首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frequent fertigation of crops is often advocated in the technical and popular literature, but there is limited evidence of the benefits of high-frequency fertigation. Field experiments were conducted on an Indo-American Hybrid var., Creole Red, of onion crop during three winter seasons of 1999–2000 through 2001–2002 in coarse-textured soil of Delhi under the semi-arid region of India. Three irrigation levels of 60, 80 and 100% of the crop evapotranspiration (ET) and four fertigation frequencies of daily, alternate day, weekly and monthly comprised the fertigation treatment. Analysis of soil samples indicated considerable influence of fertigation frequency on NO3-N distribution in soil profile. NO3-N in lower soil profiles (30.0–60.0 cm soil depth) was marginally affected in daily, alternate day and weekly fertigation. However, fluctuations of NO3-N content in 0.0–15.0, 15.0–30.0, 30.0–45.0 and 45.0–60.0 cm soil depth was more in monthly fertigation frequency. The level of soil NO3-N after the crop season shows that more NO3-N leached through the soil profile in monthly fertigation frequency. Amounts of irrigation water applied in three irrigation treatments proved to be too small to cause significant differences in the content of NO3-N leached beyond rooting depth of onion. Yield of onion was not significantly affected in daily, alternate day and weekly fertigation, though there was a trend of lower yields with monthly fertigation. The highest yield was recorded in daily fertigation (28.74 t ha−1) followed by alternate day fertigation (28.4 t ha−1). Lowest yield was recorded in monthly fertigation frequency (21.4 t ha−1). Application of 56.4 cm irrigation water and 3.4 kg ha−1 urea per fertigation (daily) resulted in highest yield of onion with less leaching of NO3-N.  相似文献   

2.
Irrigated agriculture may negatively affect groundwater quality and increase off-site salt and nitrate contamination. Management alternatives aimed at reducing these potential problems were analysed in the 15498 ha CR-V Irrigation District (Spain) by monitoring 49 wells and modelling the hydrological regime in a representative well of the Miralbueno Aquifer. Groundwaters presented low to moderate electrical conductivity (EC) (mean = 0.89 dS/m) and high [NO3] (mean = 94 mg/L). The groundwater depth (GWD) during the 2001 hydrological year responded to the annual cycles of precipitation and irrigation as well as to the secondary cycles derived from irrigation scheduling. GWD were consistently simulated by the groundwater BAS-A model. Model results indicate that an increase in irrigation efficiency and the pumping of groundwater for irrigation will decrease GWD and aquifer's discharge by 56–70%, depending on scenarios. These recommendations will save good-quality water in the reservoir, will be beneficially economical to farmers, and will minimize off-site salt and nitrogen contamination.  相似文献   

3.
The potato (Solanum tuberosum L.) is widely planted in the Middle Anatolian Region, especially in the Nigde-Nevsehir district where 25% of the total potato growing area is located and produces 44% of the total yield. In recent years, the farmers in the Nigde-Nevsehir district have been applying high amounts of nitrogen (N) fertilizers (sometimes more than 900 kg N ha−1) and frequent irrigation at high rates in order to get a much higher yield. This situation results in increased irrigation and fertilization costs as well as polluted ground water resources and soil. Thus, it is critical to know the water and nitrogen requirements of the crop, as well as how to improve irrigation efficiency. Field experiments were conducted in the Nigde-Nevsehir (arid) region on a Fluvents (Entisols) soil to determine water and nitrogen requirements of potato crops under sprinkler and trickle irrigation methods. Irrigation treatments were based on Class A pan evaporation and nitrogen levels were formed with different nitrogen concentrations.The highest yield, averaging 47,505 kg ha−1, was measured in sprinkler-irrigated plots at the 60 g m−3 nitrogen concentration level in the irrigation treatment with limited irrigation (480 mm). Statistically higher tuber yields were obtained at the 45 and 60 g m−3 nitrogen concentration levels in irrigation treatments with full and limited irrigation. Maximum yields were obtained with about 17% less water in the sprinkler method as compared to the trickle method (not statistically significant). On the loam and sandy loam soils, tuber yields were reduced by deficit irrigation corresponding to 70% and 74% of evapotranspiration in sprinkler and trickle irrigations, respectively. Water use of the potato crop ranged from 490 to 760 mm for sprinkler-irrigated plots and 565–830 mm for trickle-irrigated treatments. The highest water use efficiency (WUE) levels of 7.37 and 4.79 kg m−3 were obtained in sprinkle and trickle irrigated plots, respectively. There were inverse effects of irrigation and nitrogen levels on the WUE of the potato crops. Significant linear relationships were found between tuber yield and water use for both irrigation methods. Yield response factors were calculated at 1.05 for sprinkler methods and 0.68 for trickle methods. There were statistically significant linear and polynomial relationships between tuber yield and nitrogen amounts used in trickle and sprinkler-irrigated treatments, respectively. In sprinkler-irrigated treatments, the maximum tuber yield was obtained with 199 kg N ha−1. The tuber cumulative nitrogen use efficiency (NUEcu) and incremental nitrogen use efficiency (NUEin) were affected quite differently by water, nitrogen levels and years. NUEcu varied from 16 to 472 g kg−1 and NUEin varied from 75 to 1035 g kg−1 depending on the irrigation method. In both years, the NH4-N concentrations were lower than NO3-N, and thus the removed nitrogen and nitrogen losses were found to be 19–87 kg ha−1 for sprinkler methods and 25–89 kg ha−1 for trickle methods. Nitrogen losses in sprinkler methods reached 76%, which were higher than losses in trickle methods.  相似文献   

