首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The effects of heavy metals (Cu, Pb, and As) accumulated in apple orchard surface soils on the microbial biomass, dehydrogenase activity, and soil respiration were investigated. The largest concentrations of total Cu, Pb, and As found in the soils used were 1,010, 926, and 166 mg kg?1 soil, respectively. The amounts of microbial biomass C and N, expressed on a soil organic C and soil total N basis, respectively, were each negatively correlated with the amounts of total, 0.1 M HCI-extractable, and 0.1 M CaCl2-extractable Cu as logarithmic functions, the correlation coefficient being lowest for the 0.1 M CaCl2extractable Cu. Nevertheless, they were not correlated with the soil pH which was controlling the solubility of Cu in 0.1 M CaCl2. The dehydrogenase activity expressed per unit of soil organic C was also negatively correlated with the amounts of total, 0.1 M HCI-extractable Cu, and 0.1 M CaCl2-extractable Cu as logarithmic functions. However, the correlation coefficient was highest for the 0.1 M CaCl2-extractable Cu. Although the soil respiration per unit of soil total organic C did not show any significant correlations with the total concentrations of heavy metals, it showed negative significant correlations with the amount of 0.1 M HCI-extractable Cu, and to a greater extent, with the amount of 0.1 M CaCl2-extractable Cu. Both the dehydrogenase activity and respiration per unit of soil total organic C increased significantly with increasing soil pH. These results suggested that in apple orchard soils with heavy metal accumulation the microbial biomass was adversely affected by the slightly soluble Cu, whereas the microbial activities by the readily soluble Cu whose amount depended on the soil pH. The respiration per unit of microbial biomass C showed a positive significant correlation with the logarithmic concentration of total Cu. Furthermore, the contribution of fungi to substrate-induced respiration increased with increasing total Cu content in the soils.  相似文献   

2.
Abstract

Two types of soils (Brown Lowland soil and Ando soil), which were artificially enriched with different amounts of Cu, were incubated with or without pulverized orchard grass for 12 weeks at 25°C. For both soils with and without orchard grass amendment, the amount of CO2 evolved over the 12-week period of incubation decreased by the enrichment with Cu at a concentration exceeding 1,000 mg kg?1 soil. The decrease of the mineralization of added orchard grass in the Cu-enriched soil was conspicuous especially during the initial period of incubation. The amount of microbial biomass C at the end of the incubation was significantly reduced by the Cu enrichment regardless of the amendment with orchard grass. The relative decrease of the soil microbial biomass was much greater than that of the soil respiration. The amount of biomass C was negatively correlated with the amount of 0.1 M CaCl2-extractable Cu as a logarithmic function. On the other hand, the β-glucosidase activity at the end of the incubation was not significantly affected by the presence of Cu in the soils without orchard grass amendment and increased with the increase in the amount of enriched Cu in the orchard grass-amended soils.  相似文献   

3.
Copper-based fungicides have been applied in apple orchards for a long time, which has resulted in increasing soil Cu concentration. However, the microbial and enzyme properties of the orchard soils remain poorly understood. This study aimed to evaluate the effect of long-term application of Cu-based fungicides on soil microbial (microbial biomass carbon (Cmic), C mineralization, and specific respiration rate) and enzyme (urease, acid phosphatase, and invertase activities) properties in apple orchards. Soil samples studied were collected from apple orchards 5, 15, 20, 30, and 45 years old, and one adjacent forest soil as for reference. The mean Cu concentrations of orchard soils significantly increased with increasing orchard ages ranging from 21.8 to 141 mg kg−1, and the CaCl2-extractable soil Cu concentrations varied from 0.00 to 4.26 mg kg−1. The soil mean Cmic values varied from 43.6 to 116 mg kg−1 in the orchard soils, and were lower than the value of the reference soil (144 mg kg−1). The ratio of soil Cmic to total organic C (Corg) increased from 8.10 to 18.3 mg Cmic g−1 Corg with decreasing orchard ages, and was 26.1 mg Cmic g−1 Corg for the reference soil. A significant correlation was observed between total- or CaCl2-extractable soil Cu and soil Cmic or Cmic/Corg, suggesting that the soil Cu was responsible for the significant reductions in Cmic and Cmic/Corg. The three enzyme activity assays also showed the similar phenomena, and declined with the increasing orchard ages. The mean soil C mineralization rates were elevated from 110 to 150 mg CO2-C kg−1 soil d−1 compared with the reference soil (80 mg CO2-C kg−1 soil d−1), and the mean specific respiration rate of the reference soil (0.63 mg CO2-C mg−1 biomass C d−1) was significantly smaller than the orchard soils from 1.19 to 3.55 mg CO2-C mg−1 biomass C d−1. The soil C mineralization rate and the specific respiration rate can be well explained by the CaCl2-extractable soil Cu. Thus, the long-term application of copper-based fungicides has shown adverse effects on soil microbial and enzyme properties.  相似文献   

