首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is increasing pressure to reduce water use and environmental impact associated with open system, soil-less production in simple, plastic greenhouses on the Mediterranean coast. This may force the adoption of re-circulation of nutrient solutions. In south-eastern Spain, irrigation water is mostly from aquifers and has moderate levels of salinity. The adoption of re-circulation using moderately saline water requires detailed information of crop response to salinity, in order to optimise management. The effect of salinity on fruit yield, yield components and fruit quality of tomato grown in soil-less culture in plastic greenhouses in Mediterranean climate conditions was evaluated. Two spring growing periods (experiments 1 and 2) and one long season, autumn to spring growing period (experiment 3) studies were conducted. Two cultivars, ‘Daniela’ (experiment 1) and ‘Boludo’ (experiments 2 and 3), were used. Seven levels of electrical conductivity (EC) in the nutrient solution were compared in experiment 1 (2.5–8.0 dS m−1) and five levels in experiments 2 and 3 (2.5–8.5 dS m−1). Total and marketable yield decreased linearly with increasing salinity above a threshold EC value (ECt). There were only small effects of climate and cultivar on the ECt value for yield. Average threshold EC values for total and marketable fruit yield were, respectively, 3.2 and 3.3 dS m−1. The linear reductions of total and marketable yield with EC above ECt showed significant differences between experiments, the slope varying from 7.2% (autumn to spring period, ‘Boludo’) to 9.9% (spring period, ‘Boludo’) decreases per dS m−1 increase in EC for total yield, and from 8.1% (spring period, ‘Daniela’) to 11.8% (spring period, ‘Boludo’) for marketable yield. The decrease of fresh fruit yield with salinity was mostly due to a linear decrease of the fruit weight of 6.1% per dS m−1 from an ECt of 3.0 dS m−1 for marketable fruits. Reduction in fruit number with salinity made a smaller relative contribution to reduced yield. Blossom-end rot (BER) increased with increasing salinity. There was a higher incidence of BER with spring grown crops, and ‘Boludo’ was more sensitive than ‘Daniela’. Increasing salinity improved various aspects of fruit quality, such as: (i) proportion of ‘Extra’ fruits (high visual quality), (ii) soluble solids content, and (iii) titratable acidity content. However, salinity decreased fruit size, which is a major determinant of price. An economic analysis indicated that the EC threshold value above which the value of fruit production decreased linearly with increasing salinity was 3.3 dS m−1, which was the same as that for marketable yield. In the economic analysis, the value of increased visual fruit quality was offset by reduced yield and smaller fruit size.  相似文献   

2.
Good water management combined with appropriate soil management is necessary for sustainable crop production in drylands. A pot culture experiment was conducted using sand dune soil under greenhouse conditions to evaluate the response of wheat (Triticum aestivum L.) to the application of farmyard manure (FYM) or poultry manure (PM), and irrigation with water at two salinity levels (0.11 and 2.0 dS m−1) and two irrigation intervals (daily and every second day). The manure was applied at a rate of 20 Mg ha−1. The soil water content, measured 1 h before every irrigation, showed that soil treated with PM retained more water than that treated with FYM, while the control (no manure) contained the least water. FYM treatment resulted in 78 and 21% higher dry matter yield compared to the control and PM treatments, respectively, under daily irrigation using good-quality water. The increase was 29 and 55%, respectively, when saline water was used for daily irrigation. A similar trend was observed with the alternate day irrigation treatment; FYM gave the highest dry matter yield. The number of tillers and plant height showed that FYM was better than PM, which in turn was better than the control under irrigation with good-quality water regardless of the irrigation interval. When water of the highest salinity was used for irrigation, FYM was still always the best, but the control was now better than the PM treatment. The electrical conductivity of the soil measured at the end of the experiment was slightly higher with PM, as compared to the FYM and control treatments. A significant interaction between irrigation water quality and manure application was observed, affecting plant growth. PM aggravated the adverse affect of saline water on plant growth by increasing soil salinity.  相似文献   

