首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xylazine-pentobarbital anesthesia in dogs and its antagonism by yohimbine   总被引:3,自引:0,他引:3  
Once a week for 4 weeks, 5 dogs were given IM injections of xylazine (2.2 mg/kg of body weight) followed in 10 minutes by IV injections of pentobarbital (14 mg/kg). The resultant duration of anesthesia, absence of pedal reflex, and time from return of consciousness to ambulation were consistent from week to week. The mean times were 137.3, 111.8, and 56.9 minutes, respectively. A second experiment using 5 other dogs was performed to evaluate the antagonistic effect of yohimbine on the anesthesia induced by the xylazine-pentobarbital combination. When yohimbine (0.1 mg/kg, IV) was administered 10, 60, and 120 minutes after the xylazine-pentobarbital injection (given as in the 1st experiment), it abolished or markedly reduced the duration of anesthesia, absence of pedal reflex, and the time from return of consciousness to ambulation. After being given yohimbine, the dogs had a smooth recovery without postanesthetic excitement. In experiment 3, IM xylazine injections caused bradycardia without changing mean arterial blood pressure. Subsequent IV pentobarbital administration abolished xylazine-induced bradycardia for approximately 20 minutes and decreased arterial blood pressure slightly and gradually. Respiration was markedly depressed for the first 20 minutes of xylazine-pentobarbital anesthesia and gradually decreased during the rest of the 50-minute monitoring period. Yohimbine injection at postpentobarbital dosing minute 50 reversed the resumed xylazine-induced bradycardia and relieved other signs of respiratory depression associated with xylazine-pentobarbital anesthesia. The xylazine-pentobarbital combination was safe and effective for inducing and maintaining up to 2 hours of anesthesia in dogs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Effect of yohimbine on xylazine-induced immobilization in white-tailed deer   总被引:1,自引:0,他引:1  
Two groups of white-tailed deer were given IM injections of xylazine with a projectile syringe. Deer in one of the groups served as controls and did not receive any treatments other than xylazine. Deer in the other group were given yohimbine IV at various times (15 to 171 minutes) to evaluate its effect on xylazine-induced immobilization. In 5 control deer given 3.7 +/- 1.2 mg of xylazine/kg (mean +/- SD), onset of recumbency was 13 +/- 2 minutes and time to standing was 268 +/- 76 minutes. In 20 principal deer given 2.8 +/- 1.0 mg of xylazine/kg, onset of recumbency was 8 +/- 7 minutes, time to sitting after giving yohimbine was 3 +/- 4 minutes in 18 of the deer, and time to standing after giving yohimbine was 4 +/- 5 minutes in 19 of the deer. Most of these deer were still moderately sedated 30 minutes after injection of yohimbine, but none of them became reimmobilized or as deeply sedated as before the injection of yohimbine. Yohimbine also reversed the bradycardia and respiratory depression induced by xylazine.  相似文献   

3.
Twenty-two juvenile African elephants were given a combination of xylazine (mean +/- SD = 0.14 +/- 0.03 mg/kg of body weight) and ketamine (1.14 +/- 0.21 mg/kg) as a single IM injection; one elephant was immobilized twice, 77 days apart. After injection, 14 elephants were immobilized, 4 were sedated deeply, 2 were sedated moderately, and 2 were sedated minimally. Immobilized elephants had a mean immobilization time of 11.6 +/- 6.9 minutes. At the conclusion of a variety of clinical procedures, 12 of the 14 elephants immobilized with a single dose combination of xylazine and ketamine were given yohimbine (0.13 +/- 0.03 mg/kg) IV, and the remaining 2 elephants were allowed to recover spontaneously; the elephants given yohimbine had a mean standing time of 2.4 +/- 1.1 minutes. Of the 8 sedated elephants, 5 were given an additional dose of combined xylazine (0.08 +/- 0.03 mg/kg), and ketamine (0.61 +/- 0.19 mg/kg) IM, and 1 elephant was given ketamine (0.47 mg/kg) IV. After injection, 4 of the 8 elephants were recumbent laterally within 17 minutes and 2 remained standing, under deep sedation. Seven of the 8 elephants were given yohimbine (0.13 +/- 0.03 mg/kg) IV; all were ambulatory in 2 minutes. Results indicated that yohimbine may be useful in controlling duration of xylazine-ketamine sedation and immobilization in juvenile African elephants.  相似文献   

