首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Five ruminally cannulated Holstein steers (176 kg) were used in a 5 x 5 Latin square to evaluate the effects of branched-chain AA supplementation on N retention and plasma AA concentrations of steers. Steers were limit-fed (3.0 kg/d of DM) twice daily diets low in ruminally undegradable protein (72% soybean hulls, 19% alfalfa, 5% molasses, and 4% vitamins and minerals). Acetate (400 g/d) was continuously infused into the rumen. Treatments were continuous abomasal infusions of 1) 115 g/d of a mixture of 10 essential AA designed to exceed the steers' requirements (10AA), 2) 10AA with Leu removed, 3) 10AA with Ile removed, 4) 10AA with Val removed, and 5) 10AA with all three branched-chain AA removed. Experimental periods were 7 d, with 3 d for adaptation to treatments and 4 d for total fecal and urinary collections for N balance. Blood samples were collected 5 h after feeding on d 7. Retained N decreased in response to removal of Leu (P < 0.06), Val (P < 0.05), or all three branched-chain AA (P < 0.05). Plasma Leu concentrations decreased (P < 0.05) in response to removal of Leu and all three branched-chain AA. Plasma Ile concentrations decreased (P < 0.05) in response to removal of Ile and all three branched-chain AA but increased (P < 0.05) in response to removal of Leu. Plasma Val concentrations decreased (P < 0.05) in response to removal of Val and all three branched-chain AA but increased (P < 0.05) in response to removal of Leu. Responses in N balance and plasma AA concentrations of growing cattle limit-fed soybean hull-based diets demonstrate limitations in the basal supply of Leu and Val but not Ile provided that supplies of all other essential AA are met.  相似文献   

2.
In 2 experiments, 6 ruminally cannulated Holstein steers (205 +/- 23 and 161 +/- 14 kg initial BW in Exp. 1 and 2, respectively) housed in metabolism crates were used in 6 x 6 Latin squares to study the effects of excess AA supply on Met (Exp. 1) and Leu (Exp. 2) use. All steers received a diet based on soybean hulls (DMI = 2.66 and 2.45 kg/d in Exp. 1 and 2, respectively); ruminal infusions of 200 g of acetate/d, 200 g of propionate/d, and 50 g of butyrate/d, as well as abomasal infusion of 300 g of glucose/d to provide energy without increasing the microbial protein supply; and abomasal infusions of a mixture of all essential AA except Met (Exp. 1) or Leu (Exp. 2). Periods were 6 d, with 2-d adaptations and 4 d to collect N balance data. All treatments were abomasally infused. In Exp. 1, treatments were arranged as a 2 x 3 factorial, with 2 amounts of l-Met (0 or 4 g/d) and 3 AA supplements (no additional AA, control; 100 g/d of nonessential AA + 100 g/d of essential AA, NEAA + EAA; and 200 g/d of essential AA, EAA). Supplemental Met increased (P < 0.01) retained N and decreased (P < 0.01) urinary N and urinary urea N. Retained N increased (P < 0.01) with NEAA + EAA only when 4 g/d of Met was provided, but it increased (P < 0.01) with EAA with or without supplemental Met. Both AA treatments increased (P < 0.01) plasma urea and serum insulin. Plasma glucose decreased (P = 0.03) with supplemental Met. In Exp. 2, treatments were arranged as a 2 x 3 factorial with 2 amounts of L-Leu (0 or 4 g/d) and 3 AA supplements (control, NEAA + EAA, and EAA). Supplemental Leu increased (P < 0.01) retained N and decreased (P < 0.01) urinary N and urinary urea N. Both AA treatments increased (P < 0.01) retained N, and they also increased (P < 0.01) urinary N, urinary urea N, and plasma urea. Serum insulin increased (P = 0.06) with supplemental Leu and tended (P = 0.10) to increase with both AA treatments. Supplementation with excess AA improved Met and Leu use for protein deposition by growing cattle.  相似文献   

3.
Studies were conducted to determine limiting amino acids (AA) for cattle limit-fed soybean hull-based diets. Ruminally cannulated Holstein steers were maintained in metabolism crates, fed the same basal diet (73% soyhulls, 19% alfalfa, DM basis), and given the same intraruminal infusions (400 g/d acetate; to supply energy without increasing microbial protein supply). Treatments were infused abomasally. In Exp. 1, steers (200 kg) were provided 1) water, 2) 10 g/d of methionine (MET), or 3) a mixture of 10 essential AA (10AA). Nitrogen retention (13.7 g/d) was greatest (P < .05) for steers receiving 10AA. Steers receiving MET (7.9 g/d) had greater (P < .05) N retention than control steers (5.4 g/d). In Exp. 2, steers (200 kg) were provided 10AA or 10AA with L-Lys deleted from the mixture. Steers receiving 10AA tended (P < .09) to have greater N retention (19.0 g/d) than those receiving no lysine (16.3 g/d). In Exp. 3, steers (194 kg) were provided 10AA or 10AA with L-Thr deleted from the mixture. Nitrogen retention was not affected by removal of threonine. In Exp. 4, steers (152 kg) were provided 10AA or 10AA with L-His, L-Trp, L-Arg, L-Phe, or branched-chain AA (L-Leu, L-Ile, and L-Val) removed. Nitrogen retention was reduced (P < .05) by removal of either L-His or the branched-chain AA. For steers limit-fed soybean hull-based diets, methionine was first-limiting; histidine, at least one of the branched-chain AA, and possibly lysine were also limiting.  相似文献   