4.
The analysis of irrigation and drainage management and their effects on the loading of salts is important for the control of on-site and off-site salinity effects of irrigated agriculture in semi-arid areas. We evaluated the irrigation management and performed the hydrosalinity balance in the D-XI hydrological basin of the Monegros II system (Aragón, Spain) by measuring or estimating the volume, salt concentration and salt mass in the water inputs (irrigation, precipitation and Canal seepage) and outputs (evapotranspiration and drainage) during the period June 1997–September 1998. This area is irrigated by solid-set sprinklers and center pivots, and corn and alfalfa account for 90% of the 470 ha irrigated land. The soils are low in salts (only 10% of the irrigated land is salt-affected), but shallow (<2 m) and impervious lutites high in salts (average ECe=10.8 dS m−1) and sodium (average SARe=20 (meq l−1)0.5) are present in about 30% of the study area.The global irrigation efficiency was high (Seasonal Irrigation Performance Index=92%), although the precipitation events were not sufficiently incorporated in the scheduling of irrigation and the low irrigation efficiencies (60%) obtained at the beginning of the irrigated season could be improved by minimising the large post-planting irrigation depths given to corn to promote its emergence. The salinity of the irrigation water was low (EC=0.36 dS m−1), but the drainage waters were saline (EC=7.5 dS m−1) and sodic (SAR=10.3 (meq l−1)0.5) (average values for the 1998 hydrological year) due to the dissolution and transport of the salts present in the lutites. The discharge salt loading was linearly correlated (P<0.001) with the volume of drainage. The slope of the daily mass of salts in the drainage waters versus the daily volume of drainage increased at a rate 25% higher in 1997 (7.6 kg m−3) than in 1998 (6.1 kg m−3) due to the higher precipitation in 1997 and the subsequent rising of the saline watertables in equilibrium with the saline lutites. Drainage volumes depended (P<0.001) on irrigation volumes and were very low (194 mm for the 1998 hydrological year), whereas the salt loading was moderate (13.5 Mg ha−1 for the 1998 hydrological year) taking into account the vast amount of salts stored within the lutites. We concluded that the efficient irrigation and the low salinity of the irrigation water in the study area allowed for a reasonable control of the salt loading conveyed by the irrigation return flows without compromising the salinization of the soil’s root-zone.  相似文献   

