首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A nitrogen manipulation experiment was conducted in a semi‐intensive outdoor system where turbot larvae feed on copepods. Nitrogen addition is hypothesized to stimulate a cascade reaction increasing phytoplankton biomass, copepods’ productivity and larval fish survival. Triplicates were established for three treatments: a control with no additional nitrogen, a pulsed dose where nitrogen was added in three doses over time and a full dose where all nitrogen, equal to the total of the pulse dose treatment, was added initially. In the control, chlorophyll a averaged 3.3 ± 1.5 μg L?1 and phytoplankton was dominated by diatoms, while the pulsed and full dose treatments showed chlorophyll a at 28.6 ± 9.9 and 47.7 ± 10.0 μg L?1, respectively, with dinoflagellates as the main phytoplankton group. Due to photosynthesis, pH increased >9 in both the nitrogen treatments compared to the control (8.5). Potential toxic dinoflagellates, including Alexandrium pseudogonyaulax and Prorocentrum spp., became dominant in the nitrogen treatments and might have arrested zooplankton recruitment. Laboratory experiments with a toxic strain of A. pseudogonyaulax proved that Acartia tonsa reproduction and naupliar survival were affected negatively at realistic fish tank concentrations of 100 and 20 cells mL?1, respectively. Compared to the control, pulsed and full dose treatments reached higher copepod biomass and showed a shift over time in species composition from Centropages hamatus to Acartia spp. However, high pH levels and dinoflagellate blooms had a negative effect on larval fish survival, suggesting management improvements on water quality and separation between copepods and fish production tanks.  相似文献   

2.
Salinity tolerance and growth of Japanese flounder Paralichthys olivaceus at different developmental stages were evaluated, including newly hatched larvae (nhl), yolk sac larvae (ysl), oil droplet larvae (odl), post oil droplet larvae (podl), premetamorphic larvae (preml) and prometamorphic larvae (proml), at 11 salinities from 5 to 55 g L?1 for 96 h. The ontogenesis during the early life of P. olivaceus was investigated under hatchery salinity 35 g L?1. The results showed that suitable salinities for nhl, ysl, odl, podl, preml and proml larvae were 10 to 25 g L?1, 10 to 30 g L?1, 20 to 30 g L?1, 30 g L?1, 10 to 30 g L?1, 15 g L?1, respectively, demonstrating an ontogenetic variation of salinity tolerance. The salinity tolerance of nhl, ysl, preml was higher than that of odl, podl and proml. The ysl and preml larvae displayed wide salinity tolerances. The present findings demonstrate that the suitable salinity for larviculture of P. olivaceus is 20–25 g L?1 before the depletion of oil droplet; after that, higher salinity (30 g L?1) should be ensured for the post‐oil droplet larvae; the premetamorphic larvae can be cultured at a wide salinity range (10–30 g L?1), and the metamorphosed larvae should be reared at salinity about 15 g L?1.  相似文献   

3.
Survival of marble goby larvae fed either Rhodovulum sulfidophilum, a phototrophic bacterium cultured from palm oil mill effluent (pPB), or microalgae ( Nannochloropsis sp.) was evaluated at two salinities. Larvae directly fed pPB had survival of 0–29% at 5 g L?1 salinity and 0–19% at 10 g L?1 salinity, whereas larvae directly fed microalgae suffered complete mortality after 20 days of culture at both salinities. However, larvae indirectly fed pPB or microalgae, i.e. via rotifers (Days 1–30) and Artemia nauplii (Days 21–30) cultured solely from pPB or microalgae, showed improved survival of 35–55% or 44–49% at 5 g L?1 salinity respectively. In all experiments, fish larvae reared at 5 g L?1 salinity showed significantly higher (P < 0.01) mean survival than those reared at 10 g L?1 salinity. The survival of larvae fed the bacterial‐based diet was higher compared with microalgal diet used in previous studies. The pPB had higher total polyunsaturated fatty acids and docosahexaenoic acid (DHA) than the microalgae, which had very high eicosapentaenoic acid (EPA). Larvae with very high ratios of DHA/EPA (>11) or/and ARA (arachidonic acid)/EPA (>5), attributable to their given diet, however suffered the highest mortality.  相似文献   

