首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The increasing cost and scarcity of water for irrigation is placing pressure on Australian dairy farmers to utilize water more efficiently, and as result, water use efficiency (WUE) of forages is becoming an important criterion for sustainable dairy production. This study was conducted to identify more water use efficient forage species than the dominant dairy forage, perennial ryegrass (Lolium perenne L.). Seventeen annual forage species were investigated under optimum irrigation (I1) and two deficit irrigation treatments (nominally 66 and 33% of irrigation water applied to the optimal level), over 3 years at Camden, NSW, on a brown Dermsol in a warm temperate climate. Forages with the highest yield generally had the highest WUEt (total yield/evapotranspiration). Under optimal irrigation, there was a three-fold difference in mean annual WUEt between forages, with maize (Zea mays L.) having the highest (42.9 kg ha−1 mm−1) and cowpea (Vigna unguiculata (L.) Walp.) the lowest (13.5 kg ha−1 mm−1), with 11 of the forage species having a greater WUEt than perennial ryegrass. The ‘harvested’ forages maize, wheat, triticale (Triticosecale rimpaui Wittm.) and maple pea (Pisum sativium L.) generally had higher mean WUEt (26.7-42.9 kg ha−1 mm−1) than the remaining forages which were defoliated multiple times to simulate grazing (13.5-30.1 kg ha−1 mm−1). The reduction in annual WUEt in response to deficit irrigation was greatest for the warm season forages with up to 30% reduction for maize, while most of the cool season annuals were not significantly affected by deficit irrigation at the levels imposed. In order to maximize WUEt of any forage, it is necessary to maximize yield, as there is a strong positive relationship between yield and WUEt. However, while WUEt is an important criterion for choosing dairy forages, it is only one factor in a complex system. Choice of forages must be considered on a whole farm basis and include consideration of yield, nutritive value, cost of production and risk.  相似文献   

2.
The hypothesis was tested, whether soil wetness and phosphorus status could regulate the evapotranspiration rate (ETR), which is of special interest in the lower Gangetic Plain. Rajmash was grown during November-February of 2003-2004 and 2004-2005 on a sandy loam soil, and was irrigated when cumulative pan evaporation (CPE) attained the value of 33 mm (CPE33); 44 mm (CPE44) and 66 mm (CPE66). Four levels of phosphate application were 0 kg P2O5 ha−1 (P0); 30 kg P2O5 ha−1 (P30); 60 kg P2O5 ha−1 (P60) and 90 kg P2O5 ha−1 (P90). Seed yield under CPE33 was 1.37 Mg ha−1 and reduced by 18% and 35%, respectively under CPE44 and CPE66. Continuous increasing trend in yield was recorded with an increase in phosphate level (PL). Irrespective of growth stages, similar trends were recorded for leaf area index (LAI). Maximum variation in LAI among the treatments was recorded at 60 days after sowing. On average, actual ETR was 1.37 mm day−1 under CPE33 and declined by 13% and 16% under CPE44 and CPE66, respectively. Variation in ETR under different PL was highest under CPE33 and lowest under CPE44. Except P90, irrespective of PL, highest value of water use efficiency (WUE) was obtained under CPE44. However, magnitude of net evapotranspiration efficiency (WUEET) and irrigation efficiency (WUEI) attained the highest level under CPE33 regime. All water use indices showed an increasing trend with the increase in phosphate level from 0 to 90 kg ha−1. Impact of phosphorus on various parameters was pronounced under CPE33.  相似文献   