4.
Physicochemical properties, total and DTPA (diethylenetriaminepentaacetic acid)-extractable Cu, Zn, Pb and Cd contents, microbial biomass carbon (C) content and the organic C mineralization rate of the soils in a long-term trace metal-contaminated paddy region of Guangdong, China were determined to assess the sensitivity of microbial indices to moderately metal-contaminated paddy soils. The mean contents of total Cu, Zn, Pb and Cd were 251, 250, 171, and 2.4 mg kg-1 respectively. DTPA-extractablc metals were correlated positively and significantly with total metals, CEC, and organic C (except for DTPA-extractable Cd), while they were negatively and highly significantly correlated with pH, total Fe and Mn. Metal stress resulted in relatively low ratios of microbial biomass C to organic C and in remarkable inhibition of the microbial metabolic quotient and C minera]ization rate, which eventually led to increases in soil organic C and C/N. Moreover, microbial respiratory activity showed a stronger correlation to DTPA-extractable metals than to total metal content. Likewise, in the acid paddy soils some "linked" microbial activity indices, such as metabolic quotient and ratios of basal respiration to organic C, especially during initial incubation, were found to be more sensitive indicators of soil trace metal contamination than microbial biomass C or basal respiration alone.  相似文献   

5.
The effects of heavy metals (Zn, Pb, and Cu) on microbial biomass C, N, and P were assessed in soils contaminated over a wide range by sewage sludge, exhaust dust deposition of a lead factory and river sediments of mining residues. Microbial biomass C, N, and P did not show any clear heavy metal effect related to soil dry weight. Also the ratios of microbial biomass C/N and biomass C/P remained unaffected by heavy metals. The ratios of microbial biomass C/soil organic C, biomass N/total N, and biomass P/total P were all negatively affected by increasing concentrations of Zn, Pb, and Cu as detected by a source-specific analysis of covariance using the different heavy metal fractions as covariate. Negative effects of Zn on the ratios microbial biomass C/soil organic C and biomass N/total N increased with increasing metal solubility in the order: (X-ray fluorescence analysis) XFA-detectable <HNO3 <EDTA ?NH4NO3-extractable Zn. The Zn effects on the microbial biomass N/total N were always smaller than those on the microbial biomass C/soil organic C ratio. The same was true for all effects of the Pb and Cu fractions on these two ratios. For this reason, the deposition of highly soluble Zn and Pb by exhaust dust has the most negative effects, although sediments contained the maximum total burden of Zn and Pb. All fractions of Zn, Pb, and Cu had similar negative effects on the microbial biomass P/total P ratio, although the NH4NO3-extractable fraction again showed the most pronounced effects.  相似文献   

6.
对天水果园表层(0~20 cm)219件土壤样品进行研究,测定5种重金属(Zn、Cu、Pb、Cr和Cd)及有机质含量,以天水小陇山土壤为对照,运用相关分析和主成分分析方法区分土壤中重金属的来源。结果表明,①Zn、Cu、Pb、Cr和Cd含量分别为77.39、23.03、23.62、61.49 mg.kg-1和0.07 mg.kg-1,其中Cd极显著(P〈0.01)高于小陇山土壤,其余4种重金属虽高于小陇山土壤但无显著差异性(P〉0.05);②研究区土壤Cu、Pb、Cr三者间在0.01或0.001水平上具有显著正相关性,且这3种重金属与土壤有机质具有显著正相关性,其余重金属间不存在显著相关性;③主成分分析显示Cu、Pb和Cr来源相似,主要来自于成土母质,Cd来源于人为施肥因素,Zn的富集受多种因素影响。研究评价结果显示,天水地区果园土壤Cd受人为施肥影响较大,具有一定程度的富集。  相似文献   

