首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
 The chemical conversion of phenolized sulfuric acid lignin (P-SAL), prepared from sulfuric acid lignin (SAL) by phenolation with sulfuric acid catalyst, to novel cationic surfactant was investigated. To elucidate the chemical reactivity of the P-SAL to a Mannich reaction, 1-guaiacyl-1-p-hydroxyphenylethane (I) as a simple phenolized sulfuric acid lignin model compound was reacted with dimethylamine and formaldehyde. Quantitative analysis of the products by gas-liquid chromatography suggested that the p-hydroxyphenyl nucleus was more reactive than the guaiacyl nucleus. The Mannich reaction of SAL with dimethylamine did not yield a soluble cationic surfactant, but P-SAL produced water-soluble cationic surfactant in a quantitative yield. The Mannich reaction products (MP-SAL) of P-SAL had 1,3-dimethylaminomethyl groups/C9-C6. The results of the surface tension measurements showed that the decrease in surface tension of MP-SAL was much larger than that of lignosulfonate as a commercial surfactant from lignin.  相似文献   

2.
To utilize acid hydrolysis lignin effectively, chemical conversion to anion-exchange resin was investigated by two methods. Sulfuric acid lignin (SAL) was selected as a typical acid hydrolysis lignin in this experiment. Because it is less reactive, SAL was phenolated with sulfuric acid catalyst to yield reactive phenolized SAL (P-SAL) with p-hydroxyphenyl nuclei. One method was the restricted resinification of P-SAL followed by the Mannich reaction with formaldehyde and dimethylamine to yield a weakly basic anion-exchange resin with an ion-exchange capacity of 2.4mEq/g. Another method was to react resinified P-SAL with glycidyltrimethylammonium chloride to yield a strongly basic anion-exchange resin with an ion-exchange capacity of 2.0mEq/g. The reaction of a simple P-SAL model compound with an epoxide suggested that the phenolic hydroxyl group of the p-hydroxyphenyl nucleus had slightly higher reactivity than that of the guaiacyl nucleus.Part of this report was presented at the 47th Lignin Symposium, Fukuoka, October 2002  相似文献   

3.
Cationic polymers that acted as the retention aids for usual rosin sizes in neutral papermaking were prepared from sulfuric acid lignin (SAL), one type of acid lignin. To convert SAL to the cationic polymer (MP-SAL), SAL was phenolated and then treated by the Mannich reaction to introduce the amino groups. In the MP-SAL single system, MP-SAL exhibited high sizing effectiveness in neutral papermaking with the rosin emulsion size. However, MP-SAL showed no sizing effectiveness when soap rosin size was used. MP-SAL showed increased sizing effectiveness as the pK a of the introduced amino group increased. From this and comparison of the sizing degrees of MP-SAL and polyethylenimine, which possesses a linear structure, it was suggested that the sizing effectiveness was not only affected by the charge density and molecular weight, but also by the basicity of the introduced amino groups and the molecular structure of the retention aid. In the alum–MP-SAL dual system, alum and MP-SAL synergistically enhanced the sizing effectiveness in the rosin emulsion sizing at neutral pH. In turn, this allowed a decrease in the MP-SAL dosage and resulted in a small decrease in brightness.Part of this report was presented at the 48th Lignin Symposium, October 2003, Fukui  相似文献   

4.
The chemical conversion of red pine sulfuric acid lignin (Klason lignin) (SAL) as an acid hydrolysis lignin sample to water-soluble arylsulfonates of lignin derivation (i.e., phenolized SAL) was investigated. Treatment of phenolized SAL with chlorosulfonic acid followed by alkali hydrolysis gave water-soluble sulfonated products with a sulfonic acid group on their aromatic nuclei quantitatively. The products possess 2.0 SO3Na/C9 C6. In contrast, the content of sulfuric acid group in sulfonated SAL was only 0.33C9. Chlorosulfonation of 1-guaiacyl-l-p-hydroxyphenylethane as a phenolized guaiacyl lignin model compound revealed that the sulfonyl chloride group was introduced at thepara position of an aromatic methoxyl group, theortho position of a phenolic hydroxyl group, or both.  相似文献   