4.
The tolerance of Litopenaeus vannamei larvae to increasing concentrations of total ammonia nitrogen (TAN) using a short‐term static renewal method at 26°C, 34 g L?1 salinity and pH 8.5 was assessed. The median lethal concentration (24 h LC50) for TAN in zoea (1‐2‐3), mysis (1‐2‐3) and postlarvae 1 were, respectively, 4.2‐9.9‐16.0; 19.0‐17.3‐17.5 and 13.2 mg L?1TAN (0.6‐1.5‐2.4; 2.8‐2.5‐2.6 and 1.9 mg L?1 NH3‐N). The LC50 values obtained in this study suggest that zoeal and post‐larval stages are more sensitive to 24 h ammonia exposure than the mysis stage of L. vannamei larvae. On the basis of the ammonia toxicity level (24 h LC50) at zoea 1, we recommend that this level does not exceed 0.42 mg L?1 TAN – equivalent to 0.06 mg L?1 NH3‐N – to reduce ammonia toxicity during the rearing of L. vannamei larvae.  相似文献   

5.
This study examined the effects of water hardness and salinity on yolk sac larvae and swim‐up fry survival of Nile tilapia, Oreochromis niloticus (Chitralada strain), eggs during artificial incubation. Four experiments were conducted to evaluate the effects of hardness, salinity and the sources of saline incubation water. High water hardness treatments (500–4200 mg L?1 as CaCO3) resulted in higher yolk sac larvae and swim‐up fry survival than low water hardness treatments (50.0 and 132 mg L?1 as CaCO3); although yolk sac larvae and swim‐up fry survival did not differ among the high or low hardness treatments. Salinity of 4.0 g L?1 using seawater, and 4.0 and 8.0 g L?1 using unprocessed common salt resulted in the higher survival rate of yolk sac larvae and swim‐up fry than other salinity treatments. Yolk sac larvae and swim‐up fry survival was found to decrease with the increase in salinity and increase with the increase in water hardness. The present study demonstrated the positive effects of increased water hardness level (>132 mg L?1) on yolk sac larvae and swim‐up fry survival. The study also showed that seawater salinity of 4 g L?1 was the most appropriate salinity level for incubating Nile tilapia eggs.  相似文献   

6.
The residual water from intensive aquaculture production systems can be utilized in integrated multitrophic cultivations. In this work, Artemia franciscana received daily feedings of 10 mg L?1 of Tetraselmis chuii, Nannochloropsis oculata and Chaetoceros muelleri, which were grown using residual water from an intensive biofloc Litopenaeus vannamei cultivation system. The goal of this study was to verify which species provide the best zootechnical performance and best crustacean biomass production efficiency. After 12 days of cultivation, A. franciscana wet biomass was 815.64 ± 18.74, 650.81 ± 83.98 and 40.76 ± 4.08 mg L?1 with C. muelleri, T. chuii and N. oculata (P < 0.05), with significant differences in dried biomass as well. As for the microalgae cultivation in the alternative culture medium, T. chuii had higher dry biomass gain, requiring less culture volume to achieve 10 mg L?1 and become ready to feed Artemia. Thus, T. chuii was the most efficient in Artemia biomass production with 0.83 L compared to 1.54 L g art?1 in C. muelleri. C. muelleri is recommended for feeding A. franciscana for biomass production purposes. However, due to its better efficiency, T. chuii can be selected to be part of a multitrophic system.  相似文献   

7.
In the field, moulting and salinity drop in the water due to excessive rainfall have been mentioned to be risk factors for WSSV outbreaks. Therefore, in this study, the effect of an acute change in environmental salinity and shedding of the old cuticle shell on the susceptibility of Penaeus vannamei to WSSV was evaluated by immersion challenge. For testing the effect of abrupt salinity stress, early premoult shrimp that were acclimated to 35 g L?1 were subjected to salinities of 50 g L?1, 35 g L?1, 20 g L?1, 10 g L?1 and 7 g L?1 or 5 g L?1 and simultaneously exposed to 105.5 SID50 mL?1 of WSSV for 5 h, after which the salinity was brought back to 35 g L?1. Shrimp that were transferred from 35 g L?1 to 50 g L?1, 35 g L?1 and 20 g L?1 did not become infected with WSSV. Shrimp became infected with WSSV after an acute salinity drop from 35 g L?1 to 10 g L?1 and lower. The mortality in shrimp, subjected to a salinity change to 10 g L?1, 7 g L?1 and 5 g L?1, was 6.7%, 46.7% and 53.3%, respectively (P < 0.05). For testing the effect of moulting, shrimp in early premoult, moulting and post‐moult were immersed in sea water containing 105.5 SID50 mL?1 of WSSV. The resulting mortality due to WSSV infection in shrimp inoculated during early premoult (0%), ecdysis (53.3%) and post‐moult (26.72%) demonstrated that a significant difference exists in susceptibility of shrimp during the short moulting process (P < 0.05). The findings of this study indicate that during a drop in environmental salinity lower than 10 g L?1 and ecdysis, shrimp are at risk for a WSSV infection. These findings have important implications for WSSV control measures.  相似文献   