4.
Three experiments were conducted to determine the Val and Ile requirements in low-CP, corn-soybean meal (C-SBM) AA-supplemented diets for 20- to 45-kg pigs. All experiments were conducted for 26 to 27 d with purebred or crossbred barrows and gilts, which were blocked by initial BW. Treatments were replicated with 5 or 6 pens of 3 or 4 pigs per pen. At the beginning of Exp. 1 and the end of all experiments, blood samples were obtained from all pigs to determine plasma urea N (PUN) concentrations. All diets were C-SBM with 0.335% supplemental Lys to achieve 0.83% standardized ileal digestible (SID) Lys, which is the Lys requirement of these pigs. In Exp. 1, 0, 0.02, 0.04, 0.06, 0.08, or 0.10% L-Val was supplemented to achieve 0.51, 0.53, 0.55, 0.57, 0.59, or 0.61% dietary SID Val, and Thr, Trp, Met, and Ile were supplemented to maintain Thr:Lys, Trp:Lys, TSAA:Lys, and Ile:Lys ratios of 0.71, 0.20, 0.62, and 0.60, respectively. Also, supplemental Gly and Glu were added to all diets to achieve 1.66% Gly + Ser and 3.28% Glu, which is equal to the Gly + Ser and Glu content of a previously validated positive control diet that contained no supplemental AA. Treatment differences were considered significant at P < 0.10. Valine addition increased ADG, ADFI, and G:F in pigs fed 0.51 to 0.59% SID Val (linear, P < 0.08), but ADG and ADFI were decreased at 0.61% SID Val (quadratic, P ≤ 0.10). On the basis of ADG and G:F, the SID Val requirement is between 0.56 and 0.58% in a C-SBM diet supplemented with AA. In Exp. 2 and 3, 0, 0.02, 0.04, 0.06, or 0.08% L-Ile was supplemented to achieve 0.43, 0.45, 0.47, 0.49, or 0.51% dietary SID Ile, and Thr, Trp, Met, and Ile were supplemented to maintain Thr:Lys, Trp:Lys, TSAA:Lys, and Val:Lys ratios of 0.71, 0.20, 0.62, and 0.74, respectively. Also, supplemental Gly and Glu were added to achieve 1.66% Gly + Ser and 3.28% Glu as in Exp. 1. Data from Exp. 2 and 3 were combined and analyzed as 1 data set. Daily BW gain, ADFI, and G:F were not affected by Ile additions to the diet; however, ADFI was decreased among pigs fed the diet with 0.45% SID Ile (P < 0.10) compared with pigs fed the 0.43% SID Ile diet. Broken-line analysis requirements could not be estimated for the combined data from Exp. 2 or 3. The results of this research indicate that the SID Val requirement is between 0.56 to 0.58% (0.67 to 0.70 SID Val:Lys), and the Ile requirement is adequate at 0.43% SID Ile (0.52 SID Ile:Lys) for 20- to 45-kg pigs.  相似文献   

5.
Four experiments were conducted to determine the Lys requirement, the maximum amount of supplemental Lys that does not decrease growth performance, and to determine the order of limiting AA beyond Lys, Thr, Trp, and Met in a corn-soybean meal diet for 20- to 45-kg pigs. All experiments were conducted for 27 to 28 d with purebred or crossbred barrows and gilts, which were blocked by initial BW. Treatments were replicated with 4 to 6 pens of 4 to 6 pigs per pen. In all experiments, pigs and feeders were weighed on d 0, 14, and 27 or 28. At the beginning and end of all experiments, blood samples were obtained from all pigs to determine plasma urea N (PUN) concentrations. In Exp. 1, 0.830, 0.872, 0.913, and 0.955% standardized ileal digestible (SID) Lys was fed, whereas 0.747, 0.788, 0.830, 0.872, and 0.913% SID Lys was fed in Exp. 2. Broken-line analysis requirement estimates could not be estimated from any response variable in Exp. 1, but in Exp. 2, using ADG and PUN, the estimated SID Lys requirement was 0.83%. In Exp. 3, 0, 0.118, 0.191, 0.264, and 0.335% supplemental Lys was added to achieve 0.83% SID Lys in all diets, and Thr, Trp, and Met were supplemented to maintain Thr:Lys, Trp:Lys, and TSAA:Lys of 0.65, 0.18, and 0.60, respectively. Based on ADG, ADFI, and G:F, up to 0.23% supplemental Lys can be added along with supplemental Thr, Trp, and Met without negatively affecting growth performance; PUN was linearly decreased (P < 0.001) by supplemental Lys. In Exp. 4, treatments were 1) positive control (PC) without supplemental AA, 2) negative control (NC) with 0.335% supplemental Lys + 0.140% l-Thr + 0.035% l-Trp + 0.117% dl-Met, 3) NC + 0.044% l-Val, 4) NC + 0.021% l-Ile, and 5) NC + 0.044% l-Val + 0.021% l-Ile. Individual addition of Val and Ile did not improve (P > 0.10) ADG or G:F compared with the NC. The combined addition of Val + Ile resulted in ADG that was intermediate between the PC and NC diets but not different from either diet (P > 0.10); G:F was not improved (P > 0.10) to that observed in pigs fed the PC diet. The PUN was not different (P > 0.10) among pigs fed diets with supplemental AA but less (P < 0.10) than pigs fed the PC. The results of this research indicate that the Lys requirement for 20- to 45-kg pigs is 0.83% SID Lys, up to 0.23% supplemental Lys (0.29% l-Lys·HCl or 0.45% l-Lys·SO(4)) can be added along with supplemental Thr, Trp, and Met without negatively affecting growth performance, and another AA besides Val and Ile may be limiting growth performance in a corn-soybean meal diet with 0.335% supplemental Lys.  相似文献   