5.
The great challenge of the agricultural sector is to produce more food from less water, which can be achieved by increasing Crop Water Productivity (CWP). Based on a review of 84 literature sources with results of experiments not older than 25 years, it was found that the ranges of CWP of wheat, rice, cotton and maize exceed in all cases those reported by FAO earlier. Globally measured average CWP values per unit water depletion are 1.09, 1.09, 0.65, 0.23 and 1.80 kg m−3 for wheat, rice, cottonseed, cottonlint and maize, respectively. The range of CWP is very large (wheat, 0.6–1.7 kg m−3; rice, 0.6–1.6 kg m−3; cottonseed, 0.41–0.95 kg m−3; cottonlint, 0.14–0.33 kg m−3 and maize, 1.1–2.7 kg m−3) and thus offers tremendous opportunities for maintaining or increasing agricultural production with 20–40% less water resources. The variability of CWP can be ascribed to: (i) climate; (ii) irrigation water management and (iii) soil (nutrient) management, among others. The vapour pressure deficit is inversely related to CWP. Vapour pressure deficit decreases with latitude, and thus favourable areas for water wise irrigated agriculture are located at the higher latitudes. The most outstanding conclusion is that CWP can be increased significantly if irrigation is reduced and crop water deficit is intendently induced.  相似文献   

6.
Untreated effluents are blended with water from the Rio Grande River and used for irrigation in the Juarez Valley of northern Mexico. Effluents are a source of nutrients, but may also be a source of heavy metal contamination. This study was conducted to characterize deposition patterns of selected metals, salts, and total nitrogen in a 6 ha pecan (Carya illinoenisis K.) orchard which had healthy-to-stunted trees with dieback. Orchard soil was collected along multiple transects to depths of 1.2 m, with spacing every 20 m. All solutes showed a magnitude variability in particular ions. Chromium, Ni, Pb, and Cd concentrations averaged <14 mg kg−1. Soil Na, Ca, K, Mg, SO4, Cl and NO3–N averaged <100 mg kg−1. Total N was <0.21%. Most solutes accumulated at the soil surface with the exception of Na and SO4. Linear semi-variograms best described spatial metal deposition and surface clay content with a range of influence >189 m. Spherical semi-variograms best described spatial distribution of salts and total N, but accounted <50% of the variability. The solubility of solutes in moderately alkaline irrigation water and their specific behavior in calcareous soils likely affected deposition patterns. Estimated metal loads from irrigation over a 15-year period were <3 kg ha−1, but about 187 Mg ha−1 for total dissolved solids (salts). Pecan leaf tissue showed no signs of heavy metal accumulation. Suboptimum pecan growth was associated with salt accumulation in a clayey area with low permeability. Salts, in particular Na, rather than metals may be the most important inorganic contaminants for irrigated agriculture in this region. Salt loads in irrigation waters are expected to increase as agriculture increasingly relies on urban effluents too expensive to convert to potable water.  相似文献   

7.
Fertilization is an important cause of groundwater contamination with nitrate in agricultural soils. The objectives of the present work were: (i) to quantify the nitrate leaching in two fertilized and irrigated soils of the Pampas Region, Argentina; (ii) to test the ability of the NLEAP model to predict residual and leached nitrate in those soils. The soils were a Typic Hapludoll and a Typic Argiudoll. The treatments were: natural grassland never ploughed or fertilized; maize with a short history of fertilization; maize with a long history of fertilization; irrigated maize with a long history of fertilization. Both sites were sampled after harvest in two consecutive years to a 3 m depth. Residual nitrate and potential losses below 150 cm were estimated by NLEAP model. The average amount of nitrate (NO3-N), including values of all treatments, in the upper layer (0–1.5 m) was 128 kg NO3-N ha−1 in the first sampling date and was consistently lower in the second sampling date (38 kg NO3-N ha−1). In the deeper layer (1.5–3 m) these values were 80 and 28 kg NO3-N ha−1 for the first and second sampling date, respectively. Differences between the non-fertilized and the fertilized treatments were significantly smaller in the second sampling date. Obtained results suggest that the rainfall previous to the first sampling was not enough to displace nitrate below 3 m depth. The afterwards heavy rainfall leached nitrate previously accumulated in the soil. Complementary irrigation did not affect nitrate movements. Simulated residual and leached nitrate showed a high correlation with observed values. Nitrate leaching was more associated to rainfall regime and crop yields than to soil type. Simulated residual and leached nitrate showed a high correlation with measured values in both soils, which suggests that NLEAP was appropriate to predict soil nitrate leaching under the studied conditions.  相似文献   