3.
In many water scarce areas, saline water has been included as an important substitutable resource in agricultural irrigation. It would be of practical use to investigate the effect of stage-specific saline irrigation on yield, fruit quality, and other growth responses of greenhouse tomato, to establish a proper irrigation management strategy for tomato production in these regions. Here, saline irrigations (3.33, 8.33, and 16.67 dS m−1 NaCl solution) were applied during four growth stages of greenhouse tomato (L. esculentum Mill. cv. Zhongza No. 9) grown in the North China Plain, respectively. These include flowering and fruit-bearing stage (stage 1), first cluster fruit expanding stage (stage 2), second cluster fruit expanding stage (stage 3), and harvesting stage (stage 4). Compared with the following three stages, yield loss was most remarkable in stage 1 under all three salinity levels. Under irrigation practices using 3.33 dS m−1 saline water in all four stages, 8.33 dS m−1 saline water in latter three stages, and 16.67 dS m−1 saline water in stage 4, yield reduction was not significant while fruit quality was improved. In conclusion, it is feasible to use stage-specific saline irrigation for tomato production in water scarce areas like North China Plain.  相似文献   

4.
Little information is available on the quantitative effects on crops of saline sprinkler irrigations and the presumable beneficial effects of nocturnal versus diurnal irrigations. We measured crude protein content, carbon isotope discrimination and total dry matter (TDM) of alfalfa (Medicago sativa L.) subject to diurnal and nocturnal saline sprinkler irrigations. The work was carried out in Zaragoza (Spain) during the 2004–2006 growing seasons with a triple line source sprinkler system using synthetic saline waters dominated by NaCl with an irrigation water EC ranging from 0.5 to 5.6 dS m−1. The quality of alfalfa hay assessed through its crude protein concentration was not significantly affected by salinity. Carbon isotope discrimination, an indicator of the effect of osmotic stress on plant water status, tended to decrease with increases in salinity. Based on a piecewise linear response model, alfalfa grown under saline sprinkler irrigation was shown to be more tolerant (threshold soil salinity, ECe = 3.5 dS m−1) than in previous experiments under surface irrigation (threshold ECe = 2.0 dS m−1) at relatively low salinity values, but became more sensitive at higher salinity values as shown by the higher absolute slope (13.4%) for sprinkler as compared to surface irrigation (7.3%). No significant differences in TDM were found between diurnal and nocturnal saline sprinkler irrigations. The recommended practice of irrigating at night for sprinkler irrigation using saline water is therefore not supported by our results in alfalfa grown under semiarid conditions.  相似文献   

5.
In the Canary Islands, water scarcity is one of the constraints for agricultural activity. Non-conventional water resources generally represent more water volume than conventional ones. The distribution of these resources frequently permits the possibility of a conjunctive use of desalinated (DW) water and reclaimed municipal wastewater (RW). Field testing with both water qualities and different irrigation systems is necessary for optimal site-specific management. The objective of this work was to evaluate soil salinity and phosphorus distribution, and alfalfa yield in a 20 month field experiment carried out in the island of Gran Canaria, using municipal RW and freshwater (FW) under subsurface drip irrigation (SDI). Phosphorus speciation was performed both in irrigation waters and in soils (Olsen's inorganic, organic, and microbial). RW had large EC values (2.4 dS m−1) with a remarkable nutrient load contribution and an average total P around 3 mg L−1, predominantly hydrolysable forms, while FW had very low salinity and negligible amounts of P. For the RW treatment a salt gradient was established, causing plant mortality between the irrigation lines. The study of P speciation allows describing P distribution and plant uptake in terms of P forms. Large values of microbial P were produced for the two irrigation waters around the emitters, especially for FW.A faster P-cycling could have contributed to the significantly larger inorganic P contents observed in FW irrigated soils, in spite no external sources were added by the irrigation water.  相似文献   