8.
As marine finfish aquaculture expands, there is an increasing interest in the ability to ship early life stages from breeding centres to hatcheries so that each hatchery does not have to maintain its own broodstock. Here, we conducted 24 h air‐shipping simulations with yolk‐sac larvae of California yellowtail (CYT; Seriola lalandi) and white seabass (WSB; Atractoscion nobilis) to help fill in the informational gaps for shipping marine fish larvae. We examined the effects of a pH buffer on water quality, post‐shipping larval survival and subsequent survival to first feeding at larval densities of 1000, 3000, 6000 and 9000 larvae L?1. The pH buffer, 8.3 Trizma®, was tested at varying concentrations of zero (NT = 0.00 g L?1), low (LT = 0.75 g L?1), medium (MT = 1.5 g L?1) and high (HT = 3.0 g L?1). Trials were conducted using replicate 2 L aquarium bags filled with 500 mL of seawater and held in a water bath at 19–20°C. Results showed an interspecific difference in survival at the highest shipping densities under these experimental conditions. Shipping densities up to 6750 CYT larvae L?1 or 3000 WSB larvae L?1 consistently yielded >90% survival immediately after simulated shipment and >85% survival 48 h after the simulations. Furthermore, at these densities, pH was maintained at ~8.0 when buffered at 1.5 g L?1. The highest tested densities of 9580 CYT larvae L?1 and 9940 WSB larvae L?1, yielded lower survival 69–79% and 0.0–1.3% respectively after 24 h. Final pH in the high density CYT trials were unsatisfactory (below 7.0), regardless of the buffer concentration; however pH in the WSB high density trials improved with increasing buffer concentration. On the basis of the results from these air‐shipping simulations, we recommend CYT and WSB larvae be shipped in seawater with 1.5 g L?1 Trizma® at densities not greater than 6750 larvae L?1 for CYT and 3000 larvae L?1 for WSB. We believe this represents an important step in improving long distance transport protocols for these species and provides useful guidance in air transport of other economically and ecologically important marine species. Additional research is warranted to compare these simulation results with those from actual air shipments, as we did not account for factors that may vary in flight like temperature and pressure variations, and physical agitation.  相似文献   

9.
Coral reef fish are collected from the wild and exhibited in aquaria worldwide. Some of the fish spawn in captivity; however, the eggs are usually neglected. In this study, we collected the eggs spawned naturally in the exhibit tanks, hatched and cultured them indoor in 2000‐L fibreglass tanks (initial density = 18 000 egg tank?1). We applied an inorganic fertilization method commonly used in freshwater fish culture in raising these coral reef fish larvae. We maintained inorganic phosphorus concentration at 100 μg P L?1 and inorganic nitrogen at 700 μg N L?1 daily in the fertilized group (n = 4), while the control tanks (n = 4) were fed with rotifers (10 ind mL?1). Chlorophyll a at particle sizes of both 0.45–20 μm and >20 μm, as well as NH3‐N, NO3‐N, and PO4‐P concentrations were significantly higher in the fertilized group than the control. Zooplankton in the size groups of 10–50 μm (mainly flagellates) and 50–100 μm (mainly ciliates) were abundant (about 10~60 ind mL?1) during 3–7 days in fertilized tanks. The average larval fish survival rate at 21 day after hatch in fertilized group was consistently higher than the control in two trials. The experiments demonstrated that the inorganic fertilization approach can be successfully adapted for coral reef fish culture in an aquarium to achieve sustainable exhibits.  相似文献   