4.
The influence of atropine on anesthesia induced by xylazine-pentobarbital administration was studied in 5 dogs. The combination of xylazine (2.2 mg/kg of body weight, IM) and pentobarbital (14.0 mg/kg, IV) caused anesthesia with the duration of absence of the pedal reflex, duration of anesthesia, and the time from return of consciousness to ambulation to be 107.4, 123.4, and 59.2 minutes, respectively. Bradycardia and short-term respiratory depression were observed. An IM injection of atropine sulfate (0.045 mg/kg) did not significantly change the durations of absence of the pedal reflex and of anesthesia, the time from return of consciousness to ambulation, or the pattern of respiration in the anesthetized dogs. The PaO2 increased gradually in both groups; however, atropine caused a marked tachycardia and increased the PaCO2. Fifteen minutes after pentobarbital injection, administration of atropine sulfate caused a slight but significant (P less than 0.01) decrease in arterial pH. Although atropine sulfate antagonized xylazine bradycardia, the data indicated that it may have caused increased respiratory depression in dogs anesthetized with xylazine and pentobarbital.  相似文献   

5.
Evaluation of Three Midazolam-Xylazine Mixtures Preliminary Trials in Dogs   总被引:1,自引:0,他引:1  
The depressant effects of midazolam and xylazine on the central nervous system (CNS) were evaluated in 12 dogs. Xylazine was administered to six dogs (1.1 mg/kg intravenously [IV]) followed in 5 minutes by midazolam (1.0 mg/kg intramuscularly [IM]). In a second group of six dogs, xylazine (2.2 mg/kg IM) was followed in 5 minutes by midazolam (1.0 mg/kg IV). Both drug regimens induced rapid and profound sedation or anesthesia. Duration of action varied with the doses and routes of administration. Dogs given the high dose of xylazine IM had an arousal time of 95.4 +/- 8.9 minutes and a walking time of 155.4 +/- 8.8 minutes. These values exceeded the IV xylazine values threefold. Partial reversal of CNS depression was accomplished with either a benzodiazepine antagonist (flumazenil) or an alpha-2 antagonist (yohimbine). In a separate trial, a mixture of xylazine (0.55 mg/kg), midazolam (1.0 mg/kg), and butorphanol (0.1 mg/kg) with and without glycopyrrolate was evaluated in eight dogs. As with the xylazine-midazolam combinations, the CNS depressant effect of this mixture was clinically indistinguishable from anesthesia achieved with other rapid-acting injectable agents. Clinical signs of CNS depression were readily and completely antagonized by the simultaneous injection of flumazenil and yohimbine.  相似文献   

6.
In 2 separate experiments, groups of atropinized cats (6 cats/group) were given acepromazine (0.25 mg/kg of body weight) or xylazine (2.2 mg/kg) IM and anesthetized with pentobarbital. The mean dose of pentobarbital was decreased approximately 36% by acepromazine, and approximately 80% by xylazine, compared with published doses. Anesthetized cats were given IV saline solution (control groups) or were given the antagonists 4-aminopyridine (4-AP; 0.5 mg/kg), yohimbine (0.4 mg/kg), or 4-AP + yohimbine (0.5 mg/kg and 0.4 mg/kg, respectively). In acepromazine-treated cats, 4-AP + yohimbine was the most effective antagonist; arousal and walking occurred in an average of 10.4 minutes and 91.7 minutes, respectively. Yohimbine enhanced the antagonistic effects of 4-AP. In xylazine-treated cats, yohimbine was an effective antagonist; arousal and walking occurred in an average of 2.8 minutes and 12.8 minutes, respectively. Yohimbine did not enhance the antagonistic effects of 4-AP. Mean respiratory rates were decreased by acepromazine, but were increased by xylazine. Thus, respiratory rate depression by pentobarbital was not as marked with xylazine as it was with acepromazine. Changes in mean heart rate were not remarkable with either sedative, and cardiac irregularities were not palpated or auscultated. In healthy cats, the duration of pentobarbital anesthesia can be controlled by 4-AP + yohimbine (acepromazine-pretreated cats) or by yohimbine alone (xylazine-pretreated cats).  相似文献   