6.
Specific plants can remove salts from the soil and contribute to saline remediation in orchard intercropping. Determining the level of highest salinity that a salt-removing crop can withstand without reducing its yield is important for management. It is also important to know the critical hazardous level of saline irrigation water for the fruit trees.The objective of this study was to investigate the salt-removing capacity of purslane by studying different stress criteria and by tracking its salt removal from germination to harvest. Therefore, a pot experiment was performed by enhanced salinity levels.The results showed that purslane could cumulatively remove considerable amounts of salt from the soil if practical to cultivate as an intercrop all year round. In this regard, 6.5 dS m−1 can be concluded as the reasonable salinity level for the purslane managed to be intercropped in fruit orchards.  相似文献   

7.
In arid and semi-arid regions, salinity is a serious and chronic problem for agriculture. A 3-year field experiment in the arid environment of Xinjiang, northwest China, was conducted to study the salinity change in soil resulting from deficit irrigation of cotton with non-saline, moderate saline and high saline water. The salinity profile distribution was also evaluated by an integrated water, salinity, and nitrogen model, ENVIRO-GRO. The simulated and observed salinity distributions matched well. Results indicated that after 3 years of cotton production, the average salinity in the 1.0-m soil profile was 336% and 547% of the original soil profile, respectively, for moderate saline and high saline water irrigation. If the practices continued, the average soil salinity (ECe) in the 1.0-m soil profile would approach a steady level of 1.7, 10.8, and 14.7 dS m−1, respectively, for the treatments receiving irrigation waters of 0.33, 3.62, and 6.71 dS m−1. It was concluded that deficit irrigation of saline water in this region was not sustainable. Model simulation showed that a big flood irrigation after harvest can significantly reduce the salt accumulation in the soil profile, and that this practice was much more efficient for salinity control than applying the same extra amount of water during the growing season.  相似文献   

8.
Rapid urbanization and industrialization have increased the pressure on limited existing fresh water to meet the growing needs for food production. Two immediate responses to this challenge are the efficient use of irrigation technology and the use of alternative sources of water. Drip irrigation methods may play an important role in efficient use of water but there is still limited information on their use on sugar beet crops in arid countries such as Iran. An experiment was conducted to evaluate the effects of irrigation method and water quality on sugar beet yield, percentage of sugar content and irrigation water use efficiency (IWUE). The irrigation methods investigated were subsurface drip, surface drip and furrow irrigation. The two waters used were treated municipal effluent (EC = 1.52 dS m−1) and fresh water (EC = 0.509 dS m−1). The experiments used a split plot design and were undertaken over two consecutive growing seasons in Southern Iran. Statistical testing indicated that the irrigation method and water quality had a significant effect (at the 1% level) on sugar beet root yield, sugar yield, and IWUE. The highest root yield (79.7 Mg ha−1) was obtained using surface drip irrigation and effluent and the lowest root yield (41.4 Mg ha−1) was obtained using furrow irrigation and fresh water. The highest IWUE in root yield production (9 kg m−3) was obtained using surface drip irrigation with effluent and the lowest value (3.8 kg m−3) was obtained using furrow irrigation with fresh water. The highest IWUE of 1.26 kg m−3 for sugar was obtained using surface drip irrigation. The corresponding efficiency using effluent was 1.14 kg m−3. Irrigation with effluent led to an increase in the net sugar yield due to an increase in the sugar beet root yield. However, there was a slight reduction in the percentage sugar content in the plants. This study also showed that soil water and root depth monitoring can be used in irrigation scheduling to avoid water stress. Such monitoring techniques can also save considerable volumes of irrigation water and can increase yield.  相似文献   

