首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The effects of nickel in combination with salicylic acid (SA) and sodium nitroprusside (SNP), a donor of nitric oxide (NO) on 21-day-old canola plants were evaluated. Exposure to 0.5 mM NiCl2·6H2O for 10 days resulted in toxicity symptoms such as chlorosis and necrosis at leaves. Addition of 0.2 mM SA or 0.2 mM SNP slightly reduced the toxic effects of nickel. After application of both SA and NO, these symptoms considerably decreased. Treatment with Ni resulted in a decrease in dry weight of roots and shoots and chlorophyll content of leaves. In Ni-treated plants, level of lipoxygenase activity and malondialdehyde (MDA), H2O2 and proline contents significantly increased, while the activities of the antioxidant enzymes such as catalase, guaiacol peroxidase and ascorbate peroxidase decreased in leaves. The results indicated that Ni caused an oxidative stress in canola plants. The Ni-stressed plants exposed to SA or NO, especially to SA + NO, exhibited an improved growth as compared to Ni-treated plants. SA or NO, especially both together considerably reduced root-to-shoot translocation of Ni and increased the activities of the antioxidant enzymes in leaves of Ni-stressed plants. Interaction of SA and NO improved the chlorophyll content and decreased the level of lipid peroxidation, H2O2 and proline accumulation in leaves. These results suggest that SA or NO in particular their combination counteract the negative effects of Ni on canola plants.  相似文献   

2.
Two field experiments were carried out in Egypt during two successive seasons (2007/2008 and 2008/2009). This study aimed to investigate the response of growth, yield quality and some metabolic constituents of onion (Allium cepa L. cv. ‘Giza 20’) to foliar application of putrescine (Put; 25, 50 and 100 mg L−1) and glutamine (Glut; 50, 100 and 200 mg L−1), the former a diamine and the latter an amino acid, either alone, or in combination. Foliar application of Put and Glut, either alone or in combination, significantly increased plant height, number of leaves, fresh weight of leaves/plant, fresh and dry weight/plant, leaf area, leaf area/plant, bulb length, bulb diameter and weight, as well as yield of onion and quality of bulbs. Total soluble sugars, sulfur compounds, total soluble phenols, total free amino acids and total photosynthetic pigment content in leaves were increased by increasing Put and/or Glut concentrations up to 100 and 200 mg L−1, respectively. Generally, foliar application of Put at 100 mg L−1 and Glut at 200 mg L−1 singly, or combined, effectively increased bulb yield and quality. In conclusion, the yield-contributing characters and quality of onion could be improved by application of Put and/or Glut.  相似文献   

3.
The effects of Al3+ [supplied as Al2(SO4)3·18H2O] addition to culture media (pH 4.0) on growth, morphogenesis (in leaf explants), and oxidative stress reactions in in vitro cultures of ‘BA 29’ quince were investigated. Aluminium (Al 0.5 mM) strongly inhibited shoot growth in the proliferation and rooting phases (Al 2.2 mM), reduced shoot proliferation (Al 1.1 mM), and induced tissue browning. Superoxide dismutase (SOD) activity was increased in shoot cultures supplemented with 2 mM Al. Malondialdehyde (MDA) content of shoots was strongly increased by Al during proliferation (starting from Al 1.7 mM) and rooting (already at Al 1.1 mM), thus serving as a good ‘marker’ for Al toxicity. Even a low concentration of Al (0.5 mM) in the shoot induction medium was found to inhibit shoot regeneration. When standard (Al 0) shoot induction medium was used, leaf explant growth was only reduced by 2.2 mM Al in the subsequent growth phases. Following a preliminary selection for their growth on Al-enriched media, 82 potentially Al-tolerant quince somaclones were selected for further trials.  相似文献   