8.
Salt-tolerant crops can be grown with saline water from tile drains and shallow wells as a practical strategy to manage salts and sustain agricultural production in the San Joaquin Valley (SJV) of California. Safflower (Carthamus tinctorius L.) was grown in previously salinized plots that varied in average electrical conductivity (ECe) from 1.8 to 7.2 dS m−1 (0–2.7 m depth) and irrigated with either high quality (ECi<1 dS m−1) or saline (ECi=6.7 dS m−1) water. One response of safflower to increasing root zone salinity was decreased water use and root growth. Plants in less saline plots recovered more water on average (515 mm) and at a greater depth than in more salinized plots (435 mm). With greater effective salinity, drainage increased with equivalent water application rates. Seed yield was not correlated with consumptive water use over the range of 400–580 mm. Total biomass and plant height at harvest were proportional to water use over the same range. Safflower tolerated greater levels of salinity than previously reported. Low temperatures and higher than average relative humidity in spring likely moderated the water use of safflower grown under saline conditions.  相似文献   

9.
With decreasing water availability for agriculture and increasing demand for rice, water use in rice production systems has to be reduced and water productivity increased. Alternately submerged–nonsubmerged (ASNS) systems save water compared with continuous submergence (CS). However, the reported effect on yield varies widely and detailed characterizations of the hydrological conditions of ASNS experiments are often lacking so that generalizations are difficult to make. We compared the effects of ASNS and CS on crop performance and water use, at different levels of N input, in field experiments in China and the Philippines, while recording in detail the hydrological dynamics during the experiment. The experiments were conducted in irrigated lowlands and followed ASNS practices as recommended to farmers in China. The sites had silty clay loam soils, shallow groundwater tables and percolation rates of 1–4.5 mm per day.Grain yields were 4.1–5.0 t ha−1 with 0 kg N ha−1 and 6.8–9.2 t ha−1 with 180 kg N ha−1. Biomass and yield did not significantly differ between ASNS and CS, but water productivity was significantly higher under ASNS than under CS in two out of three experiments. There was no significant water×N interaction on yield, biomass, and water productivity. Combined rainfall plus irrigation water inputs were 600–960 mm under CS, and 6–14% lower under ASNS. Irrigation water input was 15–18% lower under ASNS than under CS, but only significantly so in one experiment. Under ASNS, the soils had no ponded water for 40–60% of the total time of crop growth. During the nonsubmerged periods, ponded water depths or shallow groundwater tables never went deeper than −35 cm and remained most of the time within the rooted depth of the soil. Soil water potentials did not drop below −10 kPa. We argue that our results are typical for poorly-drained irrigated lowlands in Asia, and that ASNS can reduce water use up to 15% without affecting yield when the shallow groundwater stays within about 0–30 cm. A hydrological characterization and mapping of Asia’s rice area is needed to assess the extent and magnitude of potential water savings.  相似文献   

10.
Groundwater pollution caused by leaching of NO3-N from agricultural systems has caused public concern for decades. To preserve the groundwater and reduce economic losses for the farmers, a rapid and accurate estimation of NO3-N moving below the root zone is crucial. In this study, the value of the computer program NLEAP (Nitrate Leaching and Economic Analysis Package) to simulate nitrate leaching was evaluated using data from an experiment conducted with 12 lysimeters (1.25 m i.d. and 2 m deep) in 1996 and 1997. Three tomato (H2274 variety) seedlings were planted in each lysimeter and nitrogen rates of 0, 80, 160, and 240 kg N ha−1, as ammonium nitrate and ammonium sulphate, were applied to the lysimeters under a fixed irrigation program. Effluent was collected from the outlets of the lysimeters and analyzed for NO3. The model adequately simulated nitrogen leaching for each year (R2=0.93 and P<0.03 for 1996, and R2=0.87 and P<0.06 for 1997). The high coefficients of determination, between observed and simulated values, revealed that the model can be successfully used to estimate the amount of the NO3 leaching under the experimental conditions. The results also showed that the NO3 available for leaching (NAL) values were important background information for determining an optimum N rate for groundwater quality and maximum gain, and NO3 available for leaching (NAL), amount of NO3 leached (NL), movement risk index (MRI), and annual leaching risk potential (ALRP) parameters should be considered together to estimate the nitrogen pollution risk.  相似文献   