9.
This study was conducted in order to determine the effect of drip line spacing, irrigation regimes and planting geometries of tomato on yield, irrigation water use efficiency (IWUE) and net return. The experiments were carried out in the conditions of Eskisehir in Central Anatolian part of Turkey, between 2003 and 2005, with cv. Dual Large F1 tomatoes (Lycopercion esculentum L). The maximum yield of 121.1 t ha−1 was obtained from the treatment in which both the lateral and row spacing were 1 m, and irrigated with water amount based on the percentage of canopy cover. The seasonal irrigation water amount of the treatment was 551 mm. Tomatoes yield of 109.9 t ha−1 was obtained under conditions of 491 mm seasonal irrigation water applied for the 2-m lateral spacing in which two plant rows (twin rows) were planted 0.35 m on either side of the lateral with a row spacing of 0.70 m across the drip lateral and 1.30 m in the interrow between each set of twin rows. Although water saving of 60 mm and investments economy of 40% were provided from the twin-row design, the yearly return of the design including one lateral for each row was US$ 1590 ha−1 higher than that the return of the twin-row design. The method of determination of irrigation water amount based on the percentage of canopy cover appeared to be the most reasonable and effective one in terms of the yield and IWUE. On the other hand, the maximum irrigation water use efficiency (22.3 kg m3) was obtained from 2-m lateral spacing and the percentage of canopy cover for calculation of the amount of irrigation water applied. Thus, canopy cover may be used successfully at any lateral design conditions.  相似文献   

10.
The cost and scarcity of water is placing increasing pressure on Australian dairy farmers to utilise water for forage production as efficiently as possible. This study aimed to identify perennial forage species with greater water-use efficiency (WUE) than the current dominant species, perennial ryegrass (Lolium perenne L.). Fifteen perennial forage species were investigated under optimum irrigation and two deficit irrigation treatments, over three years at Camden, NSW, on a brown Dermsol in a warm temperate climate. Under optimal irrigation, there was a nearly twofold difference in mean WUEt (total yield/evapotranspiration) between forages, with kikuyu (Pennisetum clandestinum Hochst. ex. chiov.) having the highest (27.3 kg ha−1 mm−1) and birdsfoot trefoil (Lotus corniculatus L.) the lowest (14.8 kg ha−1 mm−1). Kikuyu was also the most water use efficient forage under the extreme deficit irrigation treatment, although its mean WUEt declined by 15% to 23.2 kg ha−1 mm−1, while white clover (Trifolium repens L.) in the same treatment had the largest decline of 44% and the lowest WUEt of only 8.8 kg ha−1 mm−1. In order to maximise WUE for any forage, it is necessary to maximise yield, as there is a strong positive relationship between yield and WUEt.  相似文献   

11.
In 2004 and 2005, the feasibility of agricultural use of saline aquaculture wastewater for irrigation of Jerusalem artichoke and sunflower was conducted in the Laizhou region using saline aquaculture wastewater mixed with brackish groundwater at different ratios. Six treatments with different electrical conductivities (EC) were included in the experiment: CK1 (rainfed), CK2 (irrigation with freshwater, EC of 0.02 dS m−1), and saline aquaculture wastewater (EC of 39.2 dS m−1) mixed with brackish groundwater (EC of 4.4 dS m−1) at volumetric ratios of 1:1, 1:2, 1:3, and 1:4 with corresponding EC of 22.0, 16.1, 13.2, and 11.4 dS m−1. Soil electrical conductivity (ECe) in the saline aquaculture wastewater irrigation treatments was significantly higher (P ≤ 0.05) than that in the rainfed or freshwater irrigation treatments, and the maximum value occurred in the 22.0 dS m−1 treatment. The sodium adsorption ratio (SAR) ranged from 4.1 to 11.7 mmol1/2 L−1/2 and increased with decreasing salinity of irrigation water. The biomass of Jerusalem artichoke significantly decreased (P ≤ 0.05) when irrigated with saline aquaculture wastewater compared to the rainfed or freshwater irrigation treatments; however, the effect of salinity on root biomass was much smaller than the aerial parts. Concomitantly, the highest tuber yield of Jerusalem artichoke occurred in the 11.4 dS m−1 treatment, while the highest seed yield of sunflower occurred in the rainfed treatment. Additionally, nitrogen and phosphorus concentrations of Jerusalem artichoke were significantly higher in the 11.4 dS m−1 treatment than the other treatments. This study demonstrated that properly diluted saline aquaculture wastewater can be used successfully to irrigate Jerusalem artichoke with higher economic yield and nutrient removal, but not sunflower due to the difference in salt tolerance.  相似文献   