4.
The beneficial effect of compost, the final product of aerobic biodegradation of organic matter, on growth, lipid peroxidation [as malondialdehyde (MDA], hydrogen peroxide (H2O2) and superoxide anion (O2•−), activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), as well as reduced ascorbate (ASC) and glutathione (GSH) and their oxidized forms was investigated in squash (Cucurbita pepo L. cv. Eskandarany) plants exposed to normal and low temperature (LT) conditions. LT stress of 8 °C significantly reduced the plant growth of untreated plants, but compost alleviated the adverse effect of stress and significantly increased the fresh and dry weights under normal and stress conditions. LT also induced accumulation of H2O2 and O2•− and resulted in increased lipid peroxidation, pointing out to cellular oxidative stress. Under compost application, such reactive oxygen species (ROS) and peroxidized lipids were markedly reduced, but SOD, CAT, APX and GR activities, key enzymes of ROS-scavenging systems, were significantly increased. Data also indicated that there were general reductions in total ascorbate and glutathione pool in LT control plants, but compost-treated ones considerably have maintained higher levels of such redox metabolites. Significantly higher ratios of ASC/DHA (dehydroascorbate) and GSH/GSSG (glutathione disulfide) were generally found in compost-treated plants than in untreated-ones. It is evident that compost induced enhancement of LT tolerance was related to up-regulation of enzymatic and non-enzymatic antioxidant systems. Such enhancement would eventually protect plant cells from LT-induced oxidative stress reactions via scavenging ROS.  相似文献   

5.
Different N sources (NO3, NH4+, or NH4NO3) at different relative addition rates (RAR) were supplied to cucumber (Cucumis sativus L.), a species sensitive to NH4+ toxicity. For comparison, cucumber plants were also grown at constant concentrations of 1 and 5 mM NH4+ or 5 mM NO3. The fresh weight of NH4+-fed plants at RAR 0.15 and RAR 0.25 day−1 was similar to that of NO3-fed plants, while at RAR 0.35 or RAR 0.45 day−1 growth reduction occurred. When available as a constant concentration, NH4+ decreased plant growth at 5 mM. It is concluded that at low rates of N supply the relative addition rate technique can be used for growing cucumber plants with NH4+ as sole N source without deleterious effects.  相似文献   

6.
In order to examine whether paraquat modifies the functioning of antioxidants and oxidative stress levels in drought-stressed plants, a cucumber cultivar (Cucumis sativus cv. Yuexiu no. 3) was grown hydroponically for 2 days. Drought stress, which was induced by polyethylene glycol (PEG), increased the contents of malonaldehyde (MDA), superoxide radical (O2) and hydrogen peroxide (H2O2) in cucumber leaves, while pretreatment of paraquat decreased them. Under drought stress induced by PEG, we observed the decreased contents of MDA, H2O2 and O2 in paraquat-pretreated plants in comparison to unpretreated stressed plants. Drought stress and paraquat both increased the activities of antioxidants such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), dehydroascorbate reductase (DHAR, EC 1.8.5.1), monodehydroascorbate reducatase (MDHAR, EC 1.6.5.4), glutathione reductase (GR, EC 1.6.4.2), reduced glutathione (GSH) and reduced ascorbate (AsA). But the combined effect of paraquat application and drought stress resulted in the highest activities of antioxidants. So paraquat is able to moderate the activities of scavenging system enzymes and to influence oxidative stress intensity under drought stress induced by PEG.  相似文献   

7.
This study was conducted in order to determine if inoculation with arbuscular mycorrhizal fungi (AMF) would enhance the tolerance of vinca plants to high levels of alkalinity, induced by KHCO3, in irrigation water. AMF-inoculated and non-inoculated plants were irrigated with water containing varying HCO3 concentrations: 0, 2.5, 5, 7.5, 10, and 15 mM. Increased HCO3 concentration inhibited plant growth, specifically at concentrations ≥7.5 mM. Leaves were more affected by high HCO3 concentration than other plant parts. In non-inoculated plants, a visual evaluation of quality demonstrated that acceptable quality was produced when irrigation water contained ≤2.5 mM HCO3, but AMF-inoculated plants of good quality were produced when irrigation water contained ≤7.5 mM HCO3. In general, AMF alleviated HCO3 stress, as indicated by greater plant growth and ranking of quality. However, AMF-inoculated plants irrigated with 0 mM HCO3 exhibited reduced growth when compared to non-inoculated plants. Bicarbonate did not affect leaf Fe concentration, indicating that vinca may be a Fe efficient plant. Plants inoculated with AMF exhibited an enhanced leaf P concentration and content, which was related to an increase in the activity of the soluble alkaline phosphatase. Plants inoculated with AMF exhibited increased leaf concentration and content of Mn, Zn, Cu, B, and Mo, and increased antioxidant activity under high concentrations of HCO3. In conclusion, the tolerance of vinca to alkalinity in irrigation water can be enhanced by AMF inoculation, thus, allowing for irrigation with water of high alkalinity.  相似文献   