7.
Results from laboratory experiments indicated that the concentrations and toxicities of both water-soluble and 0.1 M HCl-extractable Cu and Cd from soils were in the order of red soil> yellow brown earth> black earth. The toxicity of soil varied with the concentrations of metals. The form, concentration and toxicity of Cu and Cd in soils were determined by cation exchange capacity, content of organic matter and composition of clay minerals in the soil. Addition of CaCO3 could significantly decrease the concentration and toxicity of water-soluble and 0.1 M HCl-extractable Cu or Cd from the red soil, and could notably transform the Cu and Cd from the water-soluble or exchangeable form into the organic, free oxides-occluded or sulfic form.  相似文献   

8.
A pot experiment was carried out with three soils at ambient temperature in which temporal changes in fractions of soil organic matter that were extractable with either 0.01 M CaCl2 or 0.01 M NaHCO3 were compared with changes in N mineralisation and microbial biomass C. UV spectral analysis of soil extracts was also carried out on sub-samples taken at the beginning of the experiment. The objective was to quantify the fractions of extractable soil organic matter and determine whether these could be used to estimate the mineralisable organic N content of the soils. The results suggested that part of the NaHCO3-extractable organic matter originated in the microbial biomass but that non-biomass material was also present. The non-biomass material was not identified directly, but was composed of compounds with high UV absorbance. In the case of CaCl2, the results suggested that extracellular proteins were contained in the extract and that some material released from the actively growing microbial biomass may also have been present. A supplementary study with 16 soils was carried out to determine the ability of the organic matter solubilised by either extractant to predict soil N uptake by barley seedlings. A significant relationship (P<0.01) was found between N uptake and CaCl2-extractable material only.  相似文献   

9.
 We studied the long-term effects (12 years) of municipal refuse compost addition on the total organic carbon (TOC), the amount and activity of the microbial biomass (soil microbial biomass C, BC and metabolic quotient qCO2) and heavy metal bioavaiability in soils as compared to manuring with mineral fertilizers (NPK) and farmyard manure (FYM). In addition, we studied the relationships between among the available fraction [Diethylenetriaminopentacetic acid (DTPA) extractable] of heavy metals and their total content, TOC and BC. After 12 years of repeated treatments, the TOC and BC of control and mineral fertilized plots did not differ. Soils treated with FYM and composts showed a significant increase in TOC and BC in response to the increasing amounts of organic C added. Values of the BC/TOC ratio ranged from 1.4 to 2, without any significative differences among soil treatments. The qCO2 increased in the organic-amended soil and may have indicated microbial stress. The total amounts of metals in treated soils were lower than the levels permitted by the European Union in agricultural soils. DTPA-extractable metals increased in amended soils in response to organic C. A multiple regression analysis with stepwise selection of variables was carried out in order to discriminate between the influence exerted on DTPA-extractable metals by their total content, TOC and BC. Results showed that each metal behaved quite differently, suggesting that different mechanisms might be involved in metal bioavailability Received: 31 October 1997  相似文献   

10.
The study was carried out to investigate whether 1 M NH4NO3 extraction is a useful alternative to 10 mM CaCl2 extraction for estimating soil microbial biomass S and whether the data of CHCl3-labile NH4NO3-extractable macronutrients and heavy metals are useful and in agreement with the available data on element concentrations in soil microorganisms. Microbial biomass C was followed by microbial biomass S after CaCl2 extraction with an average C/S ratio of 82, and by microbial biomass S after NH4NO3 extraction with an average C/S ratio of 57. The mean contribution of CHCl3-labile metals in relation to the NH4NO3-extractable fraction from non-fumigated soils ranged from 0.1 to 112% in the order potassium < magnesium < cadmium < sodium < zinc + nickel < manganese < copper. The mean contribution of CHCl3-labile metals in relation to the microbial biomass C ranged from 0.03 to 22‰ in the order cadmium < nickel < zinc < manganese < magnesium < copper < sodium < potassium. These relative contributions varied within the different metals from a 4-fold (Na+) to a more than 200-fold range (Cu2+). Significant positive correlations with microbial biomass C were observed for CHCl3-labile zinc, sodium and especially potassium. The concentration of all elements except copper in relation to microbial biomass C were in the range known from the limited literature on fungi grown on heavy metal contaminated soils.  相似文献   

