首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y. Kaneko    H. Yano    S. W. Bang  Y. Matsuzawa 《Plant Breeding》2003,122(3):239-243
The genetic stability and maintenance of Raphanus sativus‐Brassica rapa monosomic chromosome addition lines (a‐h‐types MALs, 2n = 19, BC2), developed by backcrossing the synthesized amphidiploid Raphanobrassica (Raphanus sativus × Brassica rapa, 2n = 38, RRAA) with R. sativus cv. ‘Shogoin’ (2n = 18, RR), was investigated. Transmission of the added alien chromosome through selected smaller seeds (SSS) and the inheritance of morphological traits and random amplified polymorphic DNA (RAPD)‐specific markers together with meiotic chromosome configuration and seed fertility were also investigated for three successive generations (BC3 to BC5). The distinctive traits and the RAPD‐specific markers of the eight types of MAL were substantially inherited and stably maintained throughout three generations, although a few variant plants (2n =18) resembling MALs (2n = 19) and hyperploidal plants (2n = 26 and 2n = 37) were generated in the earlier generations of BC3 and BC4 in comparison with BC5. The average transmission rates for three generations ranged from 26% for both the b‐type and the d‐type to 44% for the e‐type through SSS. On the other hand, the transmission rates through randomly selected seeds (RSS) were lower, ranging from 6.5% for the f‐type to 23.5% for the b‐type. In meiosis, more than 90% of PMCs showed the 9II +1I pairing configuration at metaphase I throughout three generations. For seed fertility, when backcrossed with the radish cv. ‘Shogoin’, the values were approximately 180% to 500% with the mode around 300% with the seed harvested from a pod increasing with the advancing generations. Genetic recombination between the radish chromosomes and the added chromosome is probably rare, suggesting that the added chromosome is mostly maintained unaltered in the background of the radish genome.  相似文献   

2.
Y. Kaneko    S. W. Bang  Y. Matsuzawa 《Plant Breeding》2000,119(2):137-140
The specific monosomic addition line of radish, Raphanus sativus, carrying the e chromosome of Brassica oleracea (2n = 19, e‐type MAL) with the genetic background of the late‐bolting cv.‘Tokinashi’ was produced by successive backcrossing of the original e‐type MAL of radish that showed early bolting in the genetic background of the cv. ‘Shogoin’. The early‐bolting trait specific to the e‐type MAL was constantly expressed in the backcrossed progenies (BC2, BC3 and BC4), whereas the reverted radish‐like plants (2n =18) were gradually converted to bolting as late as ‘Tokinashi’. The added e‐chromosome expressed an epistatic effect against the genome of Japanese radish. Its early‐bolting trait was dominant to the late‐bolting trait of ‘Tokinashi’ which may be under the control of a few genes. Moreover, e‐type specific RAPD markers detected in eight primers were invariably transmitted in the backcrossed progenies by ‘Tokinashi’. From the analysis of the characteristics to the e‐type MAL and e‐type specific RAPD markers, it is suggested that the e‐added chromosome of kale (B. oleracea) was transmitted from generation to generation without any recombination with the radish chromosome. The gene(s) for the early‐bolting trait detected in this study may be useful for breeding work in radish, especially in the tropical areas.  相似文献   

3.
Y. Kaneko    N. Nagasawa    S. W. Bang  Y. Matsuzawa 《Plant Breeding》2002,121(2):171-173
Eight plants of the putative double monosomic addition line (DMAL, 2n= 20) were developed by crossing a monosomic chromosome addition line of radish [f(A)‐type monosomic addition line (MAL) (2n= 19)] carrying the f chromosome of Brassica rapa (2n= 20, AA) with another [e(C)‐type MAL (2n= 19)] having the echromosome of Brassica oleracea (2n= 18, CC). The homoeological relationships between the two alien chromosomes were investigated by morphological, cytogenetic and random amplified polymorphic DNA (RAPD) analysis. Seventeen morphological traits that were not present in the radish cv. ‘Shogoin’ were observed in both MALs and these traits were substantially exhibited in DMAL plants. At the first metaphase of pollen mother cells (PMCs), the two parental MALs showed a chromosome configuration of 9II +1I, demonstrating impossibility of recombination between the R and the added chromosomes. The DMALs formed 10II in approximately 73% of PMCs, with one bivalent showing loose pairing between two chromosomes differing in size. In an attempt to identify the two MALs by RAPD‐specific markers using 26 selected random primers, 13 and 20 bands were specific for the f(A)‐type and the e(C)‐type MALs, respectively; 12 bands were common to both MALs (26.7%). In conclusion, the f chromosome of B. rapa is homoeologous to the e chromosome of B. oleracea. The genetic domain (genes) for 17 morphological traits are linked to each homoeologous chromosome bearing 27% of the corresponding RAPD markers.  相似文献   

