首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 72 毫秒
1.
Partitioning of the genotypes by environment interaction (GEI) is important in order to determine the nature of the GEI. The objectives of this study were to assess the presence and nature of GEI for nine agronomic traits of rapeseed cultivars, and to identify cultivars with favorable levels of stable oil production. Nine rapeseed cultivars, including seven open pollinated and two hybrids, Hyola308 and Hyola401, were grown in ten environments under rain-fed warm areas of Iran. The GEI was significant for all traits and was partitioned into components representing heterogeneity due to environmental index and the remainder of the GEI. Among the all traits with a highly significant heterogeneity, the largest amount of heterogeneity removed from the GEI was for seeds per pod and seed weight. We found GEIs for both oil content and seed yield were largely influenced by differences in correlations among pairs of cultivars (86.8 and 71.4% of the GEI sum of squares, respectively), suggesting that crossover GEIs (i.e., change in genotype rankings among environments) are present. The mean correlation of each cultivar with all other cultivars ([`(r)]ii \bar{r}_{{ii^{\prime}}} ) ranged from 0.53 to 0.83 for oil content and 0.86 to 0.96 for seed yield. A comparison was done of the significance of Sh-σi2 (stability variance derived from total GEI) and Sh-Si2 (adjusted stability variance derived from residual GEI) assignable to each genotype for oil content and seed and oil yield. Based on Sh-σi2, three cultivars were unstable for oil content, whereas six cultivars were unstable for seed and oil yield. The removal of heterogeneity revealed that one unstable cultivar for oil content and three unstable cultivars for oil yield were judged to be stable. All cultivars with [`(r)]ii \bar{r}_{{ii^{\prime } }}  ≤ 0.63 were labeled unstable for oil content, whereas all with [`(r)]ii \bar{r}_{{ii^{\prime } }}  ≤ 0.94 were considered unstable for seed yield. The relationships between [`(r)]ii \bar{r}_{{ii^{\prime } }} and Sh-σi2 were significant (P < 0.01) for oil content and seed yield. The results of rank correlation coefficients showed significant positive correlations of Yield-Stability statistic (YSi) with oil content and oil yield. Cultivars such as Option500 and Hyola401 were identified as having stable, high levels to seed yield and oil content.  相似文献   

2.
The objective of this study was to determine genotype × environment interactions (GEI) obtained in wheat production in southeast Europe for protein content, sedimentation value, and loaf volume. Twenty wheat genotypes divided in two groups with different combinations of high molecular weight glutenin subunits (HMW-GS) were analyzed in 15 environments (E). In a combined analysis of variance, effects of genotype, environment, and their interaction (GEI) were highly significant for almost all the analyzed traits. All the three traits were influenced more by location than by year, with protein content and sedimentation value being more responsive to changes in environmental conditions than loaf volume. The genotypes with high protein content had the regression coefficient value (b) close to 1, indicating that they did not react to extreme environmental conditions as was the case with genotypes with high sedimentation and loaf volume values. There were no significant differences in average values for the analyzed traits and adaptability parameters between the two groups of genotypes. It means that, concerning wheat quality improvement, genotypes with different HMW-GSs on the Glu-1D locus could be recommended for growing in southeast Europe. It is necessary to take into account the differences in adaptability of protein content to either positive or negative environmental changes that were observed between the groups.  相似文献   

3.
Alternative physiological strategies can increase protein concentration in soybean: (i) more-than-proportional increases in seed protein content (mg seed−1) relative to increases in carbohydrate and oil content in large-seeded genotypes or (ii) more-than-proportional reductions in carbohydrate and/or oil content relative to protein content reductions in small-seeded genotypes. Because these strategies differentially affect crop growth and development, we hypothesized that populations developed from high-protein (HP) parents with contrasting seed sizes will present differences in how seed yield and protein concentration correlate. To test this, three breeding strategies were developed by mating high-yielding cultivars and HP ones that differ in seed sizes, reflecting the alternative strategies mentioned above. Neither tested crossing strategies showed differences in their correlation values between seed yield and protein concentration, as initially expected. Nevertheless, populations developed from crossing a HP-small-seeded parent to a HP-large-seeded one showed the highest number of transgressive segregants for protein yield. Our results showed that parent selection based on seed size has no beneficial effects on the development of high-yielding, HP soybean populations, but it might affect the number of transgressive segregants for protein yield.  相似文献   