11.
Since the late 1990s, aerobic rice varieties have been released to farmers in the North China Plain to grow rice as a supplementary-irrigated upland crop to cope with water scarcity. Little is known about their yield potential, water use, water productivity (WP), and flood tolerance. In 2001–2002, experiments with aerobic rice varieties HD502 and HD297 and lowland rice variety JD305 were conducted under aerobic and flooded conditions. Under aerobic conditions, five irrigation treatments were implemented. Under flooded conditions, JD305 yielded up to 8.8 t ha−1, HD502 up to 6.8 t ha−1, and HD297 up to 5.4 t ha−1. Under aerobic conditions, the aerobic varieties yielded higher than the lowland variety. HD502 produced 3–3.5 t ha−1 with 450–500 mm total water input and 5.3–5.7 t ha−1 with 650 mm water input and more. HD297 produced 3–3.5 t ha−1 with 450–500 mm total water input and 4.7–5.3 t ha−1 with 650 mm water input and more. The water productivity of aerobic rice under aerobic conditions was higher or on a par with that of the lowland variety under flooded conditions, reaching values of 0.6–0.8 g grain kg−1 water. The relatively high yields of the aerobic varieties under aerobic soil conditions were obtained under “harsh” conditions for growing rice. The soil contained more than 80% sand, was permeable, and held water above field capacity for a few hours after irrigation only. The groundwater table was deeper than 20 m, the soil moisture content in the rootzone was mostly between 50 and 80% of saturation, and soil moisture tension went up to 90 kPa. We conclude that the aerobic rice varieties HD502 and HD297 are suitable for water-scarce environments, and can stand being periodically flooded.  相似文献   

12.
A study was conducted to determine the effects of different drip irrigation regimes on yield and yield components of cucumber (Cucumbis sativus L.) and to determine a threshold value for crop water stress index (CWSI) based on irrigation programming. Four different irrigation treatments as 50 (T-50), 75 (T-75), 100 (T-100) and 125% (T-125) of irrigation water applied/cumulative pan evaporation (IW/CPE) ratio with 3-day-period were studied.Seasonal crop evapotranspiration (ETc) values were 633, 740, 815 and 903 mm in the 1st year and were 679, 777, 875 and 990 mm in the 2nd year for T-50, T-75, T-100 and T-125, respectively. Seasonal irrigation water amounts were 542, 677, 813 and 949 mm in 2002 and 576, 725, 875 and 1025 mm in 2003, respectively. Maximum marketable fruit yield was from T-100 treatment with 76.65 t ha−1 in 2002 and 68.13 t ha−1 in 2003. Fruit yield was reduced significantly, as irrigation rate was decreased. The water use efficiency (WUE) ranged from 7.37 to 9.40 kg m−3 and 6.32 to 7.79 kg m−3 in 2002 and 2003, respectively, while irrigation water use efficiencies (IWUE) were between 7.02 and 9.93 kg m−3 in 2002 and between 6.11 and 8.82 kg m−3 in 2003.When the irrigation rate was decreased, crop transpiration rate decreased as well resulting in increased crop canopy temperatures and CWSI values and resulted in reduced yield. The results indicated that a seasonal mean CWSI value of 0.20 would result in decreased yield. Therefore, a CWSI = 0.20 could be taken as a threshold value to start irrigation for cucumber grown in open field under semi-arid conditions.Results of this study demonstrate that 1.00 IW/CPE water applications by a drip system in a 3-day irrigation frequency would be optimal for growth in semiarid regions.  相似文献   