4.
Six haploid plants of radish were obtained via alien monosomic addition lines (2n = 19). One plant was derived from anther culture of an Raphanus sativus‐Brassica oleracea addition line, one plant from the selected smaller seed of an R. sativus‐Sinapis arvensis addition line and four plants from an R. sativus‐B. rapa addition line. During metaphase I of pollen mother cells, two plants exhibited the chromosome pairing of (0‐3)II+ (3‐9)I, three showed (0‐1)III + (0‐3)II + (3‐9)I and the remaining plant (0‐2)II + (5‐9)I. Trivalents seemed to be formed by the pairing between two larger chromosomes and the smaller one with somewhat loose pairing. All haploid plants were inferior to the radish cv. ‘Shogoin’ (2n = 18) with respect to vegetative growth. Their flowers were smaller, with sterile pollen grains, but a few normal flowers with fertile pollen sporadically developed and then produced a few seeds. It is suggested that the radish genome (R, n = 9) might comprise three pairs of homoeologous chromosomes, with the remaining three chromosomes carrying the homologous region(s) that results in a trivalent formation.  相似文献   

5.
Summary Alloplasmic male-sterile Brassica oleracea L. was synthesized in a backcrossing program through amphidiploid Raphanobrassica by using Early Scarlet Globe radish (Raphanus sativus L.) as the donor of cytoplasm and B. oleracea broccoli and cabbage as recurrent pollen parents. Persistence of radish chromosomes and high female sterility were encountered in the first four backcrosses. Following use of colchiploid 4x broccoli as pollen parent, a BC5 plant was obtained that had 2n=3x+1=28 chromosomes, improved seed set, and no radish traits. The BC6 with recurrent 2x broccoli contained male-sterile plants with 2n=18 or 19 chromosomes, increased seed set, and broccoli morphology. Subsequent generations segregated for male-sterile and restored male-fertile plants, some with variable development of stamens and pollen. Leaf color of the alloplasmic plants, especially seedlings, was lighter green than normal.  相似文献   

6.
Intergeneric hybridization was performed between Moricandia arvensis and four inbred lines of Brassica rapa following embryo rescue. Three F1 hybrid plants were developed from three cross combinations of M. arvensis × B. rapa, and amphidiploids were synthesized by colchicine treatment. Six BC1 plants were generated from a single cross combination of amphidipolid × B. rapa ‘Ko1-303’ through embryo rescue. One BC2 and three BC3 plants were obtained from successive backcrossing with B. rapa ‘Ko1-303’ employing embryo rescue. Alloplasmic and monosomic addition lines of B. rapa (Allo-MALs, 2n = 21) were obtained from backcrossed progeny of three BC3 plants (2n = 21, 22 and 23) without embryo rescue. An alloplasmic line of B. rapa (2n = 20) degenerated before floliation on 1/2 MS medium due to severe chlorosis. Allo-MALs of B. rapa (2n = 21) showed stable male sterility without any abnormal traits in vegetative growth and female fertility. Molecular analyses revealed that the same chromosome and cytoplasm of M. arvensis had been added to each Allo-MAL of B. rapa. This Allo-MAL of B. rapa may be useful material for producing cytoplasmic male sterile lines of B. rapa.  相似文献   