6.
Two experiments were conducted with ruminally cannulated Holstein steers to determine effects of N supply on histidine (His) utilization. All steers received 2.5 kg DM/d of a diet based on soybean hulls; abomasal infusion of 250 g/d amino acids, which supplied adequate amounts of all essential amino acids except His; abomasal infusion of 300 g/d glucose; and ruminal infusion of 180 g/d acetate, 180 g/d propionate, and 45 g/d butyrate. Both experiments were 6 x 6 Latin squares with treatments arranged as 3 x 2 factorials. No significant (P < 0.05) interactions between main effects were noted for N balance criteria in either Exp. 1 or 2. For Exp. 1, steers (146 +/- 7 kg) received 0, 1.5, or 3 g/d of L-His infused abomasally in combination with 0 or 80 g/d urea infused ruminally to supply a metabolic ammonia load. Urea infusions increased (P < 0.05) ruminal ammonia concentration from 8.6 to 19.7 mM and plasma urea from 2.7 to 5.1 mM. No change in N retention occurred in response to urea (35.1 and 37.1 g/d for 0 and 80 g/d urea, respectively, P = 0.16). Retained N increased linearly (P < 0.01) with His (31.5, 37.8, and 39.0 g/d for 0, 1.5, and 3 g/d L-His, respectively). Efficiency of deposition of supplemental His between 0 and 1.5 g/d averaged 65%. In Exp. 2, steers (150 +/- 6 kg) were infused abomasally with 0 or 1 g/d of L-His in combination with no additional amino acids (Control), 100 g/d of essential + 100 g/d of nonessential amino acids (NEAA+EAA), or 200 g/d of essential amino acids (EAA). Retained N increased (P = 0.02) from 34.2 to 38.3 g/d in response to His supplementation. Supplementation with NEAA+EAA increased (P < 0.05) N retention (33.9, 39.3, and 35.6 g/d for Control, NEAA+EAA, and EAA, respectively), likely in response to increased energy supply. Plasma urea concentrations of steers receiving NEAA+EAA (3.8 mM) and EAA (3.8 mM) were greater (P < 0.05) than those of Control steers (2.7 mM). The average efficiency of His utilization was 63%, a value similar to the value of 65% observed in Exp. 1, as well as the 71% value predicted by the Cornell net carbohydrate and protein system model. Under our experimental conditions, increases in N supply above requirements, as either ammonia or amino acids, did not demonstrate a metabolic cost in terms of His utilization for whole-body protein deposition by growing steers.  相似文献   