10.
The nitrite toxicity was estimated in juveniles of L. vannamei. The 24, 48, 72 and 96 h LC50 of nitrite‐N on juveniles were 8.1, 7.9, 6.8 and 5.7 mg L?1 at 0.6 g L?1; 14.4, 9.6 8.3 and 7.0 mg L?1 at 1.0 g L?1; 19.4, 15.4, 13.4 and 12.4 mg L?1 at 2.0 g L?1 of salinity respectively. The tolerance of juveniles to nitrite decreased at 96 h of exposure by 18.6% and 54.0%, when salinity declined from 1.0 to 0.6 g L?1 and from 2.0 to 0.6 g L?1 respectively. The safe concentrations at salinities of 0.6, 1.0 and 2.0 g L?1 were 0.28, 0.35 and 0.62 mg L?1 nitrite‐N respectively. The relationship between LC50 (mg L?1), salinity (S) (g L?1) and exposure time (T) (h) was LC50 = 8.4688 + 5.6764S – 0.0762T for salinities from 0.6 to 2.0 g L?1 and for exposure times from 24 to 96 h; the relationship between survival (%) and nitrite‐N concentration (C) for salinity of 0.6–2.0 g L?1, nitrite‐N concentrations of 0–40 mg L?1 and exposure times from 0 to 96 h was as follows: survival (%) = 0.8442 + 0.1909S – 0.0038T – 0.0277C + 0.0008ST + 0.0001CT–0.0029SC, and the tentative equation for predicting the 96‐h LC50 to salinities from 0.6 to 35 g L?1 in L. vannamei juveniles (3.9–4.4 g) was 96‐h LC50 = 0.2127 S2 + 1.558S + 5.9868. For nitrite toxicity, it is shown that a small change in salinity of waters from 2.0 to 0.6 g L?1 is more critical for L. vannamei than when wider differences in salinity occur in brackish and marine waters (15–35 g L?1).  相似文献   

11.
Feeding copepods during early larval culture stages of marine fish has proven to be advantageous for growth and survival of marine finfish larvae. However, commercial availability of most copepods is limited; thus, there is an impetus to evaluate promising copepod species to meet the diverse dietary demands of various marine fish. The marine cyclopoid copepod, Oithona colcarva, was isolated out of zooplankton samples taken from waters within Tampa Bay, Florida. Once isolated, trials were conducted to determine the appropriate culture parameters for producing nauplii to feed marine fish larvae. The effects of temperature (22°C, 26°C and 30°C), salinity (15, 20, 25, 30 and 35 g L?1), stocking density (0.5, 1.0, 2.0, 4.0 and 8.0 individuals mL?1) and diet (Nanno 3600 microalgae paste, Colurella adriatica, Rhodomonas lens, Tisochrysis lutea, Chaetoceros gracilis and/or Tetraselmis chuii) on nauplii production during a single life cycle of reproducing individuals were examined. Results of those trials indicated that a culture temperature of 30°C and a salinity of 30 g L?1 were advantageous for maximum nauplii production. Furthermore, a diet containing a 1:1:1 mixture of T. lutea, C. gracilis and T. chuii and a stocking density of at least 8 individuals mL?1 were identified as beneficial. The results of these trials, the potential for large‐scale culture and observations on the performance of marine fish larvae fed Oithona colcarva nauplii are discussed.  相似文献   

12.
We evaluated the effect of rearing density on the yield of a fast‐growing and heat‐resistant strain of Apostichopus japonicus using a full‐sib family. We analysed the relationship between density and key growth parameters during factory seedling of A. japonicus and developed a model to explain the variation in growth. From 130 to 220 days, the rearing density of A. japonicus had a significant effect on body weight, specific growth rate, coefficient of variation and survival rate (P < 0.05). We obtained predicted integral regression equations for yield and growth rate, density fluctuation, variable coefficient fluctuation and survival rate. Specific growth rate had a significant effect on the yield of A. japonicus and, therefore, can be used as a primary indicator of yield. We recommend that stocking density should be adjusted from age 130–166 days to avoid frequent seedling separation to different pools of different seedling sizes during the fast growth period of A. japonicus seedlings, a procedure that causes yield decline. The optimal initial stocking density was 24.4 g m?2 (0.2 g L?1).  相似文献   

13.
The suitability of inland saline water (ISW) from the Lahli‐Baniyani Fish Farm, Rohtak was investigated for the larval rearing of giant freshwater prawn (GFP), Macrobrachium rosenbergii. Six experiments were conducted. In Experiment‐I, 54% of the larvae metamorphosed to postlarvae (PL) in constituted seawater (CSW) whereas total mortality occurred at larval stages (LS)‐II and LS‐III in ISW with salinity of 12 g L?1. Larvae survived to LS‐IV in Experiment‐II, when ISW was supplemented with K+~ SW. In Experiment‐III, total hardness in ISW was reduced serially, but K+ ~ SW was supplemented. The larvae did not survive beyond LS‐V. In Experiment‐IV, ISW was amended with different ratios of Mg2+/Ca2+ and K+ ~ SW. The larvae successfully metamorphosed to postlarvae with highest survival of 51.6% in Mg2+/Ca2+ ratio of 2.5. In Experiment‐V, eight larval cycles were run with water quality used in Experiment V, where all the cycles produced PL's with a survival rate of 20–67%. In Experiment VI, the larvae were reared in Mg2+/Ca2+ ratio of 2.5 and different levels of K+ to optimize its requirement. The ISW amended with K+ 80% ~ SW and Mg2+/Ca2+ ratio of 2.5 was found to be commercially suitable for the seed production of GFP.  相似文献   