5.
To study the behavior of hardwood sulfuric acid lignin (SAL) during phenolization, we compared the product yield, average molecular weight, methoxy content, and reactions of simple model compounds with those of softwood SAL, focusing on the difference between syringyl and guaiacyl units. The beech SAL reacted with phenol more readily than red pine SAL and yielded a larger soluble fraction of phenolized SAL. To investigate the difference in the phenolization activity of the syringyl and guaiacyl units in beech lignin, we prepared syringyl-nucleus-rich sulfuric acid lignin (S-rich-SAL) and guaiacyl-nucleus-rich sulfuric acid lignin (G-rich-SAL) from beech, which were subjected to phenolization. The results suggest that the syringyl unit in SAL had greater phenolization activity and its phenolized products were more soluble in acidic aqueous medium and introduced less phenol than the guaiacyl unit. Using model compounds, the study also showed that the syringyl unit had higher phenolization reactivity than the guaiacyl unit.  相似文献   

6.
The chemical preparation of strongly acidic cation-exchange resin from sulfuric acid lignin (Klason lignin) (SAL), a typical acid hydrolysis lignin, was investigated. Sulfonation of resinified SAL itself gave a resin with an ion-exchange capacity of 2.3 mEq/g. After resinification with formaldehyde, the phenolized SAL with a reactivep-hydroxyphenyl group yielded a resin with an ion-exchange capacity of 3.2 mEq/g. The latter capacity is superior to that of the corresponding commercial phenol-type resins (2–3 mEq/g), but did not reach the level of the corresponding commercial styrene-type resins (4-5 mEq/g).This paper was presented at the 43th Lignin Symposium, Fuchu, October 1998  相似文献   

7.
 Kenaf (Hibiscus cannabinus) plants are widely known for their contribution to the global and regional environment because of their ability to fix CO2. On the other hand, some scientists have doubts about CO2 fixation by kenaf and have misgivings about the effect of kenaf on the ecosystem. We have characterized the structural characteristics of cell walls of bast fibers, cores, roots, and leaves of kenaf during the maturation of plants and investigated the rate of photosynthesis. During maturation of the kenaf plant the cellulose (bast fiber 52–59%, core 44–46%) and lignin (bast fiber 9.3–13.2%, core 18.3–23.2%) contents increased significantly. The aromatic composition of the lignin of bast fiber was significantly different from that of the core lignin and of other plants. The lignin of bast fiber appears similar to pure syringyl lignin. Fixation of CO2 by kenaf plants and their contribution to the global environment are discussed. A significatly high rate of photosynthesis of kenaf plants was observed compared to that of woody plants in Japan, but the amount of CO2 fixation depends on the characteristics of the plantation. If the kenaf was planted in high density, about twice as much CO2 was fixed as was fixed by trees in a tropical rain forest. Received: April 22, 2002 / Accepted: July 24, 2002 Acknowledgments This project was supported by the Science and Technology Agency (STA) fellowship of the Japan International Science and Technology Exchange Center (JISTEC), which has been successfully applied by Dr. Shuji Hosoya, Forestry and Forest Products Research Institute. We thank Dr. Toshio Sumizono and Mr. Masao Sakurai, Forestry and Forest Products Research Institute, for their kind help in determining the rate of photosynthesis and cultivating the kenaf plants, respectively. We also express our appreciation to Dr. Quang Hung Le, College of Agriculture and Forestry, Ho Chi Minh City, Vietnam for offering information about the cultivation of kenaf at Thu Duc District, Ho Chi Minh City.  相似文献   