7.
We compared the ability of tolazoline and yohimbine to antagonize xylazine-induced central nervous system depression, bradycardia, and tachypnea in 9 ewes and 5 rams. Once a week for 3 weeks, each sheep received one IV treatment of 0.4 mg xylazine/kg, 0.4 mg xylazine/kg followed in 10 minutes by 2 mg tolazoline/kg, or 0.4 mg xylazine/kg followed in 10 minutes by 0.2 mg yohimbine/kg. The order of the 3 treatments in each sheep was randomized. Xylazine alone caused recumbency for 41.0 +/- 3.7 minutes (mean +/- SEM). Tolazoline and yohimbine shortened the xylazine-induced recumbency to 12.1 +/- 0.9 minutes and 18.1 +/- 1.5 minutes, respectively. Sheep given xylazine alone had head droop for 34.0 +/- 5.4 minutes after rising. Head drooping of sheep given tolazoline or yohimbine was reduced to 10.1 +/- 1.7 minutes and 14.2 +/- 1.7 minutes, respectively. Both tolazoline and yohimbine reversed the bradycardia and tachypnea that followed xylazine administration. No statistical differences in the rate and magnitude of the reversal were observed between the 2 drugs.  相似文献   

8.
Trials were conducted to test the ability of yohimbine, 4-aminopyridine and doxapram given by intravenous injection to antagonise xylazine sedation in red deer (Cervus elaphus). Yohimbine produced the best and most consistent result. The mean time taken for 34 animals to stand spontaneously after receiving yohimbine (0.2 to 0.25 mg/kg) was 2 minutes 25 seconds and this occurred, on average, 33 minutes after the initial doze of xylazine. Control deer took 67 and 104 minutes on average to stand after receiving intravenous (0.64-0.96 mg/kg) and intramuscular (1.0-1.5 mg/kg) injections of xylazine respectively. Two deer which received an overdose of xylazine (4 mg/kg) recovered 3 and 9 minutes respectively after receiving yohimbine. Two deer given a high intravenous dose of yohimbine (1.0 mg/kg) became mildly nervous and anxious, but returned to normal within an hour. 4-aminopyridine (0.3 mg/kg) alone produced some arousal from xylazine sedation (0.6-1.0 mg/kg) but was inconsistent. In combination with yohimbine (0.125 mg/kg) it produced rapid recovery in two deer but caused convulsions in two other deer. Doxapram (1 mg/kg) produced respiratory stimulation and some arousal from xylazine sedation (0.6-1.0 mg/kg) in the majority of deer but the effect was transitory. Animals relapsed into moderate sedation and recumbency within 10 minutes and required vigorous stimulation to arouse them again. Yohimbine, administered by intravenous injection at a dose rate of 0.2 to 0.25 mg/kg, appears to be a safe and reliable drug for the reversal of xylazine sedation in deer.  相似文献   

9.
Trials were conducted to test the ability of yohimbine, 4-aminopyridine and doxapram given by intravenous injection to antagonise xylazine sedation in red deer (Cervus elaphus). Yohimbine produced the best and most consistent result. The mean time taken for 34 animals to stand spontaneously after receiving yohimbine (0.2 to 0.25 mg/kg) was 2 minutes 25 seconds and this occurred, on average, 33 minutes after the initial doze of xylazine. Control deer took 67 and 104 minutes on average to stand after receiving intravenous (0.64–0.96 mg/kg) and intramuscular (1.0–1.5 mg/kg) injections of xylazine respectively. Two deer which received an overdose of xylazine (4 mg/kg) recovered 3 and 9 minutes respectively after receiving yohimbine. Two deer given a high intravenous dose of yohimbine (1.0 mg/kg) became mildly nervous and anxious, but returned to normal within an hour. 4-aminopyridine (0.3 mg/kg) alone produced some arousal from xylazine sedation (0.6–1.0 mg/kg) but was inconsistent. In combination with yohimbine (0.125 mg/kg) it produced rapid recovery in two deer but caused convulsions in two other deer.

Doxapram (1 mg/kg) produced respiratory stimulation and some arousal from xylazine sedation (0.6–1.0 mg/kg) in the majority of deer but the effect was transitory. Animals relapsed into moderate sedation and recumbency within 10 minutes and required vigorous stimulation to arouse them again.