14.
The spider crab Maja brachydactyla, Balss 1922 can produce three consecutive broods per breeding season in the wild, whereas females in captivity can spawn up to four times in the absence of males. The effect of male absence on the larval production of the spider crab M. brachydactyla was studied in a 2‐year experiment in which females were kept in captivity in the presence or absence of males. The broodstock were maintained under natural photoperiod conditions, temperature (18.5 ± 1.0°C) and salinity (34.8 ± 0.7 g L?1). The number of larvae, and when possible, the dry weight and proximate biochemical composition of each larval batch were calculated and the data grouped seasonally. The larval production (< 0.001) and protein content (= 0.037) were significantly lower in the absence of males. However, considering that the larval production in male presence decreased due to the low female survival rate, particularly in the last part of the experiment, the presence of males should be managed to maintain a high larval production and condition without jeopardizing the survival of females. Therefore, we recommend keeping females segregated from males and transferring males to female tanks only to mate.  相似文献   

15.
This study examined the seasonal variation in the condition index (CI) of Crassostrea gigas postlarvae (<5 mm) that were cultivated at a commercial hatchery. Oysters were sampled weekly at the nursery using seawater from a lagoon for the grow‐out that precedes commercialization. Temperature, salinity, seston, chlorophyll a, oxygen and pH were recorded at each sampling and water samples were taken to identify phytoplankton groups and their abundance. High levels of primary productivity, chlorophyll a and seston were detected during summer, but the highest CI occurred in winter. During winter, elevated phytoplankton biomass was composed by diatoms and phytoflagellates, which served as the main food source and promoted weight gain in this season. Variations in salinity, oxygen and pH were not related to differences in the CI. However, it appears that the wide temperature variation affected functions, such as feeding activity, apparently enhancing ingestion during winter (mean 16.5±1.4 °C) and reducing ingestion during summer (mean 31±1.5 °C). Winter production resulted in postlarvae with a homogeneous size range and a high CI, indicating that winter is more favourable to start cultivation. The CI represents a practical means to determine the physiological state of postlarvae before transfer to cultivation sites.  相似文献   

16.
This study examined the nutritional composition of the intertidal marine polychaete Perinereis helleri (Nereididae) when artificially cultured in sand filters treating mariculture wastewater. Moisture levels in harvested P. helleri ranged from 758 to 855 g kg?1, and ash, from 23 to 61 g kg?1 wet matter (WM). Stocking density and graded size after harvest significantly affected their composition. Higher total lipid contents were found in large (>0.6 g) P. helleri (16–19 g kg?1 WM) and those grown at the lowest density (1000 m?2: 18 g kg?1 WM) than in small (≤0.6 g) ones (14 g kg?1 WM) and those grown at the highest densities (4000–6000 m?2: 13–16 g kg?1 WM). Several fatty acids within a very broad profile (some 30 identified) reflected this pattern, yet their ARA/EPA/DHA ratios were relatively unaffected. Feeding the polychaete‐assisted sand filters (PASF) with fish meal to increase worm biomass productivity significantly increased their DHA content. Other components (e.g. protein, phospholipids, cholesterol, carbohydrate, amino acids, nitrogen, minerals and bromophenols) and nutritional factors (e.g. maturity, feeding seaweed and endemic shrimp viral content) were also investigated. Results suggest that PASF‐produced P. helleri have a well‐balanced nutritional profile for penaeid shrimp and fish broodstock.  相似文献   