7.
Two completely randomized design experiments were conducted, using either 10, 38-kg (Exp. 1) or 10, 26-kg (Exp. 2) Hampshire x Western wether lambs, to study the effects of alpha-ketoglutarate (AKG) administration on N metabolism. Lambs were fed 890 and 885 g DM/d in Exp. 1 and 2, respectively, of corn-cottonseed hull basal diets with urea added to attain CP levels of 10.6 and 10.5% in Exp. 1 and 2, respectively. Experiments consisted of 10 d of adaptation followed by 7 d of infusion and excreta collection. Lambs were infused continuously either i.v. (Exp. 1) or abomasally (Exp. 2) with control solutions (CON) or solutions containing 41.3 g AKG/d (AKG). In Exp. 1, fecal and urinary N excretion and N retention were not affected (P greater than .10) by treatment. Compared to CON in Exp. 2, AKG infusion increased (P less than .10) fecal N output (6.6 vs 5.9 g N/d) but did not affect (P greater than .10) the amount of N retained (4.4 vs 3.5 g N/d). Compared to CON, AKG increased (P less than .10) urinary NH3 N excretion in Exp. 1. Serum urea N was lower (P greater than .10) for AKG than for CON in Exp. 1 but was not affected (P greater than .10) by treatment in Exp. 2. In Exp. 1, AKG appeared to reduce activities of several serum enzymes that function in amino N metabolism. In Exp. 1, compared to CON, AKG decreased (P less than .10) aspartate but increased (P less than .10) asparagine in serum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The purpose of this investigation was to compare the growth performance of grower pigs fed low-CP, corn-soybean meal (C-SBM) AA-supplemented diets with that of pigs fed a positive control (PC) C-SBM diet with no supplemental Lys. Five experiments were conducted with Yorkshire crossbred pigs, blocked by BW (average initial and final BW were 21 and 41 kg, respectively) and assigned within block to treatment. Each treatment was replicated 4 to 6 times with 4 or 5 pigs per replicate pen. Each experiment lasted 28 d and plasma urea N was determined at the start and end of each experiment. All diets were formulated to contain 0.83% standardized ileal digestible Lys. All the experiments contained PC and negative control (NC) diets. The PC diet contained 18% CP and was supplemented with only DL-Met. The NC diet contained 13% CP and was supplemented with L-Lys, DL-Met, L-Thr, and L-Trp. The NC + Ile + Val diet was supplemented with 0.10% Val + 0.06% Ile. The NC + Ile + Val diet was supplemented with either His (Exp. 1), Cys (Exp. 2), Gly (Exp. 2, 3, and 4), Glu (Exp. 3), Arg (Exp. 4), or combinations of Gly + Arg (Exp. 4 and 5) or Gly + Glu (Exp. 5). Treatment differences were considered significant at P < 0.10. In 3 of the 4 experiments that had PC and NC diets, pigs fed the NC diet had decreased ADG and G:F compared with pigs fed the PC diet. The supplementation of Ile + Val to the NC diet restored ADG in 4 out of 5 experiments. However, G:F was less than in pigs fed the PC diet in 1 experiment and was intermediate between the NC and PC diets in 3 experiments. Pigs fed supplemental Ile + Val + His had decreased G:F compared with pigs fed the PC. Pigs fed supplemental Cys to achieve 50:50 Met:Cys had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.224% supplemental Gly had similar ADG, greater ADFI, and decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.52% supplemental Gly had ADG and G:F similar to that of pigs fed the PC. Pigs fed supplemental Glu had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.48% supplemental Arg had decreased G:F compared with pigs fed the PC. Pigs fed the diet supplemented with Gly + Arg had ADG and G:F similar to pigs fed the PC. Pigs fed the low-CP diets had reduced plasma urea N compared with pigs fed PC. The results of these experiments indicate that supplementing Gly or Gly + Arg to a low-CP C-SBM diet with 0.34% Lys, Met, Thr, Trp, Ile, and Val restores growth performance to be similar to that of pigs fed a PC diet with no Lys supplementation.  相似文献   

9.
The effects of Ile and Val supplementation of a low-CP, corn-wheat-soybean meal-based piglet diet on growth performance, incidence of diarrhea, and N balance were studied using 60 Landrace x Duroc male piglets in a 4-wk experiment. The 60 individually caged piglets were divided into 5 dietary treatments, each consisting of 12 piglets. Diet 1 was a positive control diet (20% CP); diet 2 was a low-CP negative control diet (17% CP); diets 3, 4, and 5 were low-CP diets to which Ile, Val, or the combination of Ile and Val were added, respectively. All diets were supplemented with Lys, Met, Thr, and Trp to provide the required concentrations of these AA according to the 1998 NRC. Average daily gain and ADFI were similar among pigs fed the positive control, Val-added, and the Val plus Ile-added diets. On wk-2 and wk-4, fecal score was greater (softer feces) in piglets fed the 20% CP level compared with the remaining treatments (P < 0.01). Nitrogen intake was decreased (P < 0.0001) in pigs fed diets containing low levels of CP compared with pigs fed the 20% CP diet. Fecal N excretion (g/d) was decreased (P < 0.05) in piglets fed low-CP diets at wk 1 and wk 4 of feeding, and in urine at wk 4 of feeding. Crude protein levels or AA supplementation had no effect on N retention efficiencies. These results indicate that the supplementation of Val alone, or in combination with Ile, to a low-CP piglet diet with adequate levels of Lys, Met, Thr, and Trp is necessary to achieve maximum performance in pigs consuming corn-wheat-soybean meal-based diets.  相似文献   