Yohimbine, administered by intravenous injection at a dose rate of 0.2 to 0.25 mg/kg, appears to be a safe and reliable drug for the reversal of xylazine sedation in deer.  相似文献   

10.
Effects of xylazine (1.1 mg/kg of body weight, IV bolus, plus 1.1 mg/kg/h infusion) and subsequent yohimbine (0.125 mg/kg, IV bolus) administration on the arrhythmogenic dose of epinephrine (ADE) in isoflurane (1.8% end-tidal)-anesthetized dogs were evaluated. The ADE was defined as the total dose of epinephrine that induced greater than or equal to 4 premature ventricular contractions within 15 seconds during a 3-minute infusion period or within 1 minute after the end of infusion. Total ADE values during isoflurane anesthesia, after xylazine administration, and after yohimbine injection were 36.6 +/- 8.45 micrograms/kg, 24.1 +/- 6.10 micrograms/kg, and 45.7 +/- 6.19 micrograms/kg, respectively. Intravenous xylazine administration significantly (P less than 0.05) increased blood pressure and decreased heart rate, whereas yohimbine administration induced a significant (P less than 0.05) decrease in blood pressure. induced a significant (P less than 0.05) decrease in blood pressure. After yohimbine administration, the ADE significantly (P less than 0.05) increased above that after isoflurane plus xylazine administration. After yohimbine administration, blood pressure measured immediately before epinephrine-induced arrhythmia was significantly (P less than 0.05) less than the value recorded during isoflurane plus xylazine anesthesia. Heart rate was unchanged among treatments immediately before epinephrine-induced arrhythmia. Seemingly, yohimbine possessed a protective action against catecholamine-induced arrhythmias in dogs anesthetized with isoflurane and xylazine.  相似文献   

11.
Antagonism of xylazine sedation by 4-aminopyridine and yohimbine in cattle   总被引:2,自引:0,他引:2  
Twenty-four crossbred steers (4 groups of 6 steers each) were injected IM with a standard dosage range of xylazine hydrochloride (0.2 to 0.3 mg/kg of body weight). When the steers were maximally sedated, group I (control group) were given isotonic saline solution (1 ml, IV), group II were given 4-aminopyridine (4-AP, 0.3 mg/kg) IV, group III were given yohimbine hydrochloride (0.125 mg/kg) IV, and group IV were given 4-AP (0.3 mg/kg) plus yohimbine hydrochloride (0.125 mg/kg) IV. The 4-AP decreased mean standing time (MST; time until animal could stand unaided) from 94.3 minutes (control) to 13.4 minutes. Yohimbine decreased MST to 27 minutes. The combination of 4-AP + yohimbine decreased MST to 7.4 minutes. Mean total recovery time (MTRT; time from xylazine injection until normal behavior, including eating and drinking) was not significantly (P = greater than 0.05) decreased from control values by any of the antagonists tested. The combination of 4-AP + yohimbine decreased MST in animals given a 3X overdose of xylazine (0.6 mg/kg) from 124 minutes (control) to 30.3 min. The MTRT was not significantly (P greater than 0.05) decreased from control values. Two animals given a 5X overdose of xylazine (1 mg/kg) and then given 4-AP + yohimbine had a MST of 32.5 minutes and a MTRT of 3.7 hours. The combination of 4-AP + yohimbine produced marked antagonism of xylazine sedation in cattle. The combination of antagonists may prove to be useful for the arousal of animals sedated with xylazine alone or with a combination of sedatives including xylazine.  相似文献   

12.
Effect of yohimbine on xylazine-ketamine anesthesia in cats   总被引:3,自引:0,他引:3  
Xylazine and ketamine are an anesthetic combination used in feline practice for routine surgical procedures. In a controlled study, we evaluated the effects of yohimbine, an antagonist of xylazine, on the anesthesia induced by this anesthetic combination in cats. Two intramuscular doses of xylazine and ketamine (2.2 mg of xylazine/kg plus 6.6 mg of ketamine/kg and 4.4 mg of xylazine/kg plus 6.6 mg of ketamine/kg) caused approximately 60 and 100 minutes of anesthesia, respectively, in control cats. When yohimbine (0.1 mg/kg) was given intravenously 45 minutes after ketamine administration, the cats regained consciousness within 3 minutes. They were ambulatory 1 to 2 minutes after regaining consciousness. Yohimbine also reversed the bradycardia and respiratory depression elicited by xylazine-ketamine. The results indicated that yohimbine may be useful for controlling the duration of xylazine-ketamine anesthesia in cats.  相似文献   