17.
By introducing recirculation aquaculture systems (RAS) in the nursery phase of the blue mussel (Mytilus edulis) (17–18 mm), we aimed at a similar growth and survival and a similar water quality compared to the commonly used flow‐through systems (FTS). To calculate water flow and size of the biofilter, a series of experiments were done to determine clearance rate (9.26 mL min?1), pseudo faeces threshold (60 000 cells Pavlova lutheri mL?1), nitrogen production (0.00065 mg TAN h?1 ind?1 and 1.6 × 10?5 mg NO2–N h?1 ind?1) and oxygen consumption (0.03 ± 0.01 mg O2 h?1 ind?1). RAS showed no significant differences in water quality (0.06 mg TAN L?1; 7.7 mg O2 L?1) and growth performance of mussel seed specific growth rate (SGR = 5% day?1) after the experimental period of 4 weeks compared with FTS. The low water refreshment, 10% per day, as well as the constant chlorophyll concentrations (9.76 ± 1.06 μg L?1), suggests the potential of RAS as culture system for mussel seed.  相似文献   

18.
Sexually mature kutum, Rutilus frisii kutum, captured from its natural habits, the Caspian Sea and the Khoushkrood River, reared at 0.5 g L?1 and 8–13 g L?1 for approximately 1 year in experimental condition, for assessing the effect of salinity on reproduction. Plasma concentrations of sex steroid hormones (17β‐estradiol, testosterone and 17α‐hydroxyprogestrone) were measured in the three stages of gametogenesis. Female kutum held at <0.5 g L?1 or 8–13 g L?1 had no ovulated oocytes in their ovaries. In contrast, males held in captivity were spermiated, similar to their wild counterparts. The average sperm volume of males held at <0.5 g L?1 (2.36 ± 0.46 mL) was lower than males held at 8–13 g L?1 (3.65 ± 0.73 mL) at the end of the experimental period. The highest concentration of testosterone was observed in mid‐gametogenesis in wild fish that was significantly higher than the concentration seen in fish held in either <0.5 g L?1 or 8–13 g L?1. Female kutum showed suppressed steroid hormones in captivity, resulting in failure in the gonad development. However, male kutum adapt well to captivity and showed synchrony in steroid hormone variations with the wild fish, resulting in the testicular development. Results of this study also indicate that salinity plays a minor, but vital, role in reproduction of kutum, a factor that needs to be considered for keeping broodstock of brackish water fish species like kutum.  相似文献   

19.
Ongoing research in recirculation aquaculture focuses on evaluating and improving the purification potential of different types of filters. Algal Turf Scrubber (ATS) are special as they combine sedimentation and biofiltration. An ATS was subjected to high nutrient loads of catfish effluent to examine the effect of total suspended solids (TSS), sludge accumulation and nutrient loading rate on total ammonia nitrogen (TAN), nitrite and nitrate removal. Nutrient removal rates were not affected at TSS concentration of up to 0.08 g L?1 (P > 0.05). TAN removal rate was higher (0.656 ± 0.088 g m?² day?1 TAN) in young biofilm than (0.302 ± 0.098 g m?² day?1 TAN) in mature biofilm at loading rates of 3.81 and 3.76 g m?² day?1 TAN (P < 0.05), respectively, which were considered close to maximum loading. TAN removal increased with TAN loading, which increased with hydraulic loading rate. There was no significant difference in removal rate for both nitrite and nitrate between young and mature biofilms (P > 0.05). The ATS ably removed nitrogen at high rates from catfish effluent at high loading rates. ATS‐based nitrogen removal exhibits high potential for use with high feed loads in intensive aquaculture.  相似文献   

20.
Physiological responses and HSP70 mRNA expression to short‐term crowding were tested in juveniles genetically improved farmed tilapia (Oreochromis niloticus) (70.43 ± 4.43 g). Fish were kept at control group (5 g L?1) and stress groups (low density 10 g L?1, medium density 40 g L?1 and high density 70 and 100 g L?1) for 48 h. Each density was tested in triplicates. The effects of a short‐term exposure on the physiological responses of fish were determined before stress (0 h) and at 6, 12, 24 or 48 h post‐crowding. There was a significant increase in serum cortisol, total protein, lysozyme and aspartate aminotransferase (AST) activities in all stressed groups at 24 h post‐crowding (< 0.05). Serum glucose and alanine aminotransferase (ALT) of 100 g L?1 stressed group were lower than that of the control after 48 h of crowding stress (< 0.05). The levels of serum triglyceride and cholesterol in crowding stress with high density were significantly decreased compared with the control group at 48 h. The mRNA expression data showed that hepatic HSP70 mRNA levels were markedly elevated at all stressed groups. HSP70 mRNA levels of 70 and 100 g L?1 stressed groups decreased at 48 h compared with the 24 h post‐crowding. The protective ability of HSP70 was limited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号