13.
The drained and irrigated marshes in south-west Spain are formed on soils of alluvial origin from the ancient Guadalquivir river estuary. The most important characteristics of these soils are the high clay content (about 70%), high salinity, and a shallow, extremely saline, water table. The reclaimed area near Lebrija, called Sector B-XII (about 15,000 ha), has been under cultivation since 1978. Some years, however, water supply for irrigation is limited due to drought periods. The objective of this work was to evaluate the effects of irrigation with high and moderately saline waters on soil properties and growth and yield of cotton and sugar beet crops. The experiments were carried out during 1997 and 1998 in a farm plot of 12.5 ha (250 m×500 m) in which a drainage system had been installed, consisting of cylindrical ceramic sections (0.3 m long) forming pipes 250 m long, buried at a depth of 1 m and spaced at intervals of 10 m. These drains discharge into a collecting channel perpendicular to the drains. Two subplots of 0.5 ha (20 m×250 m) each were selected. In 1997 cotton was growing in both subplots, and irrigation was applied by furrows. One subplot (A) was irrigated with fresh water (0.9 dS m−1) during the whole season, while in the other subplot (B) one of the irrigations (at flowering stage) was with water of high salinity (22.7 dS m−1). During 1998 both subplots were cropped with sugar beet. Subplot A was irrigated with fresh water (1.7 dS m−1) during the whole season, while in subplot B two of the irrigations were with moderately saline water (5.9–7.0 dS m−1). Several measurement sites were established in each subplot. Water content profile, tensiometric profile, water table level, drainage water flow, soil salinity, and crop development and yield were monitored. The results showed that after the irrigation with high saline water (subplot B) in 1997 (cotton), the soil salinity increased. This increase was more noticeable in the top layer (0–0.3 m depth). In contrast, for the same dates, the soil of subplot A showed no changes. After five irrigations with fresh water, the salinity of the soil in the subplot B reached values similar to those before the application of saline water. In 1998 (sugar beet) the application of moderately saline water in subplot B also increased soil salinity, but this increase was lower than in 1997. The irrigation with high saline water affected crop development. Cotton growth was reduced in comparison with that in the subplot irrigated only with fresh water. Despite this negative effect on crop development, the crop yield was the same as in the subplot A. Sugar beet development did not show differences between subplots, but yield was higher in subplot B than in subplot A.  相似文献   

14.
Drainage water salinity data from 71 public deep tubewells and 79 pipe drainage units near Faisalabad, Pakistan, were studied. Drainage water salinity of the tubewells and the pipe drains remained approximately constant with time. This was attributed to the deep, highly conductive, unconfined aquifer underlying the area, which facilitates lateral groundwater inflow into the drained areas. Tubewells alongside surface drains showed average electrical conductivity, sodium adsorption ratio, and residual sodium carbonate values of 3.2 dS m−1, 17.2 (meq l−1)0.5, and 6.4 meq l−1, respectively. For pipe drains, which are situated in areas with comparable conditions, the corresponding values were 2.5 dS m−1, 12.2 (meq l−1)0.5, and 3.7 meq l−1, respectively. Tubewells have an inferior drainage water quality because they attract water from greater depths, where the water is more saline.  相似文献   

15.
Brackish water (7 dS m−1) is frequently utilized to drip-irrigate crops in the Negev desert of Israel, the practice being to use deep sandy soils (96% sand) to avoid soil salinization. When muskmelon (Cucumis melo L.), a moderately salt-sensitive crop species, was grown using brackish irrigation under these conditions, yields declined due to a significant reduction in fruit size, but fruit quality parameters improved markedly. In the present study, we tested the hypothesis that the use of fresh irrigation water during the early vegetative phase would increase canopy size and leaf area index (LAI) and hence the potential productivity of the melon plant. The application of brackish water during the reproductive phase, on the other hand, would improve fruit quality. Using multiple irrigations within a 24-h period, applied with drip irrigation, we examined the timing, the duration, and the concentration of brackish irrigation water as tools to optimize fruit yield and quality in late-summer melons. Indeed, the combination of fresh (1.2 dS m−1) and brackish (7 dS m−1) irrigation water increased the yield level to that of fresh water plants whereas it brought about the improvement of fruit quality typical to brackish water plants, thus providing an attractive approach to optimize late-summer melon production. Our results demonstrate the trade-off between fruit size and fruit quality as related to the timing and the duration of brackish irrigation water. The use of a milder (<4.5 dS m−1) salinity level of irrigation water from plant emergence until harvest may be considered as well.  相似文献   