3.
Cotton (Gossypium hirsutum L.) is the most important industrial and summer cash crop in Syria and many other countries in the arid areas but there are concerns about future production levels, given the high water requirements and the decline in water availability. Most farmers in Syria aim to maximize yield per unit of land regardless of the quantity of water applied. Water losses can be reduced and water productivity (yield per unit of water consumed) improved by applying deficit irrigation, but this requires a better understanding of crop response to various levels of water stress. This paper presents results from a 3-year study (2004-2006) conducted in northern Syria to quantify cotton yield response to different levels of water and fertilizer. The experiment included four irrigation levels and three levels of nitrogen (N) fertilizer under drip irrigation. The overall mean cotton (lint plus seed, or lintseed) yield was 2502 kg ha−1, ranging from 1520 kg ha−1 under 40% irrigation to 3460 kg ha−1 under 100% irrigation. Mean water productivity (WPET) was 0.36 kg lintseed per m3 of crop actual evapotranspiration (ETc), ranging from 0.32 kg m−3 under 40% irrigation to 0.39 kg m−3 under the 100% treatment. Results suggest that deficit irrigation does not improve biological water productivity of drip-irrigated cotton. Water and fertilizer levels (especially the former) have significant effects on yield, crop growth and WPET. Water, but not N level, has a highly significant effect on crop ETc. The study provides production functions relating cotton yield to ETc as well as soil water content at planting. These functions are useful for irrigation optimization and for forecasting the impact of water rationing and drought on regional water budgets and agricultural economies. The WPET values obtained in this study compare well with those reported from the southwestern USA, Argentina and other developed cotton producing regions. Most importantly, these WPET values are double the current values in Syria, suggesting that improved irrigation water and system management can improve WPET, and thus enhance conservation and sustainability in this water-scarce region.  相似文献   

4.
Water is the most important limiting factor of wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping systems in the North China Plain (NCP). A two-year experiment with four irrigation levels based on crop growth stages was used to calibrate and validate RZWQM2, a hybrid model that combines the Root Zone Water Quality Model (RZWQM) and DSSAT4.0. The calibrated model was then used to investigate various irrigation strategies for high yield and water use efficiency (WUE) using weather data from 1961 to 1999. The model simulated soil moisture, crop yield, above-ground biomass and WUE in responses to irrigation schedules well, with root mean square errors (RMSEs) of 0.029 cm3 cm−3, 0.59 Mg ha−1, 2.05 Mg ha−1, and 0.19 kg m−3, respectively, for wheat; and 0.027 cm3 cm−3, 0.71 Mg ha−1, 1.51 Mg ha−1 and 0.35 kg m−3, respectively, for maize. WUE increased with the amount of irrigation applied during the dry growing season of 2001-2002, but was less sensitive to irrigation during the wet season of 2002-2003. Long-term simulation using weather data from 1961 to 1999 showed that initial soil water at planting was adequate (at 82% of crop available water) for wheat establishment due to the high rainfall during the previous maize season. Preseason irrigation for wheat commonly practiced by local farmers should be postponed to the most sensitive growth stage (stem extension) for higher yield and WUE in the area. Preseason irrigation for maize is needed in 40% of the years. With limited irrigation available (100, 150, 200, or 250 mm per year), 80% of the water allocated to the critical wheat growth stages and 20% applied at maize planting achieved the highest WUE and the least water drainage overall for the two crops.  相似文献   

5.
Improving irrigation water management is becoming important to produce a profitable crop in South Texas as the water supplies shrink. This study was conducted to investigate grain yield responses of corn (Zea mays) under irrigation management based on crop evapotranspiration (ETC) as well as a possibility to monitor plant water deficiencies using some of physiological and environmental factors. Three commercial corn cultivars were grown in a center-pivot-irrigated field with low energy precision application (LEPA) at Texas AgriLife Research Center in Uvalde, TX from 2002 to 2004. The field was treated with conventional and reduced tillage practices and irrigation regimes of 100%, 75%, and 50% ETC. Grain yield was increased as irrigation increased. There were significant differences between 100% and 50% ETC in volumetric water content (θ), leaf relative water content (RWC), and canopy temperature (TC). It is considered that irrigation management of corn at 75% ETC is feasible with 10% reduction of grain yield and with increased water use efficiency (WUE). The greatest WUE (1.6 g m−2 mm−1) achieved at 456 mm of water input while grain yield plateaued at less than 600 mm. The result demonstrates that ETC-based irrigation can be one of the efficient water delivery schemes. The results also demonstrate that grain yield reduction of corn is qualitatively describable using the variables of RWC and TC. Therefore, it appears that water status can be monitored with measurement of the variables, promising future development of real-time irrigation scheduling.  相似文献   