13.
OBJECTIVE: To determine the anesthetic dose and cardiopulmonary effects of xylazine hydrochloride when used alone or in combination with ketamine hydrochloride and evaluate the efficacy of yohimbine hydrochloride to reverse anesthetic effects in captive Axis deer. ANIMALS: 35 adult (10 males and 25 females) Axis deer (Axis axis). PROCEDURES: All deer were anesthetized by IM administration of xylazine (3.5 mg/kg; experiment 1), a combination of ketamine and xylazine (1.25 and 1.5 mg/kg, respectively; experiment 2), or another combination of ketamine and xylazine (2.5 and 0.5 mg/kg, respectively; experiment 3). In addition, female deer were also anesthetized by IM administration of a third combination of ketamine and xylazine (1.5 and 1 mg/kg, respectively; experiment 4). Ten to 40 minutes after induction, anesthesia was reversed by IV administration of yohimbine (5, 8, or 10 mg). RESULTS: In male deer, experiment 3 yielded the most rapid induction of anesthesia. In females, experiment 4 yielded the best induction of anesthesia without adverse effects. All doses of yohimbine reversed anesthesia. Duration of anesthesia before administration of yohimbine had no effect on recovery time. CONCLUSIONS AND CLINICAL RELEVANCE: A combination of ketamine and xylazine can be used to induce anesthesia in Axis deer. Furthermore, anesthetic effects can be reversed by administration of yohimbine.  相似文献   

14.
A combination of xylazine and ketamine was used to anesthetize 60 male rats, and then yohimbine was given to evaluate its reversing effect on xylazine-ketamine-induced anesthesia. In experiment A, xylazine (21 mg/kg of body weight) and ketamine (45 mg/kg) were admixed and administered IM to 12 Sprague-Dawley rats. Anesthesia lasted approximately 70 minutes. The xylazine-ketamine combination also induced polyuria, bradycardia, and bradypnea. When yohimbine (2.1 mg/kg) was given intraperitoneally 20 minutes after the xylazine-ketamine injection, the rats regained consciousness and righting reflexes within approximately 10 minutes. Yohimbine also reversed the bradycardia and bradypnea and appeared to reduce the polyuria induced by the xylazine-ketamine combination. In experiment B, xylazine (15.4 mg/kg) and ketamine (33 mg/kg) were admixed and given IM to 48 Holtzman rats. The combination induced surgical anesthesia for at least 30 minutes, during which a surgical procedure involving grafting a section of the sciatic nerve into the hypothalamus was performed. In rats in which yohimbine (1 mg/kg) was given intraperitoneally 45 to 60 minutes after xylazine-ketamine administration (before natural recovery from the anesthesia), the righting reflex was apparent in less than 10 minutes.  相似文献   

15.
We compared the ability of 3 alpha 2-adrenoreceptor antagonists, idazoxan (0.05 mg/kg), tolazoline (2 mg/kg), and yohimbine (0.2 mg/kg) to reverse xylazine (0.3 mg/kg)-induced respiratory changes and CNS depression in 6 ewes. Once weekly, each ewe was given a random IV treatment of xylazine, followed in 5 minutes by either an antagonist or 0.9% NaCl solution. Xylazine alone caused recumbency for 54.2 +/- 5.3 minutes (mean +/- SEM). Xylazine also increased respiratory rate and decreased PaCO2 for at least 45 minutes, but did not significantly change arterial pH or PaCO2. Idazoxan and tolazoline were equally effective in reversing the respiratory actions of xylazine; however, yohimbine was less effective in reducing the respiratory rate and was ineffective in antagonizing the decreased PaO2. Idazoxan and tolazoline decreased the duration of xylazine-induced recumbency to 6.3 +/- 0.6 and 9.5 +/- 2.3 minutes, respectively, whereas yohimbine did not significantly change this effect of xylazine. Thus, at the dosages studied, idazoxan and tolazoline appeared to be more effective than yohimbine in reversing the respiratory and CNS depressant actions of xylazine in sheep.  相似文献   

16.
Fifteen turkey vultures were each given xylazine (1 mg/kg of body weight, IM) and ketamine (10 mg/kg, IM). In 5 of the birds (controls), the mean (+/- SD) induction time was 5.4 +/- 1.0 minutes and the mean duration of anesthesia was 109.8 +/- 25.4 minutes. The remaining 10 vultures (test birds) were given tolazoline (15 mg/kg, IV) 45 minutes after administration of xylazine and ketamine. In the test birds, the mean induction time was 4.5 +/- 1.6 minutes and the mean duration of anesthesia was 49 +/- 2.1 minutes. After administration of tolazoline, the birds regained consciousness in 3.7 +/- 1.9 minutes and were standing with normal posture in 14.2 +/- 5.4 minutes. All birds remained moderately sedated yet ambulatory and responsive to stimuli for 30 to 60 minutes after tolazoline administration. Results indicated that tolazoline was useful in controlling the duration of xylazine-ketamine-induced anesthesia in turkey vultures.  相似文献   