16.
The West Asia and North Africa (WANA) region, with a Mediterranean climate type, has an increasing deficit in cereal production, especially bread wheat. Rainfed cropping in the highlands of this region coincides with the severely cold winter with mostly, snow from November to April. Cereal yields, are low and variable mainly as a result of inadequate and erratic seasonal rainfall and associated management factors, such as late sowing (or late crop emergence). In an area where water is limited, small amounts of supplemental irrigation (SI) water can make up for the deficits in seasonal rain and produce satisfactory and sustainable yields. This field study (1999–2002) on a deep clay silty soil in north west of Iran was conducted with four SI levels (rainfed, 1/3, 2/3 and full irrigation requirements) combined with different N rates (0, 30, 60, 90 and 120 kg ha−1) with one wheat variety (Sabalan). Yields of rainfed wheat varied with seasonal rainfall and its distribution. A delay in the crop emergence from October (SI treatment) to November (rainfed) consistently reduced yields. With irrigation, crop responses to nitrogen were generally significant up to 60 kg N ha−1. An addition of only limited irrigation (1/3 of full irrigation) significantly increased yields and maximized water use efficiency (WUE). Use efficiency for water and N was greatly increased by SI. Under deficit irrigation, maximum WUE would be achieved when 60 kg N ha−1 is combined with 1/3 of full SI. Early crop germination is essential to ensure adequate crop stand before the winter frost and to achieve high yield. Early emergence can be achieved by applying a small amount (40–50 mm) of SI after sowing. Thus, when limited SI is combined with appropriate management, wheat production can be substantially and consistently increased in this highland semi-arid zone.  相似文献   

17.
A 2-year experiment was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to determine water use and lint yield response to the length of irrigation season of drip irrigated cotton (Gossypium hirsutum L.). Crop evapotranspiration (ETcrop) and reference evapotranspiration (ETrye-grass) were directly measured at weekly basis during the 2001 growing period using crop and rye-grass drainage lysimeters. Crop coefficients (Kc) in the different growth stages were calculated as ETcrop/ETrye-grass. Then, the calculated Kc values were used in the 2002 growing period to estimate evapotranspiration of cotton using the FAO method by multiplying the calculated Kc values by ETrye-grass measured in 2002. The length of irrigation season was determined by terminating irrigation permanently at first open boll (S1), at early boll loading (S2), and at mid boll loading (S3). The three treatments were compared to a well-watered control (C) throughout the growing period. Lint yield was defined as a function of components including plant height at harvest, number of bolls per plant, and percentage of opened bolls per plant.Lysimeter-measured crop evapotranspiration (ETcrop) totaled 642 mm in 2001 for a total growing period of 134 days, while when estimated with the FAO method in 2002 it averaged 669 mm for a total growing period of 141 days from sowing to mature bolls. Average Kc values varied from 0.58 at initial growth stages (sowing to squaring), to 1.10 at mid growth stages (first bloom to first open boll), and 0.83 at late growth stages (early boll loading to mature bolls).Results showed that cotton lint yields were reduced as irrigation amounts increased. Average across years, the S1 treatment produced the highest yield of 639 kg ha−1 from total irrigations of 549 mm, compared to the S2 and S3 treatments, which yielded 577 and 547 kg ha−1 from total irrigations of 633 and 692 mm, respectively, while the control resulted in 457 kg ha−1 of lint yield from 738 mm of irrigation water. Water use efficiency (WUE) was found to be higher in S1 treatment and averaged 1.3 kg ha−1 mm−1, followed by S2 (1.1 kg ha−1 mm−1), and S3 (1.0 kg ha−1 mm−1), while in the control WUE was 0.80 kg ha−1 mm−1. Lint yield was negatively correlated with plant height and the number of bolls per plant and positively correlated with the percentage of opened bolls. This study suggests that terminating irrigation at first open boll stage has been found to provide the highest cotton yield with maximum WUE under the semi-arid conditions of the Bekaa Valley of Lebanon.  相似文献   