11.
Large accumulation of heavy metals in organic layers of forest soils may adversely affect the structure and diversity of microbial communities. The objective of this study was to assess the influence of different soil chemical properties on structure and diversity of microbial communities in soils polluted with different levels of heavy metals. The soil samples were taken at ten sites located in the vicinity of the cities of Legnica and Olkusz, differently polluted with Cu, Zn and Pb. The samples were measured for pH and the contents of organic C (Corg), total N (Nt), total S (St) and total Zn, Cu and Pb. The measured gross microbial properties included microbial biomass (Cmic) and soil respiration (RESP). The structure of soil microbial communities was assessed using phospholipid fatty acid (PLFA) analysis and the structure of soil bacterial communities using pyrosequencing of 16S rRNA genes. To assess diversity of the bacterial communities the Chao1 index was calculated based on the pyrosequencing data. For Cmic and RESP the most important factors were Nt and Corg, respectively. The structure and diversity of soil microbial communities revealed by PLFA profiles and pyrosequencing depended mainly on soil pH. The effect of high heavy metal contents on soil microbial properties was weaker compared with other soil properties. High concentrations of heavy metals negatively affected RESP and the Chao1 diversity index. The heavy metal pollution altered the structure of microbial communities measured with PLFA analysis, but the effect of heavy metal pollution was not observed for the structure of soil bacteria measured by pyrosequencing. The obtained results indicate that the use of soil microbial properties to study heavy metal effects may be difficult due to confounding influences of other environmental factors. In large-scale studies local variability of soil properties may obscure the effect of heavy metals.  相似文献   

12.
Behaviour of heavy metals in soils. 1. Heavy metal mobility 158 soil samples with widely varying composition were analysed for their total, EDTA, DTPA and CaCl2 extractable contents of Cd, Zn, Mn, Cu and Pb. By means of single and multiple regressions the relations between the different heavy metal fractions and the pH, organic carbon and clay content were considered. The correlations between the total, EDTA and DTPA extractable contents are very close, whereas the CaCl2 extractable contents are not or only weakly correlated with these fractions. According to these statistical results the former fractions are considered to be the total quantity (total content) and the reactive quantity (EDTA and DTPA extractable contents) of the heavy metals, whereas the CaCl2 extractable fraction represents the mobile fraction of the heavy metals in soils. The multiple regressions show that the mobile content of heavy metals is closely correlated with each of the quantity fractions and with soil pH. In the same way the proportion of the mobile fraction (in %) of the total, EDTA and DTPA extractable heavy metal content of the soil samples is closely related to the soil pH. Hereby the proportion of the mobile content of the various elements increases in the pH range 6,5 - 3 below element-specific threshold pH values (in brackets) in the order Cd (6,5) > Mn (5,7) > Zn (5,3) > Cu (4,5) > Pb (3,5). In the pH range 6,5 - 7,5 mainly Cu and to a lesser degree also Pb show an increasing mobility due to the influence of soluble organic substances.  相似文献   

13.
《Applied soil ecology》2005,28(2):125-137
Microbial properties such as microbial biomass carbon (MBC), arylsulfatase, β-glucosidase and dehydrogenase activities, and microbial heterotrophic potential, together with several chemical properties such as pH, CaCl2 soluble heavy metal concentrations, total organic carbon and hydrosoluble carbon were measured to evaluate changes in soil quality, after “in situ” remediation of a heavy metal-contaminated soil from the Aznalcóllar mine accident (Southern Spain, 1998). The experiment was carried out using containers, filled with soil from the affected area. Four organic amendments (a municipal waste compost, a biosolid compost, a leonardite and a litter) and an inorganic amendment (sugarbeet lime) were mixed with the top soil at the rate of 100 Mg ha−1. Unamended soil was used as control. Agrostis stolonifera L. was sown in the containers. The soil was sampled twice: one month and six months after amendment application. In general, these amendments improved the soil chemical properties: soil pH, total organic carbon and hydrosoluble carbon increased in the amended soils, while soluble heavy metal concentrations diminished. At the same time, higher MBC, enzyme activities and maximum rate of glucose mineralization values were found in the organically amended soils. Plant cover was also important in restoring the soil chemical and microbial properties in all the soils, but mainly in those that were not amended organically. As a rule, remediation measures improved soil quality in the contaminated soils.  相似文献   