7.
S. W. Bang    K. Sugihara    B. H. Jeung    R. Kaneko    E. Satake    Y. Kaneko    Y. Matsuzawa 《Plant Breeding》2007,126(1):101-103
Intergeneric crosses were made between Brassica oleracea and Moricandia arvensis utilizing embryo rescue. Six F1 hybrid plants were generated in the cross‐combination of B. oleracea × M. arvensis from 64 pods by the placenta‐embryo culture technique, whereas three plants were produced in the reciprocal cross from 40 pods by the ovary culture technique. The hybrid plants were ascertained to be amphihaploid with 2n = 23 chromosomes in mitosis and a meiotic chromosome association of (0–3)II + (17–23)I at metaphase I (M I). In the backcross with B. oleracea, some of these hybrids developed sesquidiploid BC1 plants with 2n = 32 chromosomes that predominantly exhibited a meiotic configuration of (9II + 14I) in pollen mother cells. The following backcross of BC2 plants to B. oleracea generated 48 BC3 progeny with somatic chromosomes from 2n = 19 to 2n = 41. The 2n = 19 plants showed a chromosomal association type of (9II + 1I) and a chromosomal distribution type of (91/2 + 91/2) or (9 + 10) at M I and M II, respectively. These facts might suggest that they were monosomic addition lines (MALs) of B. oleracea carrying a single chromosome of M. arvensis that could offer potential for future genetic and breeding research, together with other novel hybrid progeny developed in this intergeneric hybridization.  相似文献   

8.
C.-T. Qian    M. M. Jahn    J. E. Staub    X. D. Luo  J. F. Chen 《Plant Breeding》2005,124(3):272-276
A synthetic amphidiploid species Cucumis hyriviis Chen & Kirkbride (2n = 4x = 38; genome designated as HHCC) has recently been created from an interspecific mating between C. sativus L. (2n = 2x = 14: genome designated as CC) and C. hystrx. Chakr. (2n = 2x = 24; genome designated as HH). This amphidiploid is resistant to root knot nematode, tolerant to low irradiance, and has higher nutritional value than standard processing cucumber cultivars. An allotriploid (2n = 3x = 26; HCC) was derived from a cross between C. sativus L. and C. hytivus Chen & Kirkbride. Diploid meiotic behaviour in C. sativus and C. hystrix involves the development of seven and 12 metaphase bivalents respectively. In the derived allotriploid. univalents. bivalents, and trivalents (at relatively low frequency) were observed at metaphase I indicating that some homeologues from the C and H genomes can synapse. Based on a comparative karyotype analysis of cucumber (i.e. chromosome size and pairing behaviour) and aliotriploid plants, the seven bivalents observed at metaphase I were ascertained to be cucumber homologues, while the 12 univalents were of C. hystrix origin thus confirming the allotriploid karyotypic constitution to be HCC. On average, the frequency of trivalents was 0.24 at diakinesis and 0.22 in 100 meiocytes at metaphase I. indicating the possibility of genetic exchange due to the homoeology between the C and H genomes. After simultaneous cytokinesis, only polyads were observed in pollen mother cells (PMCs) at telophase II, which led to the production of sterile pollen grains. Multi‐polarization of chromosomes was dominant at anaphase II. However. in about 20% PMCs. chromosomes separated to form a 7C + 1‐2H complement, suggesting a possible method for the production of alien addition cucumber‐C hystrix lines through further backcrossing of the allotriploid to diploid cucumber.  相似文献   

9.
Summary Interspecific substitutions of the nucleus of Helianthus annuus (2n=34) into the cytoplasm of H. petiolaris (2n=34) were obtained by successive backcrossing using cultivated sunflower, H. annuus, as the recurrent pollen parent.Meiosis in the F1 was characterized by multivalents, suggesting that 10 of the 34 chromosomes were heterozygous for chromosomal interchanges. An additional pair of chromosomes also contained a paracentric inversion. Continued backcrossing resulted in rapid elimination of the meiotic aberrations evident in the F1. In the BC1, 1 of 11 plants had normal meiosis and by the BC2, only 13 of 54 plants had meiotic aberrations similar to those of the F1. However, trisomic progeny (2n=35) were found in 3 of the 11 BC1 plants and 20 of the 54 BC2 plants. No meiotic aberrations were observed in BC3 or BC4 plants. Plants with indehiscent anthers, and considered to be male sterile (M.S.), first occurred in the BC1 and, by the BC2, 51 of 54 plants were M.S. All 19 BC3 and 16 BC4 plants were M.S. Preliminary investigations suggest that the pollen from such plants is sterile and that the sterility is cytoplasmic rather than genetic.Disc-flower measurements were a useful technique for selecting samples at the correct stage of microsporogenesis, but could not be used to distinguish between successive backcrosses.  相似文献   