8.
 The reaction behavior and kinetics of lignin model compounds were studied in supercritical methanol with a batch-type supercritical biomass conversion system. Guaiacol, veratrole, 2,6-dimethoxyphenol, and 1,2,3-trimethoxybenzene were used as model compounds for aromatic rings in lignin. In addition, 5-5, β-1, β-O-4, and α-O-4 types of dimeric lignin model compounds were used as representatives of linkages in lignin. As a result, aromatic rings and 5-5 (biphenyl)-type structures were stable in supercritical methanol, and the β-1 linkage was not cleaved in the β-1-type structure but converted rapidly to stilbene. On the other hand, β-ether and α-ether linkages of β-O-4 and α-O-4 lignin model compounds were cleaved rapidly, and these compounds decomposed to some monomeric compounds. Phenolic compounds were found to be more reactive than nonphenolic compounds. These results indicate that cleavages of ether linkages mainly contribute to the depolymerization of lignin, whereas condensed linkages such as the 5-5 and β-1 types are not cleaved in supercritical methanol. Therefore, it is suggested that the supercritical methanol treatment effectively depolymerizes lignin into the lower-molecular-weight products as a methanol-soluble portion mainly by cleavage of the β-ether structure, which is the dominant linkage in lignin. Received: December 19, 2001 / Accepted: April 30, 2002 Acknowledgments This research has been done under the research program for the development of technologies for establishing an ecosystem based on recycling in rural villages for the twenty-first century from the Ministry of Agriculture, Forestry and Fisheries, Japan; by a Grant-in-Aid for Scientific Research (B)(2) (no.12460144, 2001.4–2003.3) from the Ministry of Education, Culture, Sports, Science and Technology, Japan; and under the research program from Kansai Research Foundation for Technology Promotion, Japan. The authors thank them for their financial support. This study was presented in part at the 45th Lignin Symposium, Ehime, Japan, October 2000 and the 52nd Annual Meeting of the Japan Wood Research Society, Gifu, Japan, April 2002 Correspondence to:S. Saka  相似文献   

9.
Highly condensed lignin can be transformed by three reactions — phenolation, hydroxymethylation, and neutral sulfonation — to water-soluble lignosulfonate. To elucidate reactivities and products in the latter two reactions, simple compounds were selected as lignin model compounds. With hydroxymethylation of creosol at 60°C, the yield of a condensed-type product with the diarylmethane structure was less than 10%. Hydroxymethylation of 1-guaiacyl-1-p-hydroxy-phenylethane (compound VI) as a phenolized guaiacyl lignin model compound gave four compounds. The initial reaction introduced the hydroxymethyl group mainly in the guaiacyl nucleus, and the additional reaction created two hydroxymethyl groups in the p-hydroxyphenyl nucleus. Contrary to our estimation, treatment of the models with 13C-labeled formaldehyde (H13CIIO) did not form any diarylmethane structure. Neutral sulfite treatment of hydroxymethylated products gave corresponding sulfonates in high yields. Phenolized guaiacylglycerol--aryl ether (compound XVI) showed a reactivity similar to that of compound VI.This paper was presented at the 45th and 46th annual meetings of the Japan Wood Research Society at Tokyo and Kumamoto, April 1995 and April 1996, respectively  相似文献   

10.
 The chemical conversion of Japanese beech (Fagus crenata Blume) and Japanese cedar (Cryptomeria japonica D. Don) woods in supercritical methanol was studied using the supercritical fluid biomass conversion system with a batch-type reaction vessel. Under conditions of 270°C/27 MPa, beech wood was decomposed and liquefied to a greater extent than cedar wood, and the difference observed was thought to originate mainly from differences in the intrinsic properties of the lignin structures of hardwood and softwood. However, such a difference was not observed at 350°C/43 MPa, and more than 90% of both beech and cedar woods were effectively decomposed and liquefied after 30 min of treatment. This result indicates that the supercritical methanol treatment is expected to be an efficient tool for converting the woody biomass to lower-molecular-weight products, such as liquid fuels and useful chemicals. Received: December 19, 2001 / Accepted: March 15, 2002 Acknowledgments This research has been done under the research program for the development of technologies for establishing an eco-system based on recycling in rural villages for the twenty-first century from the Ministry of Agriculture, Forestry and Fisheries, Japan and by a Grant-in-Aid for Scientific Research (B)(2) (no.12460144, 2001.4–2003.3) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. This study was presented in part at the 45th Lignin Symposium, Ehime, Japan, October 2000 and the 51st Annual Meeting of the Japan Wood Research Society, Tokyo, Japan, April 2001. Correspondence to:S. Saka  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号