14.
Chemical characteristics and some parameters related to biological components were determined in 16 soils from a fairly homogeneous area in the north of Italy, contaminated with different levels of heavy metals. Correlation analysis of the parameters studied showed close positive relationships among the metals and with the organic C content in the soils studied. Negative relationships were observed among the heavy metals, soil respiration, and the ratio between evolved CO2–C and microbial biomass C per unit time (specific respiratory activity). This was ascribed to an adverse heavy metal effect on the soil microflora, which appeared to increase the accumulation of organic matter as the heavy metal content increased, probably because the biomass was less effective in mineralising soil organic matter under these conditions.  相似文献   

15.
洛川苹果园地土壤重金属污染调查与评价   总被引:6,自引:1,他引:5  
郑国璋  岳乐平 《土壤通报》2008,39(2):402-405
通过对洛川苹果园地土壤样品的采集、监测,依据无公害果园产地土壤环境质量标准和绿色食品产地土壤环境质量标准,重点分析评价了对土壤环境及人体危害较大的Cd、As、Cr、Pb等重金属元素的污染现状。评价结果表明:以无公害果园产地土壤环境质量为评价标准,洛川苹果园地土壤重金属污染程度有As>Cr>Cd>Pb的特征,土壤重金属综合污染指数为0.51,土壤Cd、As、Cr、Pb单项污染指数平均值均小于0.7,土壤环境中的重金属元素含量现状水平符合无公害苹果生产的要求;以绿色食品产地土壤环境质量为评价标准,洛川苹果园地土壤重金属污染程度有As>Pb>Cr>Cd的特征,土壤重金属综合污染指数为0.64,土壤Cd、Cr、Pb单项污染指数平均值均小于0.7,土壤As单项污染指数平均值大于0.7,但小于1。土壤环境中的重金属含量现状水平符合绿色食品苹果生产的要求。但土壤As单项污染指数平均值为0.74,已超过绿色食品产地土壤污染警戒线。洛川苹果园地土壤重金属As污染程度较高,主要是由于人为长期不合理使用含As农药、化肥所致。因而,洛川苹果生产中应将土壤环境中的As作为严控的土壤污染物。  相似文献   

16.

Purpose

Biochar can be used to reduce the bioavailability and leachability of heavy metals, as well as organic pollutants in soils through adsorption and other physicochemical reactions. The objective of the study was to determine the response of microbial communities to biochar amendment and its influence on heavy metal mobility and PCBs (PCB52, 44, 101, 149, 118, 153, 138, 180, 170, and 194) concentration in application of biochar as soil amendment.

Materials and methods

A pot (macrocosm) incubation experiment was carried out with different biochar amendment (0, 3, and 6 % w/w) for 112 days. The CaCl2-extractable concentration of metals, microbial activities, and bacterial community were evaluated during the incubation period.

Results and discussion

The concentrations of 0.01 M CaCl2-extractable metals decreased (p?>?0.05) by 12.7 and 20.5 % for Cu, 5.0 and 15.6 % for Zn, 0.2 and 0.5 % for Pb, and 1.1 and 8.9 % for Cd, in the presence of 3 and 6 % of biochar, respectively, following 1 day of incubation. Meanwhile, the total PCB concentrations decreased from 1.23 mg kg?1 at 1 day to 0.24 mg kg?1 at 112 days after 6 % biochar addition, representing a more than 60 % decrease relative to untreated soil. It was also found out that biochar addition increased the biological activities of catalase, phosphatase, and urease activity as compared with the controls at the same time point. Importantly, the Shannon diversity index of bacteria in control soils was 3.41, whereas it was 3.69 and 3.88 in soils treated with 3 and 6 % biochar soil. In particular, an increase in the number of populations with the putative ability to absorb PCB was noted in the biochar-amended soils.