8.
‘Picual’ olive cuttings were grown in a greenhouse under saline conditions in 2 L plastic pots containing perlite. Plants were irrigated with a nutrient solution plus 75 mM NaCl and 0, 2.5, 10 or 40 mM CaCl2. Vegetative growth, leaf and root Na+ and Ca2+ concentrations were measured. Na+ toxicity symptoms were observed in plants non-treated with Ca2+. Shoot length was higher in Ca2+ treated plants, although shoot growth was reduced at 40 mM CaCl2, probably due to the high total ion concentration reached in the external solution. Ca2+ supply linearly increased leaf and root Ca2+ concentration and decreased leaf Na+ concentration. However, there were no differences in root Na+ concentration. Results indicate Ca2+ may take part in the Na+ exclusion mechanism, mainly preventing Na+ transport to the shoot, that may be an important ability for survival under saline conditions.  相似文献   

9.
Smoke-water and a biologically active butenolide compound (3-methyl-2H-furo[2,3-c]pyran-2-one) derived from burning plant material, show stimulating effects on a number of agricultural and horticultural crops. In these trials, onion (Allium cepa L.) plants were treated (drenched) with either a 1:500 (v/v) smoke-water solution or a butenolide solution of 10−10 M under greenhouse conditions. Onion plants supplied with smoke-water and butenolide solution exhibited a significantly greater number of leaves, increased leaf length, and a higher fresh and dry leaf weight than untreated plants at 175 days after seed sowing (DASS) (third harvest). In addition, smoke-water and butenolide-treated onion plants exhibited a significantly higher bulb diameter and bulb weight than untreated plants, when these plants were harvested at 175 DASS. Overall, smoke-water was more effective than butenolide and achieved the highest harvest index. Genotoxicity was not detected in the bulbs of onion when they were treated with either smoke-water or butenolide.  相似文献   

10.
Plant production under salinity requires increased capacity for K+ homeostasis. For this purpose, supplementary K2SO4 in the nutrient solution and grafting on a tolerant rootstock were employed in two experiments to test whether grafting, potassium and their interactions can alleviate salinity stress in tomato (Solanum lycopersicum L.). In Exp-ion, plants were cultivated for 122 days to compare different ionic compositions: EC 9 dS m−1 in ECall (by macro-nutrients) and in ECNaCl (by 64.2 mM NaCl), EC 12 dS m−1 in ECK (ECNaCl + 25.8 mM K+). Exp-K+ was established to compare K+ concentrations of 6, 16 and 36 mM at 150 mM NaCl. In both Experiments, ‘ZS-5’, selected as a salt sensitive cultivar, was either self-grafted or grafted onto the cultivar ‘Edkawi’, reported as salt tolerant. Yield and growth, minerals, gas exchange, soluble sugars, and proline were analyzed. Different ionic treatments affected almost all characteristics considered while differences between rootstocks were rarely observed. No pronounced differences were found in shoot growth, yield and gas exchange between ECall and ECNaCl. ECK did not show any salinity alleviative effects but inhibited even growth compared with the other treatments. In Exp-K+, 16 mM K+ increased plant growth, leaf soluble sugars and proline concentrations. 36 mM K+ did not further reduce upper leaf Na+ although leaf K+ concentration increased significantly. The results indicated that the response of tomato plant to NaCl stress was principally attributed to the osmotic component in Exp-ion, excessive K+ showed no mitigating effect on fruit yield and shoot growth. However, 16 mM K+ in the root environment enhanced the salt adaptive capacity of plants stressed at 150 mM NaCl. The use of the tolerant rootstock resulted in no ameliorative effects, owing to its susceptibility to blossom-end rot, failure in enhancing photosynthesis, and ineffectiveness of restraining the long-distance transport of Na+.  相似文献   

11.
Hypobaria and hypoxia affects growth and phytochemical contents of lettuce   总被引:1,自引:0,他引:1  
The primary objective of this research was to investigate how low pressure (hypobaria) and low oxygen (hypoxia) affect functional phytochemicals and the nutritional quality of ‘Red Sails’ lettuce (Lactuca sativa L.). Plants were grown under two levels of total gas pressure (reduced or ambient (25 or 101 kPa, respectively)) at three levels of O2 partial pressures (low, medium or ambient (6, 12 or 21 kPa, respectively)). Hypoxia effects on nutritional and functional phytochemicals were more pronounced than hypobaria effects. Regardless of the total pressure, hypoxia, in general, enhanced leaf anthocyanin levels, enhanced total phenolic compounds, enhanced carbohydrate concentration and enhanced free radical scavenging capacity of lettuce but reduced leaf mineral concentration. Hypoxia increased the ethylene production of plants but ethylene accumulation was not the sole reason for enhanced anthocyanin production in plants grown under hypoxia. Our results suggest that low oxygen stress induces the production of protective phytochemicals and the free radical scavenging potential in lettuce, which may in turn enhance the functional value. However, further human intervention studies are needed to confirm if enhanced phytochemicals in plants have significant impact in human body.  相似文献   