6.
A field study on cotton (Gossypium hirsutum L., cv.) was carried out from 2005 to 2008 in the Çukurova Region, Eastern Mediterranean, Turkey. Treatments were designated as I100 full irrigation; DI70, DI50 and DI00 which received 70, 50, and 0% of the irrigation water amount applied in the I100 treatment. The irrigation water amount to be applied to the plots was calculated using cumulative pan evaporation that occurred during the irrigation intervals. The effect of water deficit or water stress on crop yield and some plant growth parameters such as yield response, water use efficiencies, dry matter yield (DM), leaf area index (LAI) as well as on lint quality components was evaluated. The average seasonal evapotranspiration ranged from 287 ± 15 (DI00) to 584 ± 80 mm (I100). Deficit irrigation significantly affected crop yield and all yield components considered in this study. The average seed cotton yield varied from 1369 ± 197 (DI00) to 3397 ± 508 kg ha−1 (I100). The average water use efficiency (WUEET) ranged from 6.0 ± 1.6 (I100) to 4.8 ± 0.9 kg ha−1 mm−1 (DI00), while average irrigation water use efficiency (WUEI) was between 9.4 ± 3.0 (I100) and 14.4 ± 4.8 kg ha−1 mm−1 (DI50). Deficit irrigation increased the harvest index (HI) values from 0.26 ± 0.054 (I100) to 0.32 ± 0.052 kg kg−1 (DI50). Yield response factor (Ky) was determined to be 0.98 based on four-year average. Leaf area index (LAI) and dry matter yields (DM) increased with increasing water use. This study demonstrated that the full irrigated treatment (I100) should be used for semiarid conditions with no water shortage. However, DI70 treatment needs to be considered as a viable alternative for the development of reduced irrigation strategies in semiarid regions where irrigation water supplies are limited.  相似文献   

7.
Using EPIC model to manage irrigated cotton and maize   总被引:1,自引:0,他引:1  
Simulation models are becoming of interest as a decision support system for management and assessment of crop water use and of crop production. The Environmental Policy Integrated Climate (EPIC) model was used to evaluate its application as a decision support tool for irrigation management of cotton and maize under South Texas conditions. Simulation of the model was performed to determine crop yield, crop water use, and the relationships between the yield and crop water use parameters such as crop evapotranspiration (ETc) and water use efficiency (WUE). We measured actual ETc using a weighing lysimeter and crop yields by field sampling, and then calibrated the model. The measured variables were compared with simulated variables using EPIC. Simulated ETc agreed with the lysimeter, in general, but some simulated ETc were biased compared with measured ETc. EPIC also simulated the variability in crop yields at different irrigation regimes. Furthermore, EPIC was used to simulate yield responses at various irrigation regimes with farm fields’ data. Maize required ∼700 mm of water input and ∼650 mm of ETc to achieve a maximum yield of 8.5 Mg ha−1 while cotton required between 700 and 900 mm of water input and between 650 and 750 mm of ETc to achieve a maximum yield of 2.0-2.5 Mg ha−1. The simulation results demonstrate that the EPIC model can be used as a decision support tool for the crops under full and deficit irrigation conditions in South Texas. EPIC appears to be effective in making long-term and pre-season decisions for irrigation management of crops, while reference ET and phenologically based crop coefficients can be used for in-season irrigation management.  相似文献   