12.
Corn crop response under managing different irrigation and salinity levels   总被引:1,自引:0,他引:1  
Non-uniformity of water distribution under irrigation system creates both deficit and surplus irrigation areas. Water salinity can be hazard on crop production; however, there is little information on the interaction of irrigation and salinity conditions on corn (Zea Mays) growth and production. This study evaluated the effect of salinity and irrigation levels on growth and yield of corn grown in the arid area of Egypt. A field experiment was conducted using corn grown in northern Egypt at Quesina, Menofia in 2009 summer season to evaluate amount of water applied, salinity hazard and their interactions. Three salinity levels and five irrigation treatments were arranged in a randomized split-plot design with salinity treatments as main plots and irrigation rates within salinity treatments. Salinity treatments were to apply fresh water (0.89 dS m−1), saline water (4.73 dS m−1), or mixing fresh plus saline water (2.81 dS m−1). Irrigation treatments were a ratio of crop evapotranspiration (ET) as: 0.6ET, 0.8ET, 1.0ET, 1.2ET, and 1.4ET. In well-watered conditions (1.0ET), seasonal water usable by corn was 453, 423, and 380 mm for 0.89EC, 2.81EC and 4.73EC over the 122-day growing season, respectively. Soil salt accumulation was significantly increased by either irrigation salinity increase or amount decrease. But, soil infiltration was significantly decreased by either salinity level or its interaction with irrigation amount. Leaf temperature, transpiration rate, and stomata resistance were significantly affected by both irrigation and salinity levels with interaction. Leaf area index, harvest index, and yield were the greatest when fresh and adequate irrigation was applied. Grain yield was significantly affected in a linear relationship (r2 ≥ 0.95) by either irrigation or salinity conditions with no interaction. An optimal irrigation scheduling was statistically developed based on crop response for a given salinity level to extrapolate data from the small experiment (uniform condition) to big field (non-uniformity condition) under the experiment constraints.  相似文献   

13.
The reported study aimed at developing an integrated management strategy for irrigation water and fertilizers in case of wheat crop in a sub-tropical sub-humid region. Field experiments were conducted on wheat crop (cultivar Sonalika) during the years 2002–2003, 2003–2004 and 2004–2005. Each experiment included four fertilizer treatments and three irrigation treatments during the wheat growth period. During the experiment, the irrigation treatments considered were I1 = 10% maximum allowable depletion (MAD) of available soil water (ASW); I2 = 40% MAD of ASW; I3 = 60% MAD of ASW. The fertilizer treatments considered in the experiments were F1 = control treatment with N:P2O5:K2O as 0:0:0 kg ha−1, F2 = fertilizer application of N:P2O5:K2O as 80:40:40 kg ha−1; F3 = fertilizer application of N:P2O5:K2O as 120:60:60 kg ha−1 and F4 = fertilizer application of N:P2O5:K2O as 160:80:80 kg ha−1. In this study CERES-wheat crop growth model of the DSSAT v4.0 was used to simulate the growth, development and yield of wheat crop using soil, daily weather and management inputs, to aid farmers and decision makers in developing strategies for effective management of inputs. The results of the investigation revealed that magnitudes of grain yield, straw yield and maximum LAI of wheat crop were higher in low volume high frequency irrigation (I1) than the high volume low frequency irrigation (I3). The grain yield, straw yield and maximum LAI increased with increase in fertilization rate for the wheat crop. The results also revealed that increase in level of fertilization increased water use efficiency (WUE) considerably. However, WUE of the I2 irrigation schedule was comparatively higher than the I1 and I3 irrigation schedules due to higher grain yield per unit use of water. Therefore, irrigation schedule with 40% maximum allowable depletion of available soil water (I2) could safely be maintained during the non-critical stages to save water without sacrificing the crop yield. Increase in level of fertilization increases the WUE but it will cause environmental problem beyond certain limit. The calibrated CERES-wheat model could predict the grain yield, straw yield and maximum LAI of wheat crop with considerable accuracy and therefore can be recommended for decision-making in similar regions.  相似文献   