12.
Most plants benefit from mycorrhizal symbiosis through improvement of water status and nutrient uptake. A factorial experiment with complete randomized blocks design was carried out in greenhouse at Tabriz University, Iran in 2005–2006. Experimental treatments were (a) irrigation interval (7, 9 and 11 days), (b) soil condition (sterile and non-sterile) and (c) arbuscular mycorrhizal fungi (AMF) species (Glomus versiforme, Glomus intraradices, Glomus etunicatum) and non-mycorrhizal (NM) plants as control. Onion (Allium cepa L. cv. Azar-shahr) seeds were sown in sterile nursery and inoculated with fungi species. One nursery left uninoculated as control. Nine weeks old seedlings then were transplanted to the pots. Average pre-irrigation soil water contents reached to about 67, 61.6 and 57.5% of FC corresponding to 7, 9 and 11 days irrigation intervals, respectively. At onion bulb maturity stage (192 days after transplanting), yield, water use efficiency (WUE) and yield response factor (Ky) were determined. The results indicated that AMF colonization increased soil water depletion significantly. G. versiforme under both soil conditions (sterile and non-sterile) and G. etunicatum in sterile soil depleted soil water effectively (P < 0.05). Mycorrhizal fungi improved WUE significantly (P < 0.0001) in both soil conditions. It raised by G. versiforme about 2.4-fold (0.289 g mm−1) in comparison with the control (0.117 g mm−1). G. intraradices and G. etunicatum also had significantly higher WUE than control. Apparently water deficit in 11-day irrigation interval led to lower yield and WUE compared to 9-day interval; the later resulted highest WUE (0.254 g mm−1). Mycorrhizal plants increased seasonal ET significantly due to enhancing in plant growth; G. versiforme in both sterile and non-sterile soil and G. etunicatum in sterile soil had the highest ET. Bulb yield was influenced by irrigation period and fungi species. G. versiforme produced higher yield than other treatments (135.27 g/pot). Mycorrhizal plants in 11-day irrigation interval in spite of suffering from water stress had more bulb yield than non-mycorrhizal plants in all irrigation intervals. Yield in general was higher in 9-day treatments than other irrigating internals significantly (P < 0.05). Onion yield response factor (Ky) was decreased by AMF colonization; implying that symbiosed plants become less responsive to water deficit (longer irrigation interval) compared to the control ones.  相似文献   

13.
During 2003 and 2005, plant growth promoting effects of two Bacillus strains OSU-142 (N2-fixing) and M3 (N2-fixing and phosphate solubilizing) were tested alone or in combinations on organically grown primocane fruiting raspberry (cv. Heritage) plants in terms of yield, growth, nutrient composition of leaves and variation of soil nutrient element composition in the province of Erzurum, Turkey. The results showed that Bacillus M3 treatment stimulated plant growth and resulted in significant yield increase. Inoculation of raspberry plant roots and rhizosphere with M3 and/or OSU-142 + M3, significantly increased yield (33.9% and 74.9%), cane length (13.6% and 15.0%), number of cluster per cane (25.4% and 28.7%) and number of berries per cane (25.1% and 36.0%) compared with the control, respectively. In addition, N, P and Ca contents of raspberry leaves with OSU-142 + M3 treatment, and Fe and Mn contents of the leaves of raspberry with M3 and OSU-142 + M3 applications significantly improved under organic growing conditions. Bacterial applications also significantly effected soil total N, available P, K, Ca, Mg, Fe, Mn, Zn contents and pH. Available P contents in soil was determined to be increased from 1.55 kg P2O5/da at the beginning of the study to 2.83 kg P2O5/da by OSU-142, to 5.36 kg P2O5/da by M3 and to 4.71 kg P2O5/da by OSU-142 + M3 treatments. The results of this study suggest that Bacillus M3 alone or in combination with Bacillus OSU-142 have the potential to increase the yield, growth and nutrition of raspberry plant under organic growing conditions.  相似文献   