8.
Irrigation management strategy invites the quantification of crop response to irrigation frequencies. Conventionally, mulches increase the yield and water use efficiency (WUE) to a great extent by augmenting the water status in the root zone profile. A field study was carried out during the winter season (November-March) of 2003-2004 and 2004-2005 at the Central Research Farm of Bidhan Chandra Krishi Viswavidyalaya (Latitude 22°58′N, Longitude 88°31′E and altitude 9.75 m amsl), Gayeshpur, India, to evaluate the effect of irrigation frequencies and mulches on evapotranspiration rate from tomato crop field as well as leaf area index (LAI), fruit yield and WUE of the crop. The experiment was laid out in a split-plot design where three irrigation treatments {rainfed (RF); CPE50 and CPE25 where irrigation was given at 50 and 25 mm of cumulative pan evaporation (CPE)} were kept in the main plots and the subplots contained four mulch managements {no mulch (NM), rice straw mulch (RSM), white polyethylene mulch (WPM) and black polyethylene mulch (BPM)}. Under CPE25, tomato crop recorded significantly higher leaf area index (LAI) over CPE50 and rainfed condition. LAI value under BPM was 9-30% more over other mulches. Maximum variation of LAI among different treatments was recorded at 60 days after transplanting (DAT). Fruit yield under CPE25 was 39.4 Mg ha−1; a reduction of 7 and 30% has been obtained under CPE50 and RF condition. The use of mulch increased 23-57% yield in comparison to NM condition. Actual evapotranspiration rate (ETR) was 1.82 mm day−1 under CPE25 and declined by 15 and 31% under CPE50 and RF condition, respectively. The variation of ETR among different mulches became more prominent under maximum water stressed (RF) condition, whereas the variation was negligible under CPE25 frequency. Irrespective of mulching WUE was highest under moderately wet (CPE50) soil environment. Among different mulches, BPM was responsible for attaining the highest WUE value (25.1 kg m−3), which declined by 22, 21 and 39% under WPM, RSM and NM, respectively.  相似文献   

9.
Evapotranspiration (ET) is an important component of the water cycle at field, regional and global scales. This study used measured data from a 30-year irrigation experiment (1979-2009) in the North China Plain (NCP) on winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) to analyze the impacts of climatic factors and crop yield on ET. The results showed that grass reference evapotranspiration (ETo, calculated by FAO Penmen-Monteith method) was relatively constant from 1979 to 2009. However, the actual seasonal ET of winter wheat and maize under well-watered condition gradually increased from the 1980s to the 2000s. The mean seasonal ET was 401.4 mm, 417.3 mm and 458.6 mm for winter wheat, and 375.7 mm, 381.1 mm and 396.2 mm for maize in 1980s, 1990s and 2000s, respectively. The crop coefficient (Kc) was not constant and changed with the yield of the crops. The seasonal average Kc of winter wheat was 0.75 in the 1980s, 0.81 in the 1990s and 0.85 in the 2000s, and the corresponding average grain yield (GY) was 4790 kg ha−1, 5501 kg ha−1 and 6685 kg ha−1. The average Kc of maize was 0.88 in the 1980s, 0.88 in the 1990s and 0.94 in the 2000s, with a GY of 5054 kg ha−1, 7041 kg ha−1 and 7874 kg ha−1, respectively, for the three decades. The increase in ET was not in proportion to the increase in GY, resulting improved water use efficiency (WUE). The increase in ET was possibly related to the increase in leaf stomatal conductance with renewing in cultivars. The less increase in water use with more increase in grain production could be partly attributed to the significant increase in harvest index. The results showed that with new cultivars and improved management practices it was possible to further increase grain production without much increase in water use.  相似文献   

10.
Rapid urbanization and industrialization have increased the pressure on limited existing fresh water to meet the growing needs for food production. Two immediate responses to this challenge are the efficient use of irrigation technology and the use of alternative sources of water. Drip irrigation methods may play an important role in efficient use of water but there is still limited information on their use on sugar beet crops in arid countries such as Iran. An experiment was conducted to evaluate the effects of irrigation method and water quality on sugar beet yield, percentage of sugar content and irrigation water use efficiency (IWUE). The irrigation methods investigated were subsurface drip, surface drip and furrow irrigation. The two waters used were treated municipal effluent (EC = 1.52 dS m−1) and fresh water (EC = 0.509 dS m−1). The experiments used a split plot design and were undertaken over two consecutive growing seasons in Southern Iran. Statistical testing indicated that the irrigation method and water quality had a significant effect (at the 1% level) on sugar beet root yield, sugar yield, and IWUE. The highest root yield (79.7 Mg ha−1) was obtained using surface drip irrigation and effluent and the lowest root yield (41.4 Mg ha−1) was obtained using furrow irrigation and fresh water. The highest IWUE in root yield production (9 kg m−3) was obtained using surface drip irrigation with effluent and the lowest value (3.8 kg m−3) was obtained using furrow irrigation with fresh water. The highest IWUE of 1.26 kg m−3 for sugar was obtained using surface drip irrigation. The corresponding efficiency using effluent was 1.14 kg m−3. Irrigation with effluent led to an increase in the net sugar yield due to an increase in the sugar beet root yield. However, there was a slight reduction in the percentage sugar content in the plants. This study also showed that soil water and root depth monitoring can be used in irrigation scheduling to avoid water stress. Such monitoring techniques can also save considerable volumes of irrigation water and can increase yield.  相似文献   