4.
The best‐yielding and most stable cultivars are identified by growing cultivars in different environments. The stability of grain‐quality traits has been less thoroughly investigated than the stability of grain yield. High‐oleic hybrids of sunflower have been available on the Argentinian seed market for several years. Research on the stability of these genotypes is scarce. The objectives of this work were (i) to compare, using three different methods, the stability and adaptability of high‐oleic hybrids for grain yield and oil and oleic acid contents, and (ii) to explore the advantages and disadvantages of each method in selecting stable or adapted genotypes with high grain yield and high quality. Stability and adaptability analyses were performed on results for grain yields and oil and oleic acid contents of 35 high‐oleic sunflower hybrids from 17 comparative yield trials conducted over 2 years in Argentina. Stability was estimated using two methods: Fisher's protected least significant difference (LSD) test, which compared hybrids with the best‐yielding hybrid in each environment, and the test of relative yield (RY), which uses standard deviation as the measure of stability. Adaptability was estimated using Piepho's method of ‘multiple comparisons with the best’. These three methods can be applied to unbalanced data. Piepho's method made little discrimination amongst the hybrids. The LSD and RY tests coincided in classifying the hybrids as stable and unstable in 85 % of cases for grain yield and 76 % for oil content. It is concluded that the most convenient method depends on characteristics of the experimental design and of variability of the evaluated trait. Results from the LSD test depend on the number of environments in which the cultivar is tested. The RY method is valuable for classifying some cultivars as high‐yielding and stable, avoiding the problem of high‐yielding environments biasing the general average. Use of both methods together could be effective for classifying hybrids when the number of environments is adequate.  相似文献   

5.
Stability of foliage yield and its quality components has not been investigated in vegetable chenopods due to their underutilized status. The objectives of the present study were to assess genotype-environment interactions (GEI), determine stability of yield and quality components and to compare different parametric and non-parametric stability parameters. The present study reports for the first time the effect of genotype and environment on foliage yield and three leaf quality traits viz. carotenoid, ascorbic acid and protein content in different species of Chenopodium. Twenty accessions comprising four species were tested in a randomized block design with three replications across four environments. For all the four traits the largest sum of squares was accounted for by the genotypes, followed by GEI and environments. Highest foliage yield of 16.02 q/ha was obtained from C. album PRC 9804, while the lowest was from C. album CHEN 63/80 (4.01 q/ha). Many indigenous accessions of C. album (PRC 9801, IC 107299, ‘Chandigarh’, ‘local’ and ‘NEFA’) were unstable both for foliage yield and most of the quality traits. Most of the exotic accessions of C. giganteum were both stable and high yielding, thus, reflecting the potential of these accessions for future breeding programs/variety release.  相似文献   

6.
Soybean seed oil was valued in foods, animal feed and some industrial applications. Molecular marker‐assisted selection (MAS) for high‐oil‐content cultivars was an important method for soybean breeders. The objective of this study was to identify quantitative trait loci (QTL) and epistatic QTL underlying the seed oil content of soybeans across two backcross (BC) populations (with one common male parent ‘Dongnong47’) and two different environments. Two molecular genetic maps were constructed. They encompassed 1046.8 cM [with an average distance of 6.75 cM in the ‘Dongnong47’  ×  ‘Jiyu89’ (DJ) population] and 846.10 cM [with an average distance of 5.76 cM in the ‘Dongnong47’  ×  ‘Zaoshu18’ (DZ) population]. Nine and seven QTL were identified to be associated with oil content in the DJ and DZ populations, respectively. The phenotypic variation explained by most of the QTL was usually less than 10%. Among the identified QTL, those stable ones across multiple environments and populations often had stronger additive effects. In addition, three stable QTL in the DZ populations were identified in the similar genomic region of the three QTL in the DJ population [qDJE and qDZE‐1 were located near Satt151 of Chromosome 15 (Chr15), qDJA1 and qDZA1 were located near Satt200 of Chr15 (LG A1), and qDJD2‐1 and qDZD2‐1 were located near Sat365 of Chr17]. In conclusion, MAS will be able more effectively to combine beneficial alleles of the different donors to design new genotypes with higher soybean seed oil content using the BC populations.  相似文献   