17.
A combination of ketamine and xylazine (88.9 mg of ketamine/ml and 11.1 mg of xylazine/ml) given IM (85.5 +/- 3.4 mg of ketamine/kg of body weight and 10.6 +/- 0.5 mg of xylazine/kg) or subcutaneously (85.6 +/- 4.0 mg of ketamine/kg and 10.7 +/- 0.7 mg of xylazine/kg) induced effective surgical anesthesia for 20 to 30 minutes in Richardson's ground squirrels. Use of ketamine alone (86 +/- 7 mg/kg, IM), a droperidol and fentanyl combination (2.6 +/- 0.4 mg of droperidol/kg and 52 +/- 8 micrograms of fentanyl/kg, IM), or sodium pentobarbital (50 +/- 2 mg/kg, intraperitoneally) did not induce surgical anesthesia, but did induce depressed respiratory rates in the squirrels.  相似文献   

18.
Serum insulin and plasma glucose concentrations were determined in 8 mares. Four IV treatments were studied: xylazine (1.1 mg/kg of body weight); yohimbine (0.125 mg/kg); yohimbine (0.125 mg/kg) followed 5 minutes later by xylazine (1.1 mg/kg); and 5 ml of isotonic saline solution as a control. Blood samples were collected before (time 0) and at 5, 15, 30, 60, 120, and 180 minutes after drug administration. Serum insulin concentration decreased and plasma glucose concentration increased in mares given xylazine. Plasma glucose concentration was unchanged in control mares and in mares given yohimbine or yohimbine followed by xylazine. Serum insulin concentration was unchanged in mares given saline solution, but transiently increased in mares given yohimbine alone. Treatment with yohimbine prevented xylazine-induced hypoinsulinemia and hyperglycemia.  相似文献   

19.
OBJECTIVE: To characterize the effect of general anesthesia and minor surgery on renal function in horses. ANIMALS: 9 mares with a mean (+/- SE) age and body weight of 9+/-2 years and 492+/-17 kg, respectively. PROCEDURE: The day before anesthesia, urine was collected (catheterization) for 3 hours to quantitate baseline values, and serum biochemical analysis was performed. The following day, xylazine (1.1 mg/kg, IV) was administered, and general anesthesia was induced 5 minutes later with diazepam (0.04 mg/kg, IV) and ketamine (2.2 mg/kg, IV). During 2 hours of anesthesia with isoflurane, Paco2 was maintained between 48 and 52 mm Hg, and mean arterial blood pressure was between 70 and 80 mm Hg. Blood and urine were collected at 30, 60, and 120 minutes during and at 1 hour after anesthesia. RESULTS: Baseline urine flow was 0.92+/-0.17 ml/kg/h and significantly increased at 30 and 60 minutes after xylazine administration (2.14+/-0.59 and 2.86+/-0.97 ml/kg/h respectively) but returned to baseline values by the end of anesthesia. Serum glucose concentration increased from 12+/-4 to 167+/-8 mg/dl at 30 minutes. Glucosuria was not observed. CONCLUSIONS AND CLINICAL RELEVANCE: Transient hyperglycemia and an increase in rine production accompanies a commonly used anesthetic technique for horses. The increase in urine flow is not trivial and should be considered in anesthetic management decisions. With the exception of serum glucose concentration and urine production, the effect of general anesthesia on indices of renal function in clinically normal horses is likely of little consequence in most horses admitted for elective surgical procedures.  相似文献   

20.
Four captive moose (Alces alces), 4 mule deer (Odocoileus hemionus), and 5 white-tailed deer (Odocoileus virginianus) were immobilized with xylazine (0.63 to 1.29 mg/kg of body weight, IM). Mean induction times for the moose were 17 minutes and for the deer, 14 and 10 minutes, respectively. According to published data and past experience, the dosage of xylazine used would be expected to provide 115, 120, and 100 minutes of immobilization in captive moose, mule deer, and white-tailed deer, respectively. In the present study, maximal sedation of the moose and deer was reversed with successive injections (given IV) of yohimbine (0.15 mg/kg) and 4-aminopyridine (0.26 to 0.29 mg/kg). These produced sternal recumbency-to-arousal intervals of 1 to 15 minutes and recumbency-to-standing or walking intervals of 1 to 24 minutes. Relapses to recumbency were not observed. The injections of the reversal drugs produced marked increases in respiratory rate and heart in the moose and deer, without occurrence of muscle tremors or convulsions. The administrations of yohimbine and 4-aminopyridine markedly enhanced the speed of recovery from xylazine-induced immobilization in moose and deer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号