14.
Irrigation and fertilization management practices play important roles in crop production. In this paper, the Root Zone Water Quality Model (RZWQM) was used to evaluate the irrigation and fertilization management practices for a winter wheat–summer corn double cropping system in Beijing, China under the irrigation with treated sewage water (TSW). A carefully designed experiment was carried out at an experimental station in Beijing area from 2001 to 2003 with four irrigation treatments. The hydrologic, nitrogen and crop growth components of RZWQM were calibrated by using the dataset of one treatment. The datasets of other three treatments were used to validate the model performance. Most predicted soil water contents were within ±1 standard deviation (S.D.) of the measured data. The relative errors (RE) of grain yield predictions were within the range of −26.8% to 18.5%, whereas the REs of biomass predictions were between −38% and 14%. The grain nitrogen (N) uptake and biomass N uptake were predicted with the RE values ranging from −13.9% to 14.7%, and from −11.1% to 29.8%, respectively. These results showed that the model was able to simulate the double cropping system variables under different irrigation and fertilization conditions with reasonable accuracy. Application of RZWQM in the growing season of 2001–2002 indicated that the best irrigation management practice was no irrigation for summer corn, three 83 mm irrigations each for pre-sowing, jointing and heading stages of winter wheat, respectively. And the best nitrogen application management practice was 120 kg N ha−1 for summer corn and 110 kg N ha−1 for winter wheat, respectively, under the irrigation with TSW. We also obtained the alternative irrigation management practices for the hydrologic years of 75%, 50% and 25%, respectively, in Beijing area under the conditions of irrigation with TSW and the optimal nitrogen application.  相似文献   

15.
Excess salinity in irrigation water reduces sugarcane yield and juice quality. This study was conducted to compare the effect of irrigation with water of 1.3 dS m−1 vs. 3.4 dS m−1 on sugarcane yield and quality, and to evaluate whether an electrostatic conditioning treatment of the water influenced the salt effects. The study was conducted in a commercial field divided into large plots ranging from 1.0 to 1.2 ha in size. Cane and sugar yields were reduced approximately 17% by the 3.4 dS m−1 water compared to the 1.3 dS m−1 water, but juice quality parameters were not affected. Conditioning of the irrigation water using a device called an ‘electrostatic precipitator’ which claimed to affect various water properties had no effect on cane yield, juice quality or soil salinity levels. The detrimental effect of the high salt irrigation water was somewhat less than might be expected, probably due to good late summer rainfall which may have flushed the root zone from the excessive salts.  相似文献   

16.
Overland water and salt flows in a set of rice paddies   总被引:1,自引:0,他引:1  
Cultivation of paddy rice in semiarid areas of the world faces problems related to water scarcity. This paper aims at characterizing water use in a set of paddies located in the central Ebro basin of Spain using experimentation and computer simulation. A commercial field with six interconnected paddies, with a total area of 5.31 ha, was instrumented to measure discharge and water quality at the inflow and at the runoff outlet. The soil was classified as a Typic Calcixerept, and was characterized by a mild salinity (2.5 dS m−1) and an infiltration rate of 5.8 mm day−1. The evolution of flow depth at all paddies was recorded. Data from the 2002 rice-growing season was elaborated using a mass balance approach to estimate the infiltration rate and the evolution of discharge between paddies. Seasonal crop evapotranspiration, estimated with the surface renewal method, was 731 mm (5.1 mm day−1), very similar to that of other summer cereals grown in the area, like corn. The irrigation input was 1874 mm, deep percolation was 830 mm and surface runoff was 372 mm. Irrigation efficiency was estimated as 41%. The quality of surface runoff water was slightly degraded due to evapoconcentration and to the contact with the soil. During the period 2001–2003, the electrical conductivity of surface runoff water was 54% higher than that of irrigation water. However, the runoff water was suitable for irrigation. A mechanistic mass balance model of inter-paddy water flow permitted to conclude that improvements in irrigation efficiency cannot be easily obtained in the experimental conditions. Since deep percolation losses more than double surface runoff losses, a reduction in irrigation discharge would not have much room for efficiency improvement. Simulations also showed that rice irrigation performance was not negatively affected by the fluctuating inflow hydrograph. These hydrographs are typical of turnouts located at the tail end of tertiary irrigation ditches. In fact, these are the sites where rice has been historically cultivated in the study area, since local soils are often saline-sodic and can only grow paddy rice taking advantage of the low salinity of the irrigation water. The low infiltration rate characteristic of these saline-sodic soils (an experimental value of 3.2 mm day−1 was obtained) combined with a reduced irrigation discharge resulted in a simulated irrigation efficiency of 60%. Paddy rice irrigation efficiency can attain reasonable values in the local saline-sodic soils, where the infiltration rate is clearly smaller than the average daily rice evapotranspiration.  相似文献   