10.
Summary Cucumis sativus var. hardwickii (Royle) Alef., the wild progenitor of cultivated C. sativus is reported for the first time from peninsular India. The South Indian specimens showed n=7 bivalents in PMCs. The discontinous occurrence of the wild taxon in the Himalayan regions and peninsular hills and the existence of cultivars of C. sativus adapted to the tropical and temperate climates suggest polytopic domestication of the cultivated forms. The possibility of utilizing this wild germplasm for crop improvement is indicated.  相似文献   

11.
Interspecific hybridization between Brassica carinata and Brassica rapa   总被引:5,自引:0,他引:5  
The crossability between Brassica carinata (BBCC, 2n=34) and Brassica rapa (AA, 2n=20), and the cytomorphology of their F1 hybrids were studied. Hybrids between these two species were only obtained when B. carinata was used as the female parent. The hybrid plants exhibited intermediate leaf and flower morphology, and were found to be free from white rust and Alternaria blight diseases. One of the four F1 plants was completely male sterile, while the remaining plants had 4.8, 8.6, and 10.9% stainable pollen, respectively. No seed was produced on hybrid plants under self pollination or in backcrosses; but seed was obtained from open pollination. The occurrence of the maximum of 11 bivalents as well as up to 44.8%) of cells with multivalent associations in the form of trivalents (0‐2) and a quadrivalent (0‐1) in the trigenomic triploid hybrid (ABC, 2n = 27) revealed intergenomic homoeology among the A, B and C genomes. Meiotic analysis of F1 hybrids indicated that traits of economic importance, such as disease resistance, could be transferred from B. carinata to B. rapa through interspecific crosses.  相似文献   

12.
Clubroot is a soilborne disease that severely infects cruciferous species. Pak choi (Brassica rapa subsp. chinensis) is an economically important cruciferous crop cultivated throughout the world. However, no clubroot‐resistant germplasms have been identified in pak choi to date. To improve disease resistance, we used marker‐assisted selection (MAS) to introgress the clubroot resistance (CR) trait from the ‘CCR13685’ Chinese cabbage (Brapa subsp. pekinensis) inbred line into an elite pak choi inbred line, ‘GHQ11021’. Genetic analysis of F2 and BC1 progeny showed that CR of ‘CCR13685’ was controlled by a single dominant gene. We designed nine candidate sequence‐characterized amplified region markers, K‐1 to K‐9, based on two molecular markers linked to the CR gene. We found that K‐3 co‐segregated with CR and an inoculation test confirmed that K‐3 could be used for MAS. Two introgression lines, BC3‐1‐4 and BC3‐2‐18, were developed using K‐3 for foreground selection. These lines displayed the same phenotypic properties as ‘GHQ11021’, but were highly resistant to clubroot, indicating that the CR gene of ‘CCR13685’ had been successfully introduced into pak choi.  相似文献   

13.
A. Chandra    M. L. Gupta    S. S. Banga  S. K. Banga 《Plant Breeding》2004,123(5):497-498
An interspecific hybrid between a wild species, Brassica fruticulosa (2n = 16, FF) and a crop Brassica species, B. rapa (2n = 20, AA) was synthesized using sequential ovary‐ovule culture on MS medium supplemented with casein hydrolysate. Morphological, molecular and cytogenetic analysis confirmed the true hybrid nature of the offspring. The F1 plants (2n = 18) were intermediate in morphology, highly pollen‐sterile as well as self‐sterile. A maximum of three bivalents per PMC was recorded, but 14 I + 2 II was the most common meiotic configuration. Normal pollen fertility and regular bivalent (18 II) formation was observed in the amphiploid sectors of the hybrid plants. The F1 hybrid harboured significantly lower aphid populations than the crop Brassica parent.  相似文献   