10.
Different dietary nitrogen (N) patterns may have different effects on gut microbiota. To investigate the effects of different crude protein (CP) levels or essential amino acids (EAA) supplementation patterns on the structure and functions of colonic microbiota, 42 barrows (25 ± 0.39 kg) were randomly assigned to 7 dietary treatments including: diet 1, a high CP diet with balanced 10 EAA; diet 2, a medium CP diet with approximately 2% decreased CP level from diet 1 and balanced 10 EAA; diets 3, 4, 5, 6 and 7, low CP diets with 4% decreased CP level from diet 1. Specifically, diet 3 was only balanced for Lys, Met, Thr and Trp; diets 4, 5 and 6 were further supplemented with Ile, Val and Ile + Val on the basis of diet 3, respectively; and diet 7 was balanced for 10 EAA. Results over a 110-d trial showed that reducing the CP level by 2% or 4% dramatically decreased N intake and excretion (P < 0.05) in the presence of balanced 10 EAA, which was not observed when altering the EAA supplementation patterns in low CP diet (−4%). With balanced 10 EAA, 2% reduction in dietary CP significantly reduced Firmicutes-to-Bacteroidetes (F:B) ratio and significantly elevated the abundance of Prevotellaceae NK3B31 (P < 0.05); whereas 4% reduction evidently increased the abundances of Proteobacteria, Succinivibrio and Lachnospiraceae XPB1014 (P < 0.05). Among the 5 low CP diets (−4%), supplementation with Ile, or Val + Ile, or balanced 10 EAA increased F:B ratio and the abundance of Proteobacteria. In addition, the predicted functions revealed that different CP levels and EAA balanced patterns dramatically altered the mRNA expression profiles of N-metabolizing genes, the “N and energy metabolism” pathways or the metabolism of some small substances, such as amino acids (AA) and vitamins. Our findings suggested that reducing the dietary CP levels by 2% to 4% with balancing 10 EAA, or only further supplementation with Ile or Val + Ile to a low protein diet (−4%) reduced the N contents entering the hindgut to various degrees, altered the abundances of N-metabolizing bacteria, and improved the abilities of N utilization.  相似文献   

11.
The three-step technique was used to determine the requirements of total amino acids (TAA) and the first-limiting amino acid (AA) in growing double-muscled Belgian Blue bulls (BBb). In Exp. 1, three double-muscled BBb weighing initially 306 +/- 28 kg received a basal diet consisting of 30% meadow hay and 70% concentrate that was poor in digestible protein but had adequate NE because of continuous infusion of dextrose into the duodenum. The intestinal apparent digestibility of essential AA (EAA) was defined according to their duodenal and ileal flows. It averaged 72% but varied between 60% for Met and 79% for Arg. In Exp. 2, five double-muscled BBb (334 +/- 22 kg) received the same diet supplemented with duodenal infusions of dextrose and four doses of Na-caseinate (28, 56, 84, and 112% of intestinal digestible dietary AA) in a 4 x 4 Latin square design with one additional animal. Nitrogen retention for the basal diet alone and the four increasing supplements of Na-caseinate reached 49, 61, 70, 80, and 86 g/d, respectively. Nitrogen utilization improved from 34.3% without Na-caseinate supplementation to a maximum of 40.6%, with the third dose supplying 788 g/d of apparently digestible AA. Based on patterns of plasma concentrations, Met, Phe, and Arg were probably the limiting AA when animals optimized N utilization. In Exp. 3, six double-muscled BBb (315 +/- 25 kg) fed the basal diet received duodenal infusions of dextrose and AA, equivalent to the third dose in Exp. 2, except for digestible Met (9.3, 14.4, 18.4, 22.4, 26.4, and 30.4 g/d) in a 6 x 6 Latin square design. The Met requirement was close to 26.4 g/d on the basis of N retention.  相似文献   

12.
Sixteen wether lambs (25 kg) were fitted with abomasal infusion cannulas and used to study N and endocrine responses to abomasal infusions of arginine (ARG) or ornithine (ORN). Lambs were randomly allotted to four treatment groups and abomasally infused with solutions of water (CON), ARG, ORN or UREA. The ARG solution provided .50 g ARG.HCl/kg BW and was equimolar with ORN.HCl (.40 g/kg). UREA (.28 g/kg) was isonitrogenous with ARG and served as a positive N control. Lambs were housed in metabolism crates for excreta collection and received 729 g DM/d of a 13.7% CP diet in equal portions four times daily. Following a 7-d dietary adjustment period, lambs were infused continuously (2 liters/d) with water for a 5-d preliminary collection period (Period 1), which immediately preceded a 7-d infusion and collection period (Period 2). Sequential blood samples were taken at 15-min intervals for 8 h between 1200 and 2000 on d 4 of both periods. Single samples were obtained at 1500 on remaining days. Nonrepeated measurements were analyzed as a completely randomized design, whereas repeated measurements were analyzed as a split-plot over time. Period 2 measurements were adjusted using covariance techniques if differences among treatment groups were observed for Period 1. Contrasts used in determining treatment effects were: CON vs UREA, CON vs ARG + ORN, and ARG vs ORN. Nitrogen retention was similar for all treatment, suggesting that dietary N was not limiting. Arginine and ORN increased serum ornithine (P less than .05), blood urea N (BUN; P less than .10) and urinary urea N excretion (P less than .01), whereas ARG increased (P less than .05) serum arginine and UREA increased (P less than .01) BUN and urinary urea N. Serum insulin and glucose were not affected by treatment. Compared with CON, ARG and ORN increased (P less than .05) mean somatotropin (STH) concentration (13.8 vs 16.9 and 18.4 ng/ml) and amplitude of STH pulses (9.8 vs 15.1 and 17.8 ng/ml), whereas CON and UREA were similar. Abomasal infusions of ARG and ORN were equally efficacious in stimulating ovine STH secretion when dietary N intake was not limiting.  相似文献   