17.
The increasing scarcity of water for irrigation is becoming the most important problem for producing forage in all arid and semi-arid regions. Pearl millet is a key crop in these regions which needs relatively less water than other crops. In this research, a field study was conducted to identify the best combination of irrigation and nitrogen (N) management to achieve acceptable pearl millet forage both in quantity and quality aspects. Pearl millet was subjected to four irrigation treatments with interaction of N fertilizer (0, 75, 150 and 225 kg ha−1). The irrigation treatments were 40%, 60%, 80% and 100% of total available soil water (I40, I60, I80 and I100, respectively). The results showed that increasing moisture stress (from I40 to I100) resulted in progressively less total dry matter (TDM), leaf area index (LAI), and nitrogen utilization efficiency (NUzE), while water use efficiency (WUE) and the percentage of crude protein (CP%) increased. The highest TDM and LAI were found to be 21.45 t ha−1 and 8.65, in I40 treatment, respectively. TDM, WUE, CP% and profit responses to N rates were positive. The maximum WUE of 4.19 kg DM/m3 was achieved at I100 with 150 kg N ha−1. The results of this research indicate that the maximum profit of forage production was obtained in plots which were fully irrigated (I40) and received 225 kg N ha−1. However, in the situation which water is often limited and not available, application of 150 kg N ha−1 can produce high forage quality and guaranty acceptable benefits for farmers.  相似文献   

18.
The purpose of optimal water and nutrient management is to maximize water and fertilizer use efficiency and crop production, and to minimize groundwater pollution. In this study, field experiments were conducted to investigate the effect of soil salinity and N fertigation strategy on plant growth, N uptake, as well as plant and soil 15N recovery. The experimental design was a 3 × 3 factorial with three soil salinity levels (2.5, 6.3, and 10.8 dS m−1) and three N fertigation strategies (N applied at the beginning, end, and in the middle of an irrigation cycle). Seed cotton yield, dry matter, N uptake, and plant 15N recovery significantly increased as soil salinity level increased from 2.5 to 6.3 dS m−1, but they decreased markedly at higher soil salinity of 10.8 dS m−1. Soil 15N recovery was higher under soil salinity of 10.8 dS m−1 than those under soil salinity of 6.3 dS m−1, but was not significantly different from that under soil salinity of 2.5 dS m−1. The fertigation strategy that nitrogen applied at the beginning of an irrigation cycle had the highest seed cotton yield and plant 15N recovery, but showed higher potential loss of fertilizer N from the root zone. While the fertigation strategy of applying N at the end of an irrigation cycle tended to avoid potential N loss from the root zone, it had the lowest cotton yield and nitrogen use efficiency. Total 15N recovery was not significantly affected by soil salinity, fertigation strategy, and their interaction. These results suggest that applying nitrogen at the beginning of an irrigation cycle has an advantage on promoting yield and fertilizer use efficiency, therefore, is an agronomically efficient way to provide cotton with fertilizer N under the given production conditions.  相似文献   