7.
Due to the growing need for vegetable protein in Central European agriculture, there is interest in producing food‐grade soybeans, which are higher in seed protein and sucrose content and have a larger seed size than conventional soybeans. As protein content of conventional soybean is often below 400 g/kg, either high‐protein or food‐grade donors were crossed with adapted genotypes in order to increase their protein level. After divergent selection for protein content, lines were evaluated for seed quality characters across three environments in Austria. The objectives of this research were to determine the roles of genetic background and the selection for protein content on food‐grade soybean traits. While seed protein content of adapted parents was between 395 and 420 g/kg, its range was from 410 to 490 g/kg for the high‐protein and from 390 to 450 g/kg for the food‐grade lines, respectively. However, food‐grade populations were superior in seed size and sucrose content and revealed different correlation patterns between quality traits as compared to high‐protein populations, which demonstrates their usefulness for developing soybeans with improved quality.  相似文献   

8.
Peanut (Arachis hypogaea L.) is known to be sensitive to genotype-by-environment interaction (GEI) effects. While previous studies have reported strong GEI effects on peanut yield, most of those studies involved a relatively small number of unrelated genotypes. We examined the extent of GEI effects in elite Virginia-type peanut using a large population of recombinant inbreed lines (RILs). Two-hundred-sixty-six F7 RILs derived from different cultivars were grown in three environments. Net pod yield (NPY) was evaluated along with 11 other traits. ANOVA revealed that genotype and environment affected all of the examined traits, except for the triplet trait. The substantial influence of the environment was also demonstrated in a genetic-parameter analysis, in which the phenotypic variation coefficients were almost double those for genotypic variation. Still, relatively high heritability and genetic gain values were found for pod weight and NPY. Since NPY is the main target for selection, it was analyzed further. Path analysis showed that NPY is most directly influenced by pod weight and the shelling ratio. A significant GEI effect on NPY was identified using an AMMI model that described 42.7% of the total variation. This GEI component was subjected to a principal components analysis, which confirmed that the variability due to the different environments was greater than the variability that could be attributed to the different genotypes. Yet, several lines had stable yields across environments. These results demonstrate the importance of multi-location phenotyping for QTL analyses and crop improvement in peanut.  相似文献   

9.
Diversity of food-grade soybeans is critical for utilization of genetic resources in cultivar development, germplasm enhancement, and end-product commercialization. The objective of this study was to assess seed quality attributes and phenotypic variability among 54 U.S. and 51 Asian food-grade cultivars and breeding lines. The results showed greater genetic diversity of protein content, calcium content, seed hardness, and seed size uniformity than other quality traits in both small- and large-seeded genotypes evaluated in this study. Among the small-seeded soybeans, the U.S. genotypes were more diverse and exhibited higher swell ratio and oil content but lower stone seed ratio and protein content than Asian accessions. Among the large-seeded accessions, U.S. genotypes had higher stone seed ratio and oil content but lower swell ratio and protein content, and were less diverse than Asian genotypes. The characterization of diverse food-grade soybeans will facilitate parent selection in specialty soybean breeding.  相似文献   

10.
Seed protein and oil contents are important quantitative traits in soybean. Previously, quantitative trait loci (QTL) associated with seed protein and oil were mostly identified in single genetic background. The objective of this work was to identify QTL and their epistatic effects underlying seed protein and oil contents in three recombinant inbred line populations (two of them used one common female parent) across eight environments by composite interval mapping. Forty QTL underlying protein content and 35 QTL underlying oil content were identified. Among them, nine were universal QTL underlying protein content and four were universal QTL underlying oil content. Epistatic interactions between QTL underlying seed protein/oil and different genetic backgrounds were detected. Different pairs of epistatic interactions were observed in diverse genetic backgrounds across multi‐environments. Common marker intervals were observed to simultaneously underlie seed protein and oil contents with different epistatic interactions. The results in this study suggested that a specific genotype with high oil content and low protein content might significantly affect the selection of soybean lines for high seed protein.  相似文献   