14.
Substituting the nuclear genome of Brassica rapa into the cytoplasmic background of Enarthrocarpus lyratus through backcross substitution helped in developing cytoplasmic male sterility (CMS). Alloplasmic male sterile plants had pale green leaves, small flowers with narrow petals and rudimentary anthers. Female fertility, low initially, improved considerably with advanced backcross generations. Male sterility expression was stable throughout the growing season. Except for EC 339014, all B. rapa accessions (38) evaluated were partial maintainers of the male sterility. Introgression of gene(s) for fertility restoration from the cytoplasm donor species was facilitated by homoeologous pairing between B. rapa and E. lyratus genomes, as was apparent from the very frequent occurrence of a trivalent in the monosomic addition plants (2n = 10 II + 1 I). Backcrossing of fertile monosomic addition plants with B. rapa led to the recovery of male fertile plants possessing the stable euploid chromosome number (2n = 20). These plants restored male fertility in crosses with different (lyr) CMS B. rapa genotypes, confirming the introgression of fertility restorer gene(s) from E. lyratus, the cytoplasm donor species.  相似文献   

15.
Summary Raparadish, x Brassicoraphanus, the amphidiploid hybrid between Brassica rapa (syn. B.campestris) and Raphanus sativus (fodder radish) was made by Dolstra (1982). Primary hybrid plants grew vigorously, suggesting that the amphidiploid AARR might be useful as a fodder crop. Three populations of this new material were studied, with special attention to improvement of fertility and resistance to beet cyst nematode (Heterodera schachtii), whilst preserving genetic variability. For lack of progress one of the populations was abandoned after the fourth generation. The other two populations were observed through nine or ten generations. Apart from the last two generations mass selection for seed set was carried out on the basis of single plants. This led to a considerable increase in average seed production, without losing a wide variation for this trait. Thus more progress is being expected. Five cycles of mass selection for resistance to beet cyst nematodes led to a considerable increase of the level of resistance of both populations. The prospects of this new agricultural crop are discussed.  相似文献   

16.
Summary Interspecific F1-hybrids may arise in fields with transplastomic oilseed rape where B. rapa occurs as a weed. Spilled seeds, including transplastomic F1-hybrids with B. rapa, may germinate, which creates an opportunity for production of transplastomic BC1 with B. rapa as father (BC1r). Field trials were made with three different proportions of B. napus, B. rapa and F1-hybrids and three different densities. Contrary to most studies on how plant competition affects introgression between oilseed rape and B. rapa, this study focused on offspring produced on F1-hybrids, where the F1-hybrids had oilseed rape as maternal parent. We estimated the BC1r production in all combinations of proportion and density, and found that B. rapa sired from 0.6–7.8% of the offspring. At the proportion with the highest abundance of F1-hybrids the entire paternity was assessed. There was a significant density effect on the production of BC1r but the effect differed among proportions. Both the highest and lowest frequencies of BC1r were obtained at high plant density. Neither the proportion nor density affected the number of BC1r per square-meter significantly. Biomass components decreased significantly from low to intermediate density, whereas a further increase in density only affected the thousand-seed weight significantly. On the basis of the results from the present experiment we conclude that introgression of transgenes from transplastomic oilseed rape to B. rapa seems most likely at current field densities of B. napus, and when B. rapa is an abundant weed.  相似文献   