11.
Borkhar district is located in an arid to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water productivity (WP), a physically based agrohydrological model, Soil Water Atmosphere Plant (SWAP), was calibrated and validated using intensive measured data at eight selected farmer fields (wheat, fodder maize, sunflower and sugar beet) in the Borkhar district, Iran during the agricultural year 2004-2005. The WP values for the main crops were computed using the SWAP simulated water balance components, i.e. transpiration T, evapotranspiration ET, irrigation I, and the marketable yield YM in terms in terms of YMT−1, YM ET−1 and YM I−1.The average WP, expressed as $ T−1 (US $ m−3) was 0.19 for wheat, 0.5 for fodder maize, 0.06 for sunflower and 0.38 for sugar beet. This indicated that fodder maize provides the highest economic benefit in the Borkhar irrigation district. Soil evaporation caused the average WP values, expressed as YM ET−1 (kg m−3), to be significantly lower than the average WP, expressed as YMT−1, i.e. about 27% for wheat, 11% for fodder maize, 12% for sunflower and 0.18 for sugar beet. Furthermore, due to percolation from root zone and stored moisture content in the root zone, the average WP values, expressed as YMI−1 (kg m−3), had a 24-42% reduction as compared with WP, expressed as YM ET−1.The results indicated that during the limited water supply period, on-farm strategies like deficit irrigation scheduling and reduction of the cultivated area can result in higher economic gains. Improved irrigation practices in terms of irrigation timing and amount, increased WP in terms of YMI−1 (kg m−3) by a factor of 1.5 for wheat and maize, 1.3 for sunflower and 1.1 for sugar beet. Under water shortage conditions, reduction of the cultivated area yielded higher water productivity values as compared to deficit irrigation.  相似文献   

12.
In the North China Plain (NCP), while irrigation using groundwater has maintained a high-level crop productivity of the wheat-maize double cropping systems, it has resulted in rapid depletion of groundwater table. For more efficient and sustainable utilization of the limited water resources, improved understanding of how crop productivity and water balance components respond to climate variations and irrigation is essential. This paper investigates such responses using a modelling approach. The farming systems model APSIM (Agricultural Production Systems Simulator) was first calibrated and validated using 3 years of experimental data. The validated model was then applied to simulate crop yield and field water balance of the wheat-maize rotation in the NCP. Simulated dryland crop yield ranged from 0 to 4.5 t ha−1 for wheat and 0 to 5.0 t ha−1 for maize. Increasing irrigation amount led to increased crop yield, but irrigation required to obtain maximum water productivity (WP) was much less than that required to obtain maximum crop yield. To meet crop water demand, a wide range of irrigation water supply would be needed due to the inter-annual climate variations. The range was simulated to be 140-420 mm for wheat, and 0-170 mm for maize. Such levels of irrigation applications could potentially lead to about 1.5 m year−1 decline in groundwater table when other sources of groundwater recharge were not considered. To achieve maximum WP, one, two and three irrigations (i.e., 70, 150 and 200 mm season−1) were recommended for wheat in wet, medium and dry seasons, respectively. For maize, one irrigation and two irrigations (i.e., 60 and 110 mm season−1) were recommended in medium and dry seasons, while no irrigation was needed in wet season.  相似文献   

13.
A field study was conducted from 2002 to 2007 to investigate the influence of row spacing of winter wheat (Triticum aestivum L.) on soil evaporation (E), evapotranspiration (ET), grain production and water use efficiency (WUE) in the North China Plain. The experiment had four row spacing treatments, 7.5 cm, 15 cm, 22.5 cm, and 30 cm, with plots randomly arranged in four replicates. Soil E was measured by micro-lysimeters in three seasons and ET was calculated from measurements of soil profile water depletion, irrigation, and rainfall. The results showed that E increased with row spacing. Compared with the 30-cm row spacing (average E = 112 mm), the reduction in seasonal E averaged 9 mm, 25 mm, and 26 mm for 22.5 cm, 15 cm, and 7.5 cm row spacings, respectively. Crop transpiration (T) increased as row spacing decreased. The seasonal rainfall interception and seasonal ET were relatively unchanged among the treatments. In three out of five seasons, the four different treatments showed similar grain yield, yield components and WUE. We conclude that for winter wheat production in the North China Plain, narrow row spacing reduced soil evaporation, but had minor improvements on grain production and WUE under irrigated conditions with adequate nutrient levels.  相似文献   