13.
We evaluated the effects of different supplemental energy sources on Met use in growing steers. Ruminally cannulated Holstein steers were used in two 6 x 6 Latin squares, and data were pooled for analyses. In Exp. 1, steers (148 kg) were fed 2.3 kg of DM/d of a diet based on soybean hulls. Treatments (2 x 3 factorial) were abomasal infusion of 0 or 3 g of l-Met/d, and supplementation with no energy or with glucose (360 g/d) or fat (150 g/d) continuously infused into the abomasum. In Exp. 2, steers (190 kg) received 2.6 kg of dietary DM/d and were provided (2 x 3 factorial) with 0 or 3 g of l-Met/d, and with no supplemental energy or with acetate (385 g/d) or propionate (270 g/ d) continuously infused into the rumen. In both experiments, the energy sources supplied 1.3 Mcal of GE/d, and all steers received basal infusions of 400 g of acetate/d into the rumen and a mixture (125 g/d) of all essential AA except Met into the abomasum. Nitrogen balance (18.8 vs. 23.5 g/d; P < 0.01) and whole-body protein synthesis (2.1 vs. 2.3 kg/d; P < 0.07) were increased by Met supplementation, indicating that protein deposition was limited by Met. Supplemental energy reduced (P < 0.01) urinary N excretion and increased (P < 0.01) N retention without differences among energy sources. Increases in N retention in response to Met were numerically greater when energy was supplemented. Efficiency of supplemental Met use was 11% when no energy was supplemented but averaged 21% when 1.3 Mcal of GE/d was provided. Whole-body protein synthesis and degradation were not affected by energy supplementation. Serum insulin concentrations were increased by glucose and propionate supplementation. Serum IGF-I concentrations were increased by supplementation with Met or glucogenic sources of energy. In growing steers, N retention was increased by energy supplementation even though protein deposition was limited by Met, suggesting that energy supplementation improves the efficiency of AA use. These responses were independent of the source of energy.  相似文献   

14.
Methionine as a methyl group donor in growing cattle   总被引:2,自引:0,他引:2  
Holstein steers were used in two 5 x 5 Latin square experiments to evaluate the sparing of methionine by alternative sources of methyl groups (betaine and choline). Steers were housed in metabolism crates and limit-fed a soybean hull-based diet high in rumen degradable protein. To increase energy supply, ruminal infusions of volatile fatty acids and abomasal infusions of glucose were provided. An amino acid mixture, limiting in methionine, was infused abomasally to ensure that nonsulfur amino acids did not limit protein synthesis. Treatments for Exp. 1 were abomasal infusion of 1) water, 2) 2 g/d L-methionine, 3) 1.7 g/d L-cysteine, 4) 1.6 g/d betaine, and 5) 1.7 g/d L-cysteine + 1.6 g/d betaine. Treatments for Exp. 2 were abomasal infusion of 1) water, 2) 2 g/d L-methionine, 3) 8 g/d betaine, 4) 16 g/d betaine, and 5) 8 g/d choline. In both experiments, nitrogen retention increased in response to methionine (P < 0.05), demonstrating a deficiency of sulfur amino acids. Responses to cysteine, betaine, and choline were all small and not significant. The lack of response to cysteine indicates that the response to methionine was not due to transsulfuration to cysteine or that cysteine supply did not alter the flux of methionine through transsulfuration. The lack of response to betaine suggests that the steers' needs for methyl groups were met by the dietary conditions or that betaine was relatively inefficient in increasing the remethylation of homocysteine to methionine and, thereby, reducing the synthesis of cysteine from homocysteine. Under our experimental conditions, responses to methionine were likely due to a correction of a deficiency of methionine per se rather than of methyl group donors.  相似文献   

15.
The effects of energy supplementation on Leu utilization in growing steers were evaluated in 2 experiments by using 6 ruminally cannulated Holstein steers. In Exp. 1, steers (initial BW = 150 +/- 7 kg) were limit-fed (2.3 kg of DM/d) a diet based on soybean hulls and received a basal ruminal infusion of 100 g of acetate/d, 75 g of propionate/d, and 75 g of butyrate/d, as well as abomasal infusions of 200 g of glucose/d and a mixture (215 g/d) containing all essential AA except Leu. Treatments were arranged as a 3 x 2 factorial, with 3 amounts of Leu infused abomasally (0, 4, and 8 g/d) and supplementation of diets with 2 amounts of energy (0 and 1.9 Mcal/d of GE). Supplemental energy was supplied by ruminal infusion of 100 g of acetate/ d, 75 g of propionate/d, and 75 g of butyrate/d, as well as abomasal infusion of 200 g of glucose/d to provide energy to the animal without affecting the microbial protein supply. When no supplemental energy was provided, Leu supplementation increased N balance, with no difference between 4 and 8 g/d of Leu (24.5, 27.0, and 27.3 g/d for 0, 4, and 8 g/d of Leu), but when additional energy was supplied, N retention increased linearly in response to Leu (25.6, 28.5, and 31.6 g/d for 0, 4, and 8 g/d of Leu; Leu x energy interaction, P = 0.06). The changes in N balance were the result of changes in urinary N excretion. The greater Leu retentions in response to energy supplementation when Leu was the most limiting nutrient indicate that energy supplementation improved the true efficiency of Leu utilization. In addition, supplemental energy increased the gross efficiency of Leu utilization when the Leu supply was not limiting by increasing the maximal rates of protein deposition. Experiment 2 was similar to Exp. 1, but steers had an initial BW of 275 +/- 12 kg and were limit-fed at 3.6 kg of DM/d. Retention of N was not affected (P = 0.22) by Leu supplementation, indicating that Leu did not limit protein deposition. Energy supply increased N retention (P < 0.01) independently of Leu supplementation (33.0 vs. 27.8 g/d). Overall, energy supplementation improved Leu utilization by modestly increasing N retention when Leu was limiting and by increasing the ability of steers to respond to the greatest amount of supplemental Leu. We conclude from these results that the assumption of a constant efficiency of AA utilization is unlikely to be appropriate for growing steers.  相似文献   