14.
The objective of this work was to evaluate the effect of selected biologicals on direct seeded and transplanted squash plant growth and mineral content under salinity stress. The study was conducted in pot experiments using a mixture of sandy loam soil:vermiculite (1:1, v:v) under controlled greenhouse conditions. Biologicals tested included AgBlend, SoilBuilder, Yield Shield, PlantShield, Inoculaid and Equity. Salinity treatments were established by adding 0, 50 and 100 mM of NaCl to a base complete nutrient solution (Hydro-Sol + Ca(NO3)2). Pots were irrigated with NaCl solutions and biological treatments were included in the water. Yield Shield was applied as a seed treatment. Salinity negatively affected growth of squash; however, biological treatments significantly increased fresh weight compared to non-treated plants that were challenged with salt stress. Furthermore, biological treatments tested increased the uptake of potassium compared to the non-treated control in both direct seeded and transplanted squash. Sodium concentration was not affected by biologicals in directed seeded squash except for SoilBuilder, Yield Shield and Equity at 100 mM, while AgBlend, SoilBuilder, Inoculaid and Equity decreased sodium uptake in transplants under salt stress. The most effective biologicals increased the K+/Na+ ratio, which was positively correlated with plant growth. Alteration of mineral uptake may be one mechanism for the alleviation of salt stress. Based on the results of the experiment reported herein, the use of biological treatments may provide a means of facilitating plant growth under salt stress.  相似文献   

15.
This research included two independent yet build up objectives: (i) to examine the effects of Mn concentration in the irrigation water on the yield and fruit quality of greenhouse-grown bell pepper exposed to heat stress; and (ii) to investigate in a laboratory experiment the role of Mn addition on oxidative and anti-oxidative components of fruit apoplast. The field experiment included four concentrations of Mn in the irrigation water (0, 0.2, 0.6 and 1.0 mg L−1). The effect of Mn application rate on vegetative growth and total fruit yield was insignificant and despite low Mn concentrations in zero-Mn-fed plants, no visible foliar Mn symptoms were observed. A quadratic regression was obtained between high-quality fruit yield and Mn concentration in fruit. Based on the quadratic equation, maximum high-quality yield was obtained when fruit-Mn concentration approached 44 mg kg−1 DW. The correlation also indicates that variations in high-quality yield could be explained by differences in fruit-Mn concentration. The combination of low-Mn nutrition and high air temperature which prevailed during the experiment (summer season) induced severe pale spots and blemished fruits; approximately 50% of fruits were infected in zero-Mn-fed plants. In a laboratory experiment with detached-fruit under high temperature the H2O2 concentration increased whereas ascorbic acid concentration decreased in the apoplast. In Mn-fed fruit the H2O2 concentration was attenuated and the activity of ascorbate oxidase was suppressed, with the result that apoplastic ascorbic acid concentration increased. In light of the known crucial role of Mn in enzyme activities and in detoxification of oxygen free-radicals, the pale spots might be related to Mn effect on oxidative stress-related apoplastic activities. The relationships between incidence of pale spots and plant-Mn concentration may support this hypothesis, but further research is needed to validate it.  相似文献   

16.
Effects of N and S supply on the growth and pungency (estimated as pyruvic acid levels) of Chinese spring onion (Allium fistulosum L. var. giganteum Makino) were investigated in two pot experiments using soilless growing media. In the first experiment the effects of S supply (0.01 and 4.00 mmol L−1 SO42−) on the growth and pungency of Chinese spring onion were investigated among four cultivars with fleshy root type or long pseudostem type. In the second experiment the effects of different S (0.01 and 4.00 mmol L−1 SO42−) and N (1.5, 3.0, 6.0, 12.0 and 24.0 mmol L−1 N) supply levels on the growth and pungency of Chinese spring onion were studied. Fleshy root spring onion had stronger pungency and larger pseudostem diameter than long pseudostem spring onion, and the pungency of fleshy root spring onion was regulated to a greater extent by N and S supply compared with long pseudostem spring onion. Increasing S supply level significantly increased the biomass, N and S uptake and pungency of all cultivars tested. The biomass of Chinese spring onion of fleshy root type (cv Longyao) and long root type (cv Zhangqiu) was more influenced by N supply than it was by cultivar or S supply. Low S supply decreased the pungency of the two cultivars with increasing N supply. No significant differences in N or S uptake or pungency were observed in the two cultivars with different S supply at the N supply level of 1.5 mmol L−1 N, however, cultivar differences in N and S uptake and pungency were investigated at high N supply (12.0 mmol L−1 N) and S supply (4.0 mmol L−1 SO42−). Excessive N supply (24.0 mmol L−1) significantly inhibited plant growth, retarded S assimilation, and decreased pungency. It is therefore essential to apply the optimum recommended rate of N fertilizer in Chinese spring onion production.  相似文献   