14.
Frequency and depth of irrigation play crucial role in crop yield and use efficiency of water resource. To test this hypothesis a field study was carried out in November to January of 2001-2002 to 2003-2004 on a sandy loam (Aeric haplaquept) for quantifying the frequency and depth of irrigation on growth, curd yield (CY) and water use pattern of cauliflower (Brassica oleracea L. var. botrytis). Four irrigation frequencies depending on the attainment of cumulative pan evaporation (CPE) values of: 25 (CPE25), 31(CPE31), 38 (CPE38) and 45 (CPE45) mm were placed in main-plots, with three depth of irrigation (IW) of 35 (IW35), 30 (IW30) and 25 (IW25) mm in sub-plots. Water use efficiency (WUE), net evapotranspiration efficiency (WUEET) and irrigation water use efficiency (WUEI) were computed. Marginal water use efficiency (MWUE) and elasticity of water productivity (EWP) were calculated using the relationship between CY and seasonal actual evapotranspiration (SET). A continuous increasing trend in growth parameters, yield and WUEI was recorded with the increase in SET from CPE45-IW25 to CPE31-IW30. However with further increase in SET the same decreased up to CPE25-IW35 regime. Highest WUE and WUEET obtained under CPE38-IW35 regime where SET value was 5% lower than the status of SET under CPE31-IW30. This study confirmed that critical levels of SET needed to obtain maximum curd yield or WUE, could be obtained more precisely from the knowledge of MWUE and EWP.  相似文献   

15.
Salt balance methods are generally applied in the root-zone and at local scales but do not provide relevant information for salinity management at irrigation scheme scales, where there are methodological impediments. A simple salt balance model was developed at irrigation scheme and yearly time scales and applied in Fatnassa oasis (Nefzaoua, Tunisia). It accounts for input by irrigation, export by drainage and groundwater flow, and provides novel computation of the influence of biogeochemical processes and variations in the resident amount of salt for each chemical component in the soil and shallow groundwater. Impediments were overcome by limiting the depth of the system so that the resident amount of salt that remained was of the same order of magnitude as salt inputs and allowed indirect and reliable estimation of groundwater flow. Sensitivity analyses as partial derivatives of groundwater salinity were carried out according to non-reactive salt balance under steady-state assumption. These analyses enabled the magnitude of the salinization process to be foreseen as a function of hydrological changes linked to irrigation, drainage, groundwater flow and extension of the irrigated area. From a salt input of 39 Mg ha−1 year−1 by irrigation, 21 Mg ha−1 year−1 (54%) and 10 Mg ha−1 year−1 (26%) were exported by groundwater flow and drainage, respectively. 7 Mg ha−1 year−1 (18%) were removed from groundwater by geochemical processes, while a non-significant 2 Mg ha−1 year−1 were estimated to have been stored in the soil and shallow groundwater where the residence time was only 2.7 years. The leaching efficiency of drainage was estimated at 0.77. With a water supply of 1360 mm by irrigation and 90 mm by rainfall, drainage, groundwater flow and actual evapotranspiration were 130, 230, and 1090 mm, respectively. The current extension of date palm plantations and salinization of groundwater resources are expected to significantly increase the salinity hazard while the degradation of the drainage system is expected to be of lesser impact. The approach was successfully implemented in Fatnassa oasis and proved to be particularly relevant in small or medium irrigation schemes where groundwater fluxes are significant.  相似文献   

