of panicles. The effect of stress was associated with low dry matter production during the flooding stress period as well as during the stress withdrawal period following the stress. With regards to irrigation water use efficiency, it was increased under the first two treatments, and by from a minimum of 101% to a maximum of 110%.  相似文献   

17.
K. Gaikwad    P. B. Kirti    A. Sharma    S. Prakash  V. L. Chopra 《Plant Breeding》1996,115(6):480-483
Somatic hybrids of Sinapis alba+Brassica juncea (Sal Sal AABB) were synthesized by protoplast electrofusion. They were true genomic allopolyploids since they possessed 60 chromosomes, i.e. the sum of S. alba (2n= 24) and B. juncea (2n= 36) chromosomes. Chromosome pairing was predominantly bivalent with the occasional occurrence of multivalents in the pollen mother cells at diakinesis and metaphase I. Hybrids were completely pollen-sterile, but produced seeds on back-crossing with B. juncea and B. campestris. A total of 37 BC1 plants were raised from two somatic hybrids (JS-1 and JS-2) and 24 of these were analysed cytologically. The 22 plants originating from the pollinations of somatic hybrids with B. juncea showed a chromosome configuration of 18II+12I and had 42–86% pollen fertility. Two plants from the backcrosses of the somatic hybrid with B. campestris formed 10II +20I, and had 0–4% fertile pollen. Total DNA analysis by probing with pTA71 carrying a full-length 18S–25S rDNA fragment of the wheat nuclear genome revealed that the two somatic hybrids possessed all the characteristic bands of both the species, confirming their hybridity. Probing with the mitochondrial coxI and atp9 genes indicated mitochondrial genome recombination in the hybrids. Hybridization with chloroplast-specific psbD indicated that both the somatic hybrids possessed the cp genome of S. alba origin.  相似文献   

18.
The objectives of this study were to obtain information about genetic parameters of a partial diallel in common bean, as well as to evaluate the effects of growing seasons, locations and generations in these estimates in order to define the best strategies for the use of diallel analysis as methodology of selection of parents and populations in common bean breeding. Twelve parents were crossed in a partial diallel scheme (5?×?7), and the F1 and F2 generations were evaluated in four experiments (I, II, III, and IV). The effects of seasons were determined in the Experiments I and II, in which the F1 generation was evaluated in two distinct growing seasons. To quantify the effect of locations, we used Experiments III and IV, in which the F2 generation was evaluated in the same season, but at different locations, and to quantify the effect of generations, the experiments II (generation F1) and III (F2 generation) were evaluated in the same season and location. As for grain yield the genetic control varied according to the environment. An effect of interaction on the genetic parameters of the diallel was observed for generation, whereas for grain yield, effects of season and location were observed. For plant architecture, parental combining ability should therefore be estimated using the F1 generation, while for grain yield, both the F1 and F2 can be used. The recombination between the best hybrids is a promising strategy for extraction of superior black bean lines.  相似文献   

19.
Summary The phenotypes of seed progeny (R2 generation) of Oryza sativa L. cv. Taipei 309, which carried the neomycin phosphotransferase II (npt II) gene, were compared with those of non-transformed, protoplast-derived plants of the same generation and non-transformed, seed-derived plants under field and glasshouse conditions. Under both conditions the transgenic plants were generally smaller, took longer to flower and had reduced fertility. Significant differences were observed between individuals within the group of transgenic plants. The npt II gene was present in most of the transgenic plants, but NPT II activity was only detected in a minority of individuals.  相似文献   

20.
Summary The F2's from crosses between Dyfed (S.240; a black grained cultivar) and monosomics of Sun II (non-black cultivar) were analysed. With the exception of F2 progenies involving monosomes, II, VI, VII, X, XI, XII, XIII and XIV, all other deviated from the genetic ratio 3 black: 1 non-black. The cytological examination of the non-black individuals belonging to those families that did not deviate from the 3:1 ratio showed that they were either 41- or 42-chromosome plants. However, non-black individuals involving monosome XIV were 40-chromosome plants. The gene conferring the black colour to the grains in Avena sativa cv. Dyfed (S.240) is located on chromosome XIV.Department of Plant Breeding and Genetics, Sind Agriculture University. Tando Jam. Pakistan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号