11.
J.-D. Lee    J. G. Shannon    Y.-S. So    D. A. Sleper    R. L. Nelson    J.-H. Lee    M.-G. Choung 《Plant Breeding》2009,128(1):97-100
Lutein is a major carotenoid in soybean [ Glycine max (L.) Merr.] seed, and has been shown to be beneficial for eye health in humans. Development of soybeans high in lutein is a goal of some breeding programmes. Little is known about how different growing environments affect lutein content. The objective of this study was to determine the variation of lutein and its relationship to seed protein, oil and individual fatty acids in soybean seed. Fifteen soybean genotypes were planted at four environments. There was no effect of year and planting date on lutein content in soybean seed. However, genotype × year, genotype × planting date and genotype × year × planting date were significant for lutein content. Although each genotype showed similar response across environments, lutein content varied significantly across the four growing environments in 14 of the 15 genotypes evaluated. Lutein content was not correlated with seed protein or oil and palmitic or stearic acid concentrations. However, lutein was positively correlated with oleic acid content and negatively correlated with linoleic and linolenic acids content.  相似文献   

12.
Soybean (Glycine max (L.) Merrill) production is expanding into temperate and tropical environments. Yield stability studies under rhizobia inoculation were investigated in 24 soybean genotypes over two successive growing seasons at three agro‐ecological zone of Nigeria, during the 2015–2016 rainy seasons. Treatments were arranged in a split‐plot design and replicated three times. Treatments were 24 soybean genotypes and three levels of rhizobia inoculation. Results indicated that the variation of genotypes and inoculation on percentage emergence, height, number of leaves, number of branches per plant, total biomass yield, above‐ground biomass and seed yield was significant (p = .05). The effects of genotypes (G), environment (E) and G × E interactions on seed yield were also significant. Two soybean genotypes (TGx 1989‐45F and TGx 1990‐110FN) were identified as the most promising in relation to yield stability. Of the three locations, Abuja produced the least interaction effects followed by Igabi and may be most appropriate environments for large‐scale soybean production. Appropriate inoculation of soybean with inoculants (LegumeFix and or NoduMax) should be encouraged in farmer's field.  相似文献   

13.
Increasing protein content is an important objective in breeding high protein oilseed yellow mustard (Sinapis alba L). The objectives of this research were to increase meal protein content, study population variation during three cycles of selection for increased meal protein content, and quantify the relationships of protein with oil and 1000‐seed weight. Recurrent selection was employed with half‐sib family evaluation in replicated field trials. Meal protein content increased by an average of 1 % per cycle. The correlation between meal protein and seed oil content was negative (r= ‐0.49 to ‐0.58). The population shifts, with selection, reflected successful increase of average meal protein content, and an increased frequency of genotypes with high meal protein content. Furthermore, simultaneous selection for meal protein and seed oil content was possible. The correlation between meal protein content and seed weight was positive (r= 0.29‐0.39) and thus selecting for increased meal protein content posed no risk of decreasing seed weight in this yellow mustard germplasm.  相似文献   

14.
Five cycles of phenotypic recurrent selection for increased essential oil content were carried out in East Indian lemongrass, Cymbopogon flexuosus. In each cycle, the top 5% of plants for essential oil content were selected and their ramets were planted in isolated polycross blocks to produce the seed of the next cycle. Response to selection for essential oil content and its effect on three unselected traits, leaf yield, dry matter content in leaves and citral content in the essential oil, were determined by evaluating C0‐C5 populations in a replicated trial. Genetic variation, heritability estimates and intertrait correlations for essential oil content, leaf yield, leaf width, tiller number and citral content in the essential oil in C4 were determined, by evaluating 40 clones and their half‐sib progenies produced from 40 randomly selected C4 plants, in a replicated experiment. These were compared with those determined in C0 earlier. The mean essential oil content increased from 0.66% in C0 to 1.67% in C5 (i.e. by about 31% per cycle over C0). Selection for essential oil content did not affect leaf yield and its effect on dry matter content in leaves was marginal. The first three cycles of selection for essential oil content did not affect citral content in the oil but two further cycles significantly decreased citral content. Heritabilities and intertrait correlations between all traits studied, except citral content and essential oil content, were similar to those found in C0.  相似文献   