16.
Two experiments were conducted to determine the influence of supplemental nonprotein N (NPN) provided daily (D) or every other day (2D) on ruminant performance and N efficiency. Treatments included an unsupplemented control (CON) and a urea (28.7% CP) or biuret (28.6% CP) supplement provided D or 2D at 0700. In Exp. 1, five wethers (39 +/- 1 kg BW) were used in an incomplete 5 x 4 Latin square with four 24-d periods to determine the influence of supplemental NPN source and supplementation frequency (SF) on the efficiency of N use in lambs consuming low-quality grass straw (4% CP). The amount of CP supplied by each supplement was approximately 0.10% of BW/d (averaged over a 2-d period). In Exp. 2, 80 Angus x Hereford cows (540 +/- 8 kg BW) in the last third of gestation were used to determine the effect of NPN source and SF on cow performance. The NPN treatments were formulated to provide 90% of the estimated degradable intake protein requirement. The supplemented treatments received the same amount of supplemental N over a 2-d period; therefore, the 2D treatments received double the quantity of supplemental N on their respective supplementation day than the D treatments. In Exp. 1, total DM, OM, and N intake; DM, OM, and N digestibility; N balance; and digested N retained were greater (P < 0.03) for supplemented than for CON wethers, with no difference (P > 0.05) between NPN sources or SF. Plasma urea-N (PUN) was increased with N supplementation compared with CON (P < 0.01), and urea treatments had greater PUN than biuret (P < 0.01). In addition, PUN was greater (P = 0.02) for D than for 2D treatments. In Exp. 2, pre- and postcalving (within 14 d and 24 h after calving, respectively) cow weight and body condition score change were more positive (P < 0.05) for supplemented groups than for CON. These results suggest that supplements containing urea or biuret as the primary source of supplemental N can be effectively used by lambs and cows consuming low-quality forage, even when provided every other day.  相似文献   

17.
试验旨在探究实际饲养条件下由十二指肠瘘管灌注不同必需氨基酸溶液对哈萨克羊羔羊氮平衡及血浆尿素氮(plasma urea nitrogen,PUN)的影响。选取5只体况良好、4月龄、体重为(29.40±1.76) kg的哈萨克羊公羔羊,安装永久性十二指肠近端瘘管,代谢笼内单笼饲养。采用5×5拉丁方设计,即不含氨基酸组(对照组)、包含8种必需氨基酸的全灌注组(8EAA)、剔除赖氨酸组(-Lys)、剔除精氨酸组(-Arg)及剔除蛋氨酸组(-Met),处理组采用随机过程进行分配,每期7 d。结果显示,与对照组相比,8EAA组粪氮排出量差异不显著(P>0.05),而尿氮、氮表观消化率、氮沉积和PUN浓度都显著升高(P<0.05)。与8EAA相比,-Arg、-Met、-Lys组氮沉积均显著降低(P<0.05),分别降低30.62%、11.56%、12.99%,日增重分别下降13.89%、7.78%、6.58%,但差异不显著(P>0.05),PUN浓度也有升高的趋势。结果表明,实际育肥条件下Arg、Met、Lys对哈萨克育肥羔羊有限制性作用。  相似文献   

18.
The effects of increasing dietary CP level on N retention (Exp. 1) and intestinal supply of amino acids (AA; Exp. 2) were studied in lambs fed diets based on alkaline hydrogen peroxide-treated wheat straw (AHPWS). Soybean meal (SBM) was substituted for corn to increase CP level in both experiments. In Exp. 1, an incomplete design for the two-way elimination of error was used to allot 24 ram lambs (mean BW = 25 kg) within breed to six CP levels (6, 8, 10, 12, 14, and 16% of DM). Neutral detergent fiber digestibility and N retention increased quadratically (P = .06 and P less than .01, respectively) with increasing CP level. Nitrogen retention, expressed as a percentage of N intake, was greatest for lambs fed 12% CP (20.7%) but was greatest for lambs fed 14% CP when expressed as grams per day (4.0 g/d). In Exp. 2, five multicannulated St. Croix lambs (34 kg) were used in a 5 x 5 Latin square design. Treatments were 8.5, 11, 13.5, 16, and 18.5% dietary CP. Chromic oxide was used as a digesta flow marker and purines were used as a bacterial marker. Protein level had no effect on extent of dietary CP degradation in the rumen (69 +/- 3.2%). True ruminal OM digestibility increased (P less than .01) linearly and ruminal fluid NH3 N concentration increased (P less than .01) quadratically with increasing CP level. Total, bacterial, and nonbacterial N and AA flows to the duodenum increased (P less than .05) linearly with increasing CP level. Duodenal AA profile (g/100 g total AA) was altered slightly. The essential AA valine, isoleucine, phenylalanine, lysine, and arginine increased (P less than .05) and methionine decreased (P less than .05) in proportion to other AA with increasing CP level. Flows of all essential AA increased with increasing CP level. Apparent small intestinal N and AA disappearance increased linearly (P less than .05) and apparent total tract N digestibility increased (P less than .01) quadratically with increasing CP level. These data are interpreted to indicate that maximal N retention and fiber digestibility in diets based on AHPWS are obtained at 12% CP, even though the intestinal supply of AA continues to increase with increasing CP level. Supplementation of diets based on AHPWS with an extensively degraded protein source (SBM) does not substantially alter the profile of AA entering the duodenum compared to the AA profile of bacterial protein.  相似文献   