16.
During 2 years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to investigate the effects of different nitrogen (N) and irrigation (I) levels on fruit yield, fruit quality, irrigation water use efficiency (IWUE) and nitrogen applied efficiency (NAE). The statistical design was a split-plot with four replications, where irrigation was the main factor of variation and N was the secondary factor. In 2005, irrigation treatments consisted of applying daily a moderate water stress equivalent to 75% of ETc (crop evapotranspiration), a 100% ETc control and an excess irrigation of 125% ETc (designated as I75, I100 and I125), while the N treatments were 30, 85, 112 and 139 kg N ha−1 (designated as N30, N85, N112 and N139). In 2006, both the irrigation and N treatments applied were: 60, 100 and 140% ETc (I60, I100 and I140) and 93, 243 and 393 kg N ha−1 (N93, N243 and N393). Moderate water stress did not reduce melon yield and high IWUE was obtained. Under severe deficit irrigation, the yield was reduced by 22% mainly due to decrease fruit weight. The relative yield (yield/maximum yield) was higher than 95% when the irrigation depth applied was in the range of 87-136% ETc. In 2006, the interaction between irrigation and N was significant for yield, fruit weight and IWUE. The best yield, 41.3 Mg ha−1, was obtained with 100% ETc at N93. The flesh firmness and the placenta and seeds weight increased when the irrigation level was reduced by 60% ETc. The highest NAE was obtained with quantities of water close to 100% ETc and increased as the N level was reduced. The highest IWUE was obtained with applications close to 90 kg N ha−1. The I243 and I393 treatments produced inferior fruits due to higher skin ratios and lower flesh ratios. These results suggest that it is possible to apply moderate deficit irrigation, around 90% ETc, and reduce nitrogen input to 90 kg ha−1 without lessening quality and yields.  相似文献   

17.
In cold, semi-arid areas, the options for crop diversification are limited by climate and by the water supply available. Growing irrigated crops outside the main season is not easy, because of climatic and market constraints. We carried out an experiment in Albacete, Central Spain, to measure the water use (evapotranspiration, ET) of broccoli (Brassica oleracea L. var. italica Plenck) planted in late summer and harvested at the end of fall. A weighing lysimeter was used to measure the seasonal ET under sprinkler irrigation. Consumptive use reached 359 mm for a period of 109 days after transplanting. The crop coefficient (Kc) for broccoli was obtained and compared to the standard recommendations for normal planting dates. Dual crop coefficient computations of the lysimeter ET data indicated that evaporation represented 31% of seasonal ET. An analysis of the variation in daily Kc values at a time of full cover suggested that the use of a grass lysimeter as a reference ET (ETo) was superior to using the ASCE Penman-Monteith (ASCE PM) equation at hourly time steps, which in turn caused less variability in Kc than when using the FAO-56 Penman-Monteith (FAO-56 PM) equation at daily time steps for the ETo calculation. An additional experiment aimed at evaluating the yield response to applied irrigation water by the drip method (seven treatments, from 59 to 108% of ETc) generated a production function that gave maximum yields of near 12 t ha−1 at an irrigation level of 345 mm, and a water use efficiency of 3.37 kg m−3. It is concluded that growing broccoli in the fall season is a viable alternative for crop diversification, as the lower yields obtained here may be more than compensated for by the higher produce prices in autumn, at a time of the year where irrigation water demand for other crops is very low.  相似文献   

18.
A methodology has been developed to quantify spatial variation of crop yield, evapotranspiration (ET) and water productivity (WPET) using the SEBAL algorithm and high and low resolution satellite images. SEBAL-based ET estimates were validated over an irrigated, wheat dominated area in the Yaqui Valley, Mexico and proved to be accurate (8.8% difference for 110 days). Estimated average wheat yields in Yaqui Valley of 5.5 t ha−1 were well within the range of measured yields reported in the literature. Measured wheat yields in 24 farmers’ fields in Sirsa district, India, were 0.4 t ha−1 higher than SEBAL estimated wheat yields. Area average WPET in the Yaqui Valley was 1.37 kg m−3 and could be considered to be high as compared to other irrigated systems around the world where the same methodology was applied. A higher average WPET was found in Egypt's Nile Delta (1.52 kg m−3), Kings County (CA), USA (1.44 kg m−3) and in Oldambt, The Netherlands (1.39 kg m−3). The spatial variability of WPET within low productivity systems (CV = 0.33) is higher than in high productivity systems (CV = 0.05) because water supply in the former case is uncertain and farming conditions are sub-optimal. The high CV found in areas with low WPET indicates that there is considerable scope for improvement. The average scope for improvement in eight systems was 14%, indicating that 14% ET reduction can be achieved while maintaining the same yield. It is concluded that the proposed methodology is accurate and that better knowledge of the spatial variation of WPET provides valuable information for achieving local water conservation practices in irrigated wheat.  相似文献   