15.
In Hawaii, soybeans planted in November through January will produce yields of 25 to 50 percent compared with those planted through June. Yield components were studied for several soybean cultivars to determine which one was the most sensitive to planting dates and if there were differences between cultivars.
Soybean cultivars, Amsoy 71, Davis, Forrest, Kahala, P.I. 297,550 , and Williams were planted each month for two years. One November planting was lost, so there were 23 tests representing different environments. Each test consisted of 24 plots, six cultivars in four replications in a randomized block.
Analysis of variance of combined tests indicated significant differences between number of plants, pods per plant, seeds per pod, seed weight, yield of seed, plant height, and oil content of the seed that were due to data of planting, cultivar, and date × cultivar interaction.
Regression analysis indicated a closer relationship between pods per plant and yield during stress conditions (November through January plantings), whereas number of seeds per pod was more closely associated with yield during non-stress environments (April through June plantings).  相似文献   

16.
Genotype × environment interaction (GEI) affects marketable fruit yield and average fruit weight of both hybrid and open-pollinated (OP) tomato genotypes. Cultivars vary significantly for marketable fruit yield, with hybrid cultivars having, on average, higher yield than OP cultivars. However, information is scanty on environmental factors affecting the differential response of tomato genotypes across environments. Hence, the aim of this research was to use factorial regression (FR) and partial least squares (PLS) regression, which incorporate external environmental and genotypic covariables directly into the model for interpreting GEI. In this research, data from an FAO multi-environment trial comprising 15 tomato genotypes (7 hybrid and 8 OP) evaluated in 18 locations of Latin America and the Caribbean were analyzed using FR and PLS. Environmental factors such as days to harvest, soil pH, mean temperature (MET), potassium available in the soil, and phosphorus fertilizer accounted for a sizeable portion of GEI for marketable fruit yield, whereas trimming, irrigation, soil organic matter, and nitrogen and phosphorus fertilizers were important environmental covariables for explaining GEI of average fruit weight. Locations with relatively high minimum and mean temperatures favored the marketable fruit yield of OP heat-tolerant lines CL 5915-223 and CL 5915-93. An OP cultivar (Catalina) and a hybrid (Apla) showed average marketable fruit yield across environments, while two hybrids (Sunny and Luxor) exhibited outstanding marketable fruit yield in high yielding locations (due to lower temperatures and higher pH) but a sharp yield loss in poor environments. Two stable hybrid genotypes in high yielding environments, Narita and BHN-39, also showed high and stable yield in average and low yielding environments.  相似文献   

17.
Summary Fourteen lines of linseed (Linum usitatissimum L.) were evaluated for general and specific combining ability through line × tester cross analysis using five diverse testers in two different environments. Seventy F1's and nineteen parental genotypes were raised in completely randomized block design with two replications with respect to yield and yield related traits. Considerable genetic variation was observed for all the traits studied. The additive as well as non-additive gene effects played significant role in the inheritance of yield and related traits with preponderance of non-additive gene effects for all the traits studied. Higher proportion of general combining ability × environment interaction variance as compared to specific combining ability × environment estimates was recorded. Additive genetic variances were more sensitive than non-additive genetic variances to the changing environment. Low estimates of heritability (narrow sense) for primary branches per plant, capsules per plant, seeds per capsule, seed yield per plant, harvest index and oil content and medium heritability for days to 50% flowering, days to maturity, plant height and 1000-seed weight was observed. Among the female parents LCK-9816, Parvati, Himalini, KL-168 were good general combiners for yield and related traits along with oil content, whereas among male parents, Surbhi and KL-224 were good general combiners for yield related traits and oil content but KL-221 was good general combiner for seed yield and related traits.  相似文献   