17.
Individual and combined effects of salinity and B toxicity on growth, the major antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; ascorbate peroxidase, APX) activities, ascorbic acid, proline, and H2O2 accumulation, and stomatal resistance (SR), malondialdehyde (MDA), membrane permeability (MP) and the concentrations of sodium (Na), chloride (Cl) and boron (B) of lettuce were investigated. Boron toxicity and salinity reduced growth of lettuce plants. Under B toxicity, B concentration of the plants was increased, but in the presence of NaCl, the concentration of B was significantly reduced. Sodium and Cl concentrations were increased in B + NaCl and NaCl treatments. Membrane damage was more pronounced in NaCl and B + NaCl treatments. Stomatal resistance of the plants was significantly increased by salinity treatments. The accumulation of proline and ascorbic acid was the highest in the B + NaCl treatment. In general, stress conditions significantly increased H2O2 and antioxidant enzyme (SOD, CAT and APX) activities. The present results indicate that stomatal closure is an important response of lettuce against NaCl and B + NaCl stress. Furthermore NaCl and B + NaCl toxicity-induced oxidative stress in lettuce resulting in lipid peroxidation and membrane damage. Increased antioxidant enzyme activities and also accumulation of ascorbic acid and proline are involved in order to overcome B- and NaCl-induced oxidative stress.  相似文献   

18.
19.
The 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging activity, changes and accumulation of phenolic content were studied in the peel, seed and pulp of rambutan, Nephelium lappaceum L. (Rongrien and Seeechompoo cultivars) during fruit maturation. The IC50 values of the radical scavenging activity of the peels, in both cultivars remained low through fruit development (1.42–4.75 μg/mL) but the values of the seed and pulps were low at the beginning and increased markedly toward fruit development until harvest (4.87 to >1000 μg/mL). The accumulation of phenolic compounds in rambutan peels of Rongrien and Seechompoo cultivars increased continuously until reaching a maximum of 1653 and 733 mg per fruit at the time of being harvested, at 112 and 98 days after full bloom (DAFB), respectively. Ellagic acid, corilagin and geraniin in the peels of both cultivars were observed and quantified. The major component in the peels of the two cultivars was geraniin. The accumulation of ellagic acid, corilagin and geraniin in the peels increased and reached the maximum at the harvest stage, especially the major constituent of geraniin (1011 and 444 mg/fruit for Rongrien and Seechompoo, respectively). The free radical scavenging property was observed to have a relationship with the phenolic content quantified in different parts of the rambutan fruit. This research demonstrates potential data on phenolic constituents through fruit development, especially in the peels at the time of harvest.  相似文献   

20.
Inoculation of growing media with plant growth promoting rhizobacteria (PGPR) has a number of potential benefits for the production of ornamental plants. Certain rhizobacteria synthesise the enzyme ACC deaminase, which cleaves ACC, the precursor of the plant hormone ethylene. Bacterial metabolism is now known to lead to a reduction in [ACC] in the plant transpiration stream and bacteria are hypothesised to act on ACC exuded from roots. This in turn reduces the ethylene generated in plants growing in growing media inoculated with these bacteria. Here we tested if applications of the ACC deaminase containing rhizobacteria Variovorax paradoxus5C–2could be of benefit to ornamental growers by reducing ethylene generation in stressed plants. Ethylene is produced at levels that are inhibitory to growth and development under a number of abiotic stresses. The propagation and production of hardy ornamentals is deleteriously affected by abiotic stresses that involve ethylene signalling, including drought and physical wounding. Inoculation of growing media with V. paradoxus 5C-2 lowered ethylene emission from mature leaves of Cytisus × praecox experiencing drought stress. In addition, bacterial inoculation of the growing media resulted in significantly reduced abscission of the mature leaves under drought treatment. Beneficial effects of inoculation where also found in the wounding response of Fargesia murielae following divisional propagation and late season senescence in Aquilegia × hybrida in response to drought stress. Together these results demonstrate that V. paradoxus5C–2has real potential for use on ornamental nurseries in situations where plant stresses are unavoidable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号