19.
Studies on irrigation scheduling for soybean have demonstrated that avoiding irrigation during the vegetative growth stages could result in yields as high as those obtained if the crop was fully irrigated during the entire growing season. This could ultimately also lead to an improvement of the irrigation water use efficiency. The objective of this study was to determine the effect of different irrigation regimes (IRs) on growth and yield of four soybean genotypes and to determine their irrigation water use efficiency. A field experiment consisting of three IR using a lateral move sprinkler system and four soybean genotypes was conducted at the Bledsoe Research Farm of The University of Georgia, USA. The irrigation treatments consisted of full season irrigated (FSI), start irrigation at flowering (SIF), and rainfed (RFD); the soybean genotypes represented maturity groups (MGs) V, VI, VII, and VIII. A completely randomized block design in a split-plot array with four replicates was used with IR as the main treatment and the soybean MGs as the sub-treatment. Weather variables and soil moisture were recorded with an automatic weather station located nearby, while rainfall and irrigation amounts were recorded with rain gauges located in the experimental field. Samplings for growth analysis of the plant and its components as well as leaf area index (LAI) and canopy height were obtained every 12 days. The irrigation water use efficiency (IWUE) or ratio of the difference between irrigated and rainfed yield to the amount of irrigation water applied was estimated. The results showed significant differences (P < 0.05) between IR for dry matter of the plant and its components, canopy height, and maximum leaf area index as well as significant differences (P < 0.05) between MGs due to IR. Differences for the interaction between IR and MG were significant (P < 0.05) only for dry matter of pods and seed yield. In general, seed yield increased at a rate of 7.20 kg for each mm of total water received (rainfall + irrigation) by the crop. Within IR, significant differences (P < 0.05) on IWUE were found between maturity groups with values as low as 0.55 kg m−3 for MG V and as high as 1.14 kg m−3 for MG VI for the FSI treatment and values as low as 0.48 kg m−3 for maturity group V and as high as 1.02 kg m−3 for maturity group VI for the SIF treatment. We also found that there were genotypic differences with respect to their efficiency to use water, stressing the importance of cultivar selection as a key strategy for achieving optimum yields with reduced use of water in supplemental irrigation.  相似文献   

20.
A field study was carried out in order to determine the effect of deficit irrigation regimes on grain yield and seasonal evapotranspiration of safflower (Carthamus tinctorius L.) in Thrace Region of Turkey. The field trials were conducted on a loam Entisol soil, on Dincer, the most popular variety in the research area. A randomised complete block design with three replications was used. Combination of four well-known growth stages of the plant, namely vegetative (Va), late vegetative (Vb), flowering (F) and yield formation (Y) were considered to form a total of 16 (including rain fed) irrigation treatments. The effect of irrigation and water stress at any stage of development on grain yield per hectare and 1000 kernels weight was evaluated. Results showed that safflower was significantly affected by water stress during the sensitive late vegetative stage. The highest yield was obtained in VaVbFY treatment. Seasonal irrigation water use and evapotranspiration were 501 and 721 mm, respectively, for the non-stressed treatment. Safflower grain yield of this treatment was 5.22 Mg ha−1 and weight of 1000 kernels was 55 g. The seasonal yield-water response factor value was 0.87. The total water use efficiency was 7.2 kg ha−1 mm−1. Irrigation schedule of the non-stressed treatment may be as follows: the first irrigation is at the vegetative stage, when after 40-50 days from sowing/elongation and branching stage, that is the end of May; the second irrigation is at the late vegetative stage, after 70-80 days from sowing/heading stage, that is in the middle of June; the third irrigation is at the flowering stage, approximately 50% level, that is the first half of July; and the fourth irrigation is at the yield formation stage, seed filling, that is the last week of July.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号