18.
J. X. Shen    T. D. Fu    G. S. Yang    C. Z. Ma  J. X. Tu 《Plant Breeding》2005,124(2):111-116
Self‐incompatibility is one of the most effective approaches to utilizing heterosis in oilseed rape around the world. To evaluate the heterosis of double low self‐incompatibility, the possibility of combining seed yield and oil content, and the genetic effects of parents on their hybrid progenies, a 2‐year field trial using a 3 × 22 NC II mating design was conducted during the 1999‐2001 growing seasons in Wuhan, China. Significant differences in seed yield per plant and seed oil content were observed among the F1 hybrids and between F1 progenies and their parents. However, the heterosis for seed yield per plant was much greater than that for seed oil content. Mid‐parent heterosis and high‐parent heterosis of seed yield per plant ranged from 5.50 to 64.11% and from –2.81 to 46.02%, while those of seed oil content ranged from –1.55 to 7.44% and –3.61 to 6.55%, respectively. Non‐additive genetic effects were a major mechanism that accounted for the yield heterosis in addition to additive effects. In contrast, seed oil content heterosis was mainly dependent on an additive genetic effect. General combining ability (GCA) determined the stability of hybrid cultivars. In hybrid breeding, parental materials might be selected by the sum of GCAs and variances of special combining abilities (SCAs) of female and male parents for traits affected by both additive and non‐additive effects, and by the sum of GCAs of two parents for traits controlled mainly by additive effects. Primary branches and their siliques were the most important yield traits.  相似文献   

19.
Soybean seed protein and oil concentrations are important traits that directly affect the quality of soyfoods. Many studies and breeding programmes have been conducted to find major quantitative trait loci (QTL) that regulate protein and oil concentrations and to develop soybean cultivars with high protein and/or oil content. The purpose of this study was to identify these QTL using a selected breeding population. The population was tested in field conditions over a period of 3 years. Seed protein and oil concentrations were measured each year. Single‐nucleotide polymorphisms (SNPs) were used to construct genetic map using a 180K SoyaSNP array, which identified 1,570 SNPs. We identified 12 QTL for seed protein, 11 for seed oil concentration and four for both traits. Among these, 17 QTL were closely mapped to previously reported QTL, whereas ten sites were novel. Several QTL were detected across at least two experimental years. These loci are good candidate QTL for optimal seed protein and oil concentrations. Our results demonstrate that favourable target QTL can be successfully identified using selected breeding populations.  相似文献   

20.
Tesfaye Baye  Heiko C. Becker 《Euphytica》2005,142(1-2):119-129
Vernonia galamensis is a wild plant from the family Asteraceae which is endemic to East Africa and has the potential to become a new oil crop for industrial uses. Its seed oil is rich in vernolic acid, a fatty acid of high interest for oleochemical applications. However, a breeding program for Vernonia galamensis cultivars with high seed and oil yields requires knowledge about the genetic variability of traits that influence seed and oil production. This study was undertaken to examine phenotypic and genotypic variability, broad-sense heritability, genetic advance under selection and interrelationships of agronomic and seed quality traits. A total of 122 Vernonia accessions, 115 collected from different regions of Ethiopia and seven introduced, were grown at two locations in Ethiopia (Alemaya and Babile), in 2001/2002 and were analyzed for 20 traits including phenology, yield, yield components, and seed quality with special emphasis on fatty acid composition. The collections exhibited significant variation for all traits except for days to emergence. Genotypes and locations interacted significantly (P 0.01) for all traits. Broad-sense heritability estimates ranged from 11% (for days to emergence) up to 79% (for days to maturity). Expected genetic advance was between 1.3% (for days to emergence) and 44.8% (for seed oil yield). Genetic correlation analysis revealed that seed yield per plant is highly and positively correlated with seed weight and head number; highly significant and negative correlations (r = –0.59, –0.82, –0.85, and –0.89) were found between vernolic acid and palmitic, stearic, oleic, and linoleic acid, respectively. Highly significant positive correlations (r = 0.55, 0.44, and 0.36) were observed between vernolic acid and oil content, meal protein content and seed oil yield, respectively. Path-coefficient analysis indicated seed weight and secondary head number to be the most important components of seed yield per plant. Vernolic acid, oleic acid and linoleic acid had positive direct effects and stearic acid had a negative direct effect on oil content. The direct positive effect of oleic acid on oil content was, however, compensated by the negative indirect effects of stearic and vernolic acid resulting in a negative correlation (r = –0.60) between oleic acid and oil content. These observations will support the selection of accessions with high seed and oil yield, high meal protein contents, and high vernolic acid content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号