17.
To select superior seed parents for vegetable hybrid seed production, we conducted interspecific crosses between male sterile Brassica juncea (2n = 36, AABB) and eight inbred lines of Brassica rapa (2n = 20, AA). Alloplasmic lines of B. rapa with the cytoplasm of B. juncea were developed from B. juncea × B. rapa hybrids by repeated backcrossing using B. rapa as the recurrent male parent until the BC3 generation. Seed fertility, male sterility and chlorophyll content were investigated in these plants cultivated under four different temperature conditions (5, 10, 12 and 20°C). At 10°C, the alloplasmic lines of B. rapa with the cytoplasm of B. juncea were male sterile with partly chlorotic leaves. The alloplasmic B. rapa had lower chlorophyll a, chlorophyll b and carotenoid contents than those of the original B. rapa. The leaves recovered from chlorosis when the plants were cultivated at 20°C. An alloplasmic line of B. rapa (A6) is available as a seed parent for vegetable hybrid seed production and contributes seed fertility, slight chlorosis and stable male sterility.  相似文献   

18.
M. Kato  S. Tokumasu 《Euphytica》1980,29(1):97-106
Summary Nucleus substitution of Brassica japonica (2n=20) with Raphanus sativus (2n=18) was carried out by means of repeated backcrossing of Brassicoraphavus (2n=37) to R. sativus as a pollen donor. In the course of nucleus substitution, chlorophyll deficiency appeared. Plants with more than 28 chromosomes, like their parents, had green leaves and those with 24 to 26 chromosomes had yellowish green ones. Almost all plants with 18 to 23 chromosomes showed yellow or whitish yellow. The R. sativus with B. japonica cytoplasm (2n=18) was obtained after four successive backerosses. The completely substituted R. sativus showed the same fertility as the true R. sativus used as a recurrent parent. It is assumed that the chlorophyll deficiency is caused by disharmony between the B. japonica cytoplasm and the R. sativus nucleus. The chlorophyll deficiency is discussed in comparison with male sterility or other characters which sometimes occur in alloplasmic Raphanus and Brassica species.  相似文献   

19.
N. Inomata 《Euphytica》2003,133(1):57-64
The cytogenetic study was investigated in the intergeneric F1 hybrid, F2and backcross progenies (BC1). The plants used were Brassica juncea(2n=36) and Diplotaxis virgata(2n=18). Three intergeneric F1 hybrids between two species were produced through ovary culture. They showed 36 chromosomes. It might consist one genome of B. juncea and two genomes of D. virgata. The morphology of the leaves resembled that of B. juncea. The color of the petals was yellow that was like in D. virgata. The size of the petal was similar to that of B. juncea. The mean pollen fertility was15.3% and the chromosome associations in the first meiotic division were(0–1)IV+(0–2)III+(8–12)II+(12–20)I. Many F2 and BC1seeds were harvested after open pollination and backcross of the F1 hybrids withB. juncea, respectively. The F2seedlings showed different chromosome constitutions and the range was from 28 to54 chromosomes. Most seedlings had 38chromosomes followed by 36, 40 and 54. The BC1 seedlings also showed different chromosome constitutions and the range was from 29 to 62. Most seedlings had both 40and 54 chromosomes followed by 36, 46 and52. In the first meiotic division of F2 and BC1 plants, a high frequency of bivalent associations was observed in all the various kinds of somatic chromosomes. Many F3 and BC2 seeds were obtained by self-pollination and open pollination of both F2 and BC1 plants, and by backcrossing both F2 and BC1plants with B. juncea, respectively,especially, three type progeny with 36, 40or 54 chromosomes. The somatic chromosomes of the F3 and BC2 plants were further investigated. The bridge plants between B. juncea and D. virgata with 36 chromosomes may be utilized for breeding of other Brassica crops as well as B. juncea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
S. N. Zado  Amar  Singh 《Plant Breeding》1986,97(2):187-189
An interspecific hybrid involving Pennisetum americanum (2 n = 14) and a diploid cytotype of P. orientale (2 n = 18) was backcrossed to P. americanum using the hybrid (2 n = 16, 7‘A’+ 9 ‘O’) as the female parent. Pollen mother cells of 13 BC1 plants contained a complement of 14‘A’+ 9 ‘O’ chromosomes. Five BC2 plants obtained through further backcrossing to P. americanum had 21‘A’+ 9 ‘O’ chromosomes revealing another addition of the P. americanum genome. The role of such recurrent additions of parental genomes in the evolution of polyploid species has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号