18.
The Penman–Monteith (P–M) model with a variable surface canopy resistance (rc) was evaluated to estimate latent heat flux (LE) or crop evapotranspiration (ET) over a furrow-irrigated tomato crop under different soil water status and atmospheric conditions. The hourly values of rc were computed as a function of environmental variables (air temperature, vapor pressure deficit, net radiation, and soil heat flux) and a normalized soil water factor (F), which varies between 0 (wilting point, θWP) and 1 (field capacity, θFC). The Food and Agricultural Organization (FAO-56) method was also evaluated to calculate daily ET based on the reference evapotranspiration, crop coefficient and water stress coefficient. The performance of the P–M model and FAO-56 method were evaluated using LE values obtained from the Bowen ratio system. On a 20 min time interval, the P–M model estimated daytime variation of LE with a standard error of the estimate (SEE) of 46 Wm−2 and an absolute relative error (ARE) of 3.6%. Thus, daily performance of the P–M model was good under soil water content ranging from 118 to 83 mm (θFC and θWP being 125 and 69 mm, respectively) and LAI ranging from 1.3 to 3.0. For this validation period, the calculated values of rc and F ranged between 20 and 114 s m−1 and between 0.87 and 0.25, respectively. In this case, the P–M model was able to predict daily ET with a SEE of 0.44 mm h−1 (1.1 MJ m−2 d−1) and an ARE of 3.9%. Furthermore, the FAO-PM model computed daily ET with SEE and ARE values of 1.1 mm h−1 (2.8 MJ m−2 d−1) and 5.2%, respectively.  相似文献   

19.
Four different levels of drip fertigated irrigation equivalent to 100, 75, 50 and 25% of crop evapotranspiration (ETc), based on Penman–Monteith (PM) method, were tested for their effect on crop growth, crop yield, and water productivity. Tomato (Lycopersicon esculentum, Troy 489 variety) plants were grown in a poly-net greenhouse. Results were compared with the open cultivation system as a control. Two modes of irrigation application namely continuous and intermittent were used. The distribution uniformity, emitter flow rate and pressure head were used to evaluate the performance of drip irrigation system with emitters of 2, 4, 6, and 8 l/h discharge. The results revealed that the optimum water requirement for the Troy 489 variety of tomato is around 75% of the ETc. Based on this, the actual irrigation water for tomato crop in tropical greenhouse could be recommended between 4.1 and 5.6 mm day−1 or equivalent to 0.3–0.4 l plant−1 day−1. Statistically, the effect of depth of water application on the crop growth, yield and irrigation water productivity was significant, while the irrigation mode did not show any effect on the crop performance. Drip irrigation at 75% of ETc provided the maximum crop yields and irrigation water productivity. Based on the observed climatic data inside the greenhouse, the calculated ETc matched the 75–80% of the ETc computed with the climatic parameters observed in the open environment. The distribution uniformity dropped from 93.4 to 90.6%. The emitter flow rate was also dropped by about 5–10% over the experimental period. This is due to clogging caused by minerals of fertilizer and algae in the emitters. It was recommended that the cleaning of irrigation equipments (pipe and emitter) should be done at least once during the entire cultivation period.  相似文献   

20.
Pistachio can be grown in the central desert of Islamic Republic (I.R.) of Iran with adverse conditions such as shallow saline groundwater tables. The contribution of water from shallow, saline groundwater to crop water use may be important in such conditions. The objectives of this study were to determine the contributions from shallow, saline groundwater to water use of pistachio seedlings, and how this contribution was affected by groundwater depth, salinitiy, and irrigation conditions. The results indicated that an increase in groundwater depth resulted in significant increase in root depth and significant decrease in seasonal evapotranspiration (ET), transpiration, and groundwater contribution to the plant water use. Non-saline shallow (30–120 cm depth) groundwater under irrigated and non-irrigated conditions contributed 72.4–89.7% and 90.7–100.0% of plant water use, respectively. However, these contributions were 57.2–74.8% and 79.3–100.0% for irrigated and non-irrigated conditions, respectively for saline shallow (30–120 cm depth) groundwater. The effect of groundwater depths (D, cm) on groundwater contributions (q, %) was found to be influenced by the salinity levels of the groundwater (EC, dS m−1). The linear multiple regression equations were q = 97.5 − 1.24(EC) − 0.194(D) and q = 105.9 − 0.48(EC) − 0.154(D) for irrigated and non-irrigated conditions, respectively. The maximum reductions in relative plant dry weight of 80.3% and 44.8% were occurred under non-irrigated condition and saline groundwater depth of 30 cm and non-saline water depth of 60 cm, respectively. Root depth analysis indicated that vertical root growth caused the root to reach a moist layer near the groundwater. A very close to 1:1 relationship between relative reduction in top dry weight (1 − y/ym) and relative reduction in transpiration (1 − T/Tm) was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号