19.
In this study, a regional irrigation schedule optimization method was proposed and applied in Fengqiu County in the North China Plain, which often suffers serious soil water drainage and nitrogen (N) leaching problems caused by excessive irrigation. The irrigation scheduling method was established by integrating the ‘checkbook irrigation method’ into a GIS-coupled soil water and nitrogen management model (WNMM) as an extension. The soil water and crop information required by the checkbook method, and previously collected from field observations, was estimated by the WNMM. By replacing manually observed data with simulated data from WNMM, the application range of the checkbook method could be extended from field scale to regional scale. The WNMM and the checkbook irrigation method were both validated by field experiments in the study region. The irrigation experiment in fluvo–aquic soil showed that the checkbook method had excellent performance; soil water drainage and N leaching were reduced by 83.1 and 85.6%, respectively, when compared with local farmers’ flood irrigation. Using the validated WNMM, the performance of checkbook irrigation in an entire winter wheat and summer maize rotation was also validated: the average soil water drainage and N leaching in four types of soils decreased from 331 to 75 mm year−1 and 47.7 to 9.3 kg ha−1 year−1, respectively; and average irrigation water use efficiency increased from 26.5 to 57.2 kg ha−1 mm−1. The regional irrigation schedule optimization method based on WNMM was applied in Fengqiu County. The results showed a good effect on saving irrigation water, decreasing soil water drainage and then saving agricultural inputs. In a typical meteorological year, it could save >110 mm of irrigation water on average, translating to >7.26 × 107 m3 of agricultural water saved each year within the county. Annual soil water drainage was reduced to <143 mm and N leaching to <27 kg ha−1 in most soils, all of which were significantly lower than local farmers’ flood irrigation. In the mean time, crop yield also had an average increase of 2,890 kg ha−1 when checkbook irrigation was applied.  相似文献   

20.
Irrigated agriculture is threatened by soil salinity in numerous arid and semiarid areas of the Mediterranean basin. The objective of this work was to quantify soil salinity through electromagnetic induction (EMI) techniques and relate it to the physical characteristics and irrigation management of four Mediterranean irrigation districts located in Morocco, Spain, Tunisia and Turkey. The volume and salinity of the main water inputs (irrigation and precipitation) and outputs (crop evapotranspiration and drainage) were measured or estimated in each district. Soil salinity (ECe) maps were obtained through electromagnetic induction surveys (ECa readings) and district-specific ECa-ECe calibrations. Gravimetric soil water content (WC) and soil saturation percentage (SP) were also measured in the soil calibration samples. The ECa-ECe calibration equations were highly significant (P < 0.001) in all districts. ECa was not significantly correlated (P > 0.1) with WC, and was only significantly correlated (P < 0.1) with soil texture (estimated by SP) in Spain. Hence, ECa mainly depended upon ECe, so that the maps developed could be used effectively to assess soil salinity and its spatial variability. The surface-weighted average ECe values were low to moderate, and ranked the districts in the order: Tunisia (3.4 dS m−1) > Morocco (2.2 dS m−1) > Spain (1.4 dS m−1) > Turkey (0.45 dS m−1). Soil salinity was mainly affected by irrigation water salinity and irrigation efficiency. Drainage water salinity at the exit of each district was mostly affected by soil salinity and irrigation efficiency, with values very high in Tunisia (9.0 dS m−1), high in Spain (4.6 dS m−1), moderate in Morocco (estimated at 2.6 dS m−1), and low in Turkey (1.4 dS m−1). Salt loads in drainage waters, calculated from their salinity (ECdw) and volume (Q), were highest in Tunisia (very high Q and very high ECdw), intermediate in Turkey (extremely high Q and low ECdw) and lowest in Spain (very low Q and high ECdw) (there were no Q data for Morocco). Reduction of these high drainage volumes through sound irrigation management would be the most efficient way to control the off-site salt-pollution caused by these Mediterranean irrigation districts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号