Conclusions

The application of biochar to contaminated soils decreased the concentrations of heavy metals and PCBs. Application of biochar stimulated Proteobacteria and Bacteroides, which may function to absorb soil PCB and alleviate their toxicity.
  相似文献   

17.
Traditionally, three threshold levels have been accepted for heavy metal concentrations in agricultural soils, depending on soil pH. The aim of this work was to ascertain how the three threshold values proposed for Cd (3, 6.5, and 12.5 mg kg?1) and Zn (300, 650, and 1300 mg kg?1) really affect soil microbial activity. Two soils, a scrubland soil and a forest soil, differing widely in their organic C content, were used in this study. Despite the different soil characteristics, the fractions of Cd and Zn extracted with a solution of diethylenetriaminepentaacetic acid (DTPA) showed little difference between soils. Parameters, such as microbial biomass C (Cmic), soil basal respiration (BR), adenosine triphosphate (ATP) content, dehydrogenase activity (DHA), urease activity (UA), alkaline phosphatase activity (APA), and β-glucosidase (β-GA), were less affected by heavy metals in the forest soil than in the scrubland soil. In general, the simultaneous addition of both metals had a synergistic effect on microbial activity, and this treatment produced a significant decrease of microbial activity of both soils with respect to control. The highest level (L3) of Cd, Zn and Cd + Zn treatments produced significant decrease of microbial and biochemical parameters in both soils.  相似文献   

18.
土壤微生物对土壤重金属污染反应敏感,是探讨矿区土壤重金属污染生态效应的有效指标之一。通过野外调查与采样和室内分析,研究了藏中矿区重金属污染对土壤蔗糖酶、脲酶、脱氢酶和酸性磷酸酶活性、微生物生物量C(MBC)、N(MBN)和P(MBP)、土壤基础呼吸、代谢商(qCO2)及可矿化N的影响。研究表明,矿区土壤重金属Cu、Zn、Pb、Cd全量和有效含量均高于对照土壤;随着矿区土壤重金属含量增加,土壤酶活性、微生物量C、N和P、可矿化N均逐渐降低,土壤基础呼吸和qCO2则逐渐升高;土壤重金属与土壤蔗糖酶活性、脲酶活性、脱氢酶活性、酸性磷酸酶活性、MBC、MBN、土壤基础呼吸、qCO2及可矿化N具有显著的线性相关;脱氢酶活性对土壤重金属污染最为敏感,表明脱氢酶活性可作为藏中矿区土壤环境质量变化的有效指标。  相似文献   

19.
Microbial biomass measured by fluorescence microscopy and its relation to total organic carbon and dehydrogenase activity in selected soil samples Techniques for direct observation of microbial biomass with epifluorescence microscopy, which have proved reliable in aquatic microbiology, were applied for investigation of soils. The procedure for measurement of microbial biomass consisted of ultrasound treatment, filtration with nuclepore-filters, registration of cell-size classes and separate counting of small bacteria. Microbial biomass of an arable Ap (Slu = silty loamy sand) was nearly twice as high with ultrasonication as with untreated samples. In 16 root-free samples removed from different mineral soils, bacterial biomass ranged from 0,22 to 7,50 mg C/g soil, surpassing fungal biomass in general by the factor 2 to 35. Up to 98% of the total organic carbon (Corg) in soil was present in microbial biomass. In uncultivated topsoils dehydrogenase activity was highly correlated with Corg and microbial biomass (n = 7, rmult. = 0,972, α = 0,001).  相似文献   

20.
Very few studies have been related to soluble organic nitrogen (SON) in forest soils. However, this nitrogen pool could be a sensitive indicator to evaluate the soil nitrogen status. The current study was conducted in temperate forests of Thuringia, Germany, where soils had SON (extracted in 0.5 M K2SO4) varying from 0.3 to 2.2% of total N, which was about one-third of the soil microbial biomass N by CFE. SON in study soils were positively correlated to microbial biomass N and soil total N. Multiple regression analysis also showed that mineral N negatively affected SON pool. The dynamics of the SON was significantly affected by mineralization and immobilization. During the 2 months of aerobic incubation, the SON were significantly correlated with net N mineralization and microbial biomass N. SON extracted by two different salt solution (i.e. 1 M KCl and 0.5 M K2SO4) were highly correlated. In mineral soil, SON concentrations extracted by 1 M KCl and 0.5 M K2SO4 solutions were similar. In contrast, in organic soil layer the amount of KCl-extractable SON was about 1.2-1.4 times higher than the K2SO4-extractable SON. Further studies such as the differences of organic N form and pool size between SON and dissolved organic N (DON) are recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号