19.
This study was aimed to explore the effects of duodenal infusions of essential amino acid (EAA) on nitrogen balance and plasma urea nitrogen (PUN) of growing-finishing lambs.Five Kazakh male lambs with (29.40±1.76) kg body weights and 4 months old were chosen,fitted with duodenal cannulae and raised in metabolic cage individually. The 5×5 Latin square design was used in this experiment and 7 d for per period. The duodenal infusions in control group contained no EAA,that in 8EAA group contained 8 kinds of EAA,while that in -Arg,-Lys and -Met groups were contained 8 kinds of EAA without Arg,Lys and Met,respectively. The results showed that the fecal N excretion in 8EAA group was no significant difference compared with control group (P>0.05),while the urinary N,N retention,N apparent digestibility and PUN concentration were significantly increased (P<0.05).Compared with 8EAA group,the N retention in -Arg,-Lys and -Met groups were significantly decreased by 30.62%,11.56% and 12.99% (P<0.05),and the daily gain were decreased by 13.89%,7.78% and 6.58% (P>0.05),respectively. PUN concentration was increased in response to the removement of Met,Arg and Lys. In conclusion,Arg,Met and Lys had restricted effect to Kazakh lamb in actual fattening conditions.  相似文献   

20.
Six experiments were conducted to validate an Ile-deficient diet and determine the Ile requirement of 80- to 120-kg barrows. Experiment 1 had five replications, and Exp. 2 through 6 had four replications per treatment; all pen replicates had four crossbred barrows each (initial BW were 93, 83, 85, 81, 81, and 88 kg, respectively). All dietary additions were on an as-fed basis. In Exp. 1, pigs were fed a corn-soybean meal diet (C-SBM) or a corn-5% blood cell (BC) diet with or without 0.26% supplemental Ile (C-BC or C-BC+Ile) in a 28-d growth assay. On d 14, pigs receiving the C-BC diet were taken off experiment as a result of a severe decrease in ADFI. Growth performance did not differ for pigs fed C-SBM or C-BC + Ile (P = 0.36) over the 28-d experiment. In Exp. 2, pigs were fed the C-BC diet containing 0.24, 0.26, 0.28, 0.30, or 0.32% true ileal digestible (TD) Ile for 7 d in an attempt to estimate the Ile requirement using plasma urea N (PUN) as the response variable. Because of incremental increases in ADFI as TD Ile increased, PUN could not be used to estimate the Ile requirement. In Exp. 3, pigs were fed the C-BC diet containing 0.28, 0.30, 0.32, 0.34, or 0.36% TD Ile. Daily gain, ADFI, and G:F increased linearly (P < 0.01) as Ile increased in the diet. Even though there were no effects of TD Ile concentration on 10th rib fat depth or LM area, kilograms of lean increased linearly (P < 0.01) as TD Ile level increased. In Exp. 4, pigs were fed a C-SBM diet containing 0.26, 0.31, or 0.36% TD Ile. There were no differences in ADFI or ADG; however, G:F increased linearly (P = 0.02), with the response primarily attributable to the 0.31% Ile diet. In Exp. 5, pigs were fed 0.24, 0.27, 0.30, 0.33, or 0.36% TD Ile in a C-SBM diet. There were no differences in growth performance; however, average backfat, total fat, and percentage of fat increased quadratically (P < 0.10) with the addition of Ile. In Exp. 6, pigs were fed a 0.26% TD Ile C-SBM diet with or without crystalline Leu and Val to simulate the branched-chain AA balance of a C-BC diet. There were no differences in ADFI or ADG, but G:F increased (P = 0.09) when Leu and Val were added. In summary, the Ile deficiency of a C-BC diet can be corrected by the addition of Ile, and because ADFI was affected by Ile addition, the PUN method was not suitable for assessing the Ile requirement. The TD Ile requirement for 80- to 120-kg barrows for maximizing growth performance and kilograms of lean is not < 0.34% in a C-BC diet, but may be as low as 0.24